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ABSTRACT 

This study presents a model-predictive control (MPC) for a large-scale cooling water 

system in an existing factory building. The target system comprises 22 cooling towers (3,000 

USRT each), 21 pumps (1,500 m3/h) and provides cooling water for 22 chillers (2,900 USRT 

each). The authors selected a federated modeling approach where three different models are 

combined to describe the dynamic behavior of cooling towers, pumps, and pressure drops in the 

pipes. Firstly, a physics-based cooling tower model was employed to generate synthetic data 

under different operational scenarios (e.g. the number of operating fans and towers) which was 

later used to develop a data-driven model or Artificial neural network (ANN) model. Based on 

the collected data from the target building, the ANN model was fine-tuned and converted into a 

transfer learning model where physical knowledge of the cooling towers and actual dynamic 

behavior extracted from measured data were merged together. The pump and pressure drop 

models were developed using empirical regression equations. The federated model consisting of 

the cooling tower, pump and pressure drop models demonstrates a high accuracy in predicting 

cooling water outlet temperature within a range of 1℃ under time-varying cooling tower fan 

control. In addition, owing to the MPC, it is found that energy consumption can be saved by 

13.4-20.8% over six days in three different seasons (Feb. 21-22, Apr. 21-22, Aug. 20-21).  

Introduction 

The cooling system in large buildings consists of many different dynamic systems 

including cooling towers, chillers, pumps, air handling units, fans, etc. Cooling accounts for up 

to 50-60% of energy use in large buildings and significant energy cooling saving potential exists 

(Thangavelu et al., 2017). However, it is difficult to apply model-predictive control (MPC) to the 

cooling system in large buildings because it involves nonlinear interwoven relationship between 

the different dynamic systems. As an alternative, a rule-based control has been widely used 

based on facility manager’s experience, engineering intuition and expertise. But it has been well 

acknowledged that MPC is more advantageous than the rule-based control because it is based on 

predictive dynamic behavior of system(s) of interest.  

Recently, a data-driven modeling approach has been adopted in many MPC studies 

(Wang et al., 2019; Sala-Cardoso et al., 2020; Ho and Yu, 2021). In addition, reinforcement 

learning, one of the data-driven approaches, has also been popular because it can be utilized as a 

simulation model-free approach (Ahn and Park, 2020; Qiu et al., 2020; Fu et al., 2022). The data-

driven approach is advantageous in that it does not necessarily require any in-depth expertise and 

physical knowledge compared to the physics-based approach. However, it demands sufficient 

quality data and lacks extrapolation ability beyond the training data (Kim et al., 2016; Bourdeau 
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et al., 2019). In many real-life cases, it is difficult to collect enough data under different weather 

conditions by arbitrarily changing control scenarios, e.g. turning on/off fans, pumps, etc. In 

contrast, the physics-based model is based on the first-principles of mass and heat transfer 

theories and straightforward. However, it requires the calibration process to approximate the 

predictions to reality due to uncertainty of model, resulting in computational burden of individual 

or whole system depending on the complexity of model. 

In this regard, the hybrid model combining physics-based and data-driven approaches has 

attracted attention. Park et al. (2019) proposed a hybrid chiller model using artificial neural 

network (ANN) and physics-based models, demonstrating its superior prediction performance. 

Specially, transfer learning (TL) can be beneficially utilized for developing the hybrid modeling 

approach because it can easily embed existing knowledge in the simulation model, while keeping 

the advantages of the data-driven approach (Liu et al., 2021; Zu et al., 2021; Fan et al., 2022). 

With this in mind, the authors applied the TL approach for developing the federated 

cooling tower model encompassing 22 cooling towers (3,000 USRT each) and 21 pumps (1,500 

m3/h) serving 22 chillers (2,900 USRT each). Please note that each cooling tower has one fan at 

two speeds (high/low, maximum airflow rate of 287m³/s).  Firstly, the cooling tower model was 

developed using TL. The physics-based cooling tower model was employed to generate synthetic 

data that were then used to develop a surrogate model, or ANN model. The ANN model was 

later fine-tuned and converted into a TL model. Also, note that the pump and pressure drop 

models were developed using empirical equations. In the following sections, we will explain 

how the federated model was developed and its prediction accuracy followed by an example of 

MPC for a real-life case.  

Target cooling tower system 

The target cooling system is located in a large factory building, in South Korea. As 

shown in Figures 1-2, In the target cooling system, there are a total of 22 cooling towers divide 

into six cooling tower groups (CTG), with each CTG comprising three or four cooling towers. 

Each CTG is equipped with a single cooling water pond (Figure 1) where the cooling water from 

each cooling tower is collected and then transferred to the cooling water pumps (Figure 2). Also, 

note that the cooling towers are equipped with indirect cooling coils to prevent white plume 

caused by the water vapor in winter. A total of 21 cooling water pumps comprises two subgroups 

(CWPG), each supplying cooling water for two different chiller groups (Figure 2). The facility 

management team regulates cooling water flow rate of each cooling tower by adjusting the valve 

opening ratio of the main pipe. Also, as mentioned earlier, the cooling tower fan can be 

controlled by three modes: high, low, and off. 

As illustrated in Figure 1, after the cooling water passes through the cooling water pond, 

it flows into the cooling water header and then is distributed by the cooling water pumps. Note 

that the cooling water volumetric flow rate and fan speed control are measured in the outlet of 

each cooling tower. In addition, inflowing and leaving cooling water temperatures are measured 

as indicated in Figure 2. Also, the outdoor air dry-bulb and wet-bulb temperatures were recorded. 

The aforementioned data were collected at the interval of one hour from June 2021 to Mar 2023. 
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Figure 1. Cooling tower groups consisting of four cooling towers. 

 

Figure 2. Target cooling water system (CTG: cooling tower group, CWPG: cooling water 

pump group). 

 

Methodology 

Cooling tower model by transfer learning  

In principle, the cooling towers remove heat from the chillers by utilizing outdoor air and 

therefore, it is important to calculate heat transfer between outdoor air and cooling water. Merkel 

(1925) developed the simplified heat transfer calculation that leverages the difference in enthalpy 
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between saturated air at cooling water temperature and outdoor air. This model is practical but 

tends to oversimplify the evaporation phenomena of cooling water. Subsequently, many other 

studies have been conducted to improve the heat transfer model by Merkel (Shryock and Baker, 

1961; Osterle, 1991). Jaber and Webb (1989) proposed the ε-NTU based calculation method 

modified for the cooling tower. Poppe and Rögener (1991) also proposed a mathematical model 

that calculates the heat transfer based on the saturation state of air through an iterative numerical 

process. However, the Poppe and Rögener model (1991) demands the time-consuming iterative 

process until the convergence criteria are met (Kloppers and Kröger, 2004; Klimanek, 2013).  

Hawlader and Liu (2002) and Al-Waked and Behnia (2006) used CFD for the heat 

transfer analysis around the cooling towers. Such CFD approaches can analyze detailed heat and 

mass transfer phenomena around and inside the cooling towers, but they usually require high 

computational cost and are not suitable for real-time MPC. As an alternative, empirical equations 

or data-driven models have been studied. U.S. DOE (2023) proposed two models: regression 

models with a number of coefficients and CoolTools, counter-flow cooling tower models 

(Benton et al., 2022). Artificial Neural Network (ANN) models have demonstrated good 

predictions regarding heat rejection, water outlet temperature, and leaving air condition (Hosoz 

et al., 2007; Gao et al., 2009). 

As mentioned earlier, this study proposes a new approach for the cooling tower model 

using TL in order to make the best use of physics-based and data-driven models. As illustrated in 

Figure 3, the target model can be developed by fine-tuning the source model with measured data. 

In contrast, the source model can be developed using synthetic data generated from physics-

based models. Therefore, the target model can achieve high accuracy while keeping extracted 

knowledge from the source model. In other words, the TL model can overcome two major 

hurdles of the data-driven modeling approach including data availability and extrapolation 

ability beyond the training data.  
 

 

Figure 3. Target cooling tower model by transfer learning (blue circles mean the fine-tuned 

layer and the model output). 

For the target model development, we took three steps: employing a physics-based 

cooling tower model, generating a surrogate model or source model, and fine-tuning the source 

model with measured data resulting in the target model.  

As indicated in Figure 1, the cooling water from each cooling tower flows into a single 

pond. Thus, we lumped three or four cooling towers into one, which can be regarded as a sound 

engineering assumption, which will be substantiated by comparing the model prediction with 

measured data in the following section. We used an existing physics-based cooling tower model 

presented in MathWorks (The MathWorks Inc., 2023). The model is based on the 𝜀-𝑁𝑇𝑈 method 

to calculate the heat removal rate as shown in Equations 1-2. The cooling tower’s efficiency (𝜀) 
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is calculated by the heat capacity rates (𝐶𝑅) for the air (𝐶𝑎𝑖𝑟) and cooling water (𝐶𝑤𝑎𝑡𝑒𝑟) 

(Equations 3-4). The overall heat transfer coefficient of cooling tower (𝑈𝑎𝑖𝑟𝐴) is calculated by 

the mass flow rate of air (𝑚̇𝑎𝑖𝑟), dynamic viscosity (𝜇𝑎𝑖𝑟), the Prandtl number of air (𝑃𝑟𝑎𝑖𝑟), 

thermal conductivity of air (𝑘𝑎𝑖𝑟), the Nusselt number for a circular pipe (𝑁𝑢𝑙𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤), a 

geometry scale factor for the cooling tower fill material, and other coefficients (𝑎, 𝑏, 𝑐,
𝐷𝑟𝑒𝑓

𝑆𝑟𝑒𝑓
) 

(Equation 5). The cooling water outlet temperature is calculated for each cooling tower 

(Equation 6). The cooling tower pond temperature (𝑇𝑤𝑎𝑡𝑒𝑟,𝑝𝑜𝑛𝑑) is calculated as a weighted 

average of the outlet temperature (𝑇𝑤𝑎𝑡𝑒𝑟,𝑜𝑢𝑡𝑙𝑒𝑡,𝐶𝑇𝐺) and flow rate (𝑚̇𝑤𝑎𝑡𝑒𝑟,𝐶𝑇𝐺) of each cooling 

tower (Equation 7). 
  

𝑄 =  𝜀𝑄𝑚𝑎𝑥 =  𝜀𝐶𝑚𝑖𝑛(ℎ𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑙𝑒𝑡 −  ℎ𝑎𝑖𝑟,𝑖𝑛𝑙𝑒𝑡)  (cross-flow)                        (1) 

𝑁𝑇𝑈 =  
𝑈𝑎𝑖𝑟𝐴

𝐶𝑚𝑖𝑛𝐶𝑝,𝑎𝑖𝑟
                                                              (2) 

𝐶𝑟  =  
𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
=  

min{𝐶𝑤𝑎𝑡𝑒𝑟,𝐶𝑎𝑖𝑟}

max{𝐶𝑤𝑎𝑡𝑒𝑟,𝐶𝑎𝑖𝑟}
                                                  (3) 

𝜀 =  
1−𝑒−𝐶𝑟(1−𝑒−𝑁𝑇𝑈)

𝐶𝑟
  (cross-flow)                                         (4) 

𝑈𝑎𝑖𝑟𝐴 = 𝑚𝑎𝑥 {((
𝑚̇𝑎𝑖𝑟

𝜇𝑎𝑖𝑟
)𝑏 ∙ 𝑃𝑟𝑎𝑖𝑟

𝑐 ∙ 𝑘𝑎𝑖𝑟 (
𝐷𝑟𝑒𝑓

𝑆𝑟𝑒𝑓
)

𝑏

∙ 𝑎, 𝑁𝑢𝑙𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤 ∙ 𝑘𝑎𝑖𝑟} ∙ 𝐺𝑓𝑖𝑙𝑙        (5) 

𝑇𝑤𝑎𝑡𝑒𝑟,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑇
𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑡𝑙𝑒𝑡− 

𝑄

𝑚̇𝑤𝑎𝑡𝑒𝑟∙𝑐𝑝,𝑤𝑎𝑡𝑒𝑟

                                      (6) 

𝑇𝑤𝑎𝑡𝑒𝑟,𝑝𝑜𝑛𝑑 = 
∑(𝑚̇𝑤𝑎𝑡𝑒𝑟,𝐶𝑇𝐺×𝑇𝑤𝑎𝑡𝑒𝑟,𝑜𝑢𝑡𝑙𝑒𝑡,𝐶𝑇𝐺)

∑ 𝑚̇𝑤𝑎𝑡𝑒𝑟,𝐶𝑇𝐺
     (7) 

 

The authors sampled the operational data, including cooling water inlet temperature, 

cooling water flow rate, outdoor air dry-bulb temperature, and outdoor wet-bulb temperature, at 

three-hour intervals. We randomly generated 27 fan control scenarios for each data point and 

calculated heat removal of cooling towers based on Equations (1-7), resulting in generation of 

synthetic 150,000 datasets. Please note that the operational conditions were selected with the 

measured data at the sampling time of one hour from June 2021 to Mar 2023. 

Using the 150,000 datasets, the source model or ANN model was developed. The ANN 

model comprises three hidden layers with 10, 10, and 10 nodes, respectively. Table 1 shows the 

input and output variables for the ANN model. As the final step, the source model was fine-tuned 

by retraining the 3rd layer of the ANN model with the measured data and freezing the 1st and 2nd 

layers. The measured data were collected from the target system for 30 months at interval of one 

hour. After fine-tuning the ANN model, the target model was validated with 2,000 test sets in 

terms of the mean absolute error (MAE), R2, and normalized root mean squared  (NRMSE).  

 

Table 1. ANN input and output variables 

Input variables Output variable 

Cooling water volumetric flow rate of each cooling tower [m3/h] 

Cooling water inlet temperature [℃] 

Outdoor air dry-bulb temperature [℃] 

Outdoor air wet-bulb temperature [℃] 

Fan control of each cooling tower [-] 

Coil valve opening ratio [%] 

Heat removal [kW] 

© 2024 ACEEE Summer Study on Energy Efficiency in Buildings



Pump and pressure drop models  

Each of the pumps (Figure 2) is equipped with an inverter to regulate the cooling water 

flow rate by varying the motor speed, while maintaining the pipe pressure at an appropriate level. 

In this study, the pump model was developed based on the manufacturer’s catalog data that 

specifies the pump head, pump efficiency, and motor efficiency as shown in Equations (8)-(10). 

Subsequently, the shaft power and pump power were calculated (Equations 11-12).   
 

𝑃𝑢𝑚𝑝 ℎ𝑒𝑎𝑑 =  𝑎1 ∙ 𝑄3 +  𝑎2 ∙ 𝑄2 +  𝑎3 ∙ 𝑄 +  𝑎4                                            (8) 

𝑃𝑢𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑏1 ∙ 𝑄3 +  𝑏2 ∙ 𝑄2 + 𝑏3 ∙ 𝑄 +  𝑏4                                    (9) 

𝑀𝑜𝑡𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑐1 ∙ 𝑄3 +  𝑐2 ∙ 𝑄2 + 𝑐3 ∙ 𝑄 +  𝑐4                                     (10) 

𝑆ℎ𝑎𝑓𝑡 𝑝𝑜𝑤𝑒𝑟 =  
𝑃𝑢𝑚𝑝 ℎ𝑒𝑎𝑑∙𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑃𝑢𝑚𝑝 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
                                                        (11) 

𝑃𝑢𝑚𝑝 𝑝𝑜𝑤𝑒𝑟 =  
𝑆ℎ𝑎𝑓𝑡 𝑝𝑜𝑤𝑒𝑟

𝑀𝑜𝑡𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
                                                                      (12) 

 

where Q is the cooling water flow rate (m3/h). To account for the pump’s operational 

characteristics according to the inverter, the affinity law was used (Takacs, 2017) as shown in 

Equation 13 where 𝑄, pump head (𝐻), and shaft power (𝑃) are proportional to the inverter speed 

ratio (𝑓).  In addition, when multiple pumps are operated simultaneously, it is assumed that the 

total flow rate in the main pipe is equally distributed to each pump. 
 

𝑄2 = 𝑄1(
𝑓2

𝑓1
),        𝐻2 = 𝐻1(

𝑓2

𝑓1
)2,       𝑃2 = 𝑃1(

𝑓2

𝑓1
)3   (13) 

 

The pressure drop arises from friction between the cooling water and the pipe surface, 

bends in the cooling water flow direction, any blockages inside the pipe, etc. Rather than using 

an analytical model, we took a practical approach to determine the relationship between pressure 

drop, cooling water flow rate and the number of operating pumps as illustrated in Figure 4. 

Based on the measured data, we could estimate the operational uncertainty in the pressure drop 

(Figure 4).   

 

Figure 4. Pressure drop model for pumps #1-13 (For pump number, refer to Figure 2). 
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Results  

Validation of transfer learning model  

The authors validated the target model, or TL model using the untrained dataset that was 

randomly sampled and accounted for 20% of the total dataset. In addition, the authors developed 

fully data-driven models with the same structure using artificial neural networks (ANN) to assess 

their performance in comparison with TL models. Figure 5 shows the cooling water temperature 

at the pond outlet predicted by TL models, with MAE ranging from 0.7℃ to 0.9℃, R2 ranging 

from 0.95 to 0.97, and NRMSE ranging from 0.03 to 0.05. In contrast, Figure 6 displays the 

cooling water temperature at the pond outlet predicted by ANN models. The ANN models exhibit 

superior predictive performance across all three metrics, with MAE lower than 0.5℃, R2 higher 

than 0.98, and NRMSE lower than 0.03. 

 

 
(a) CTG #1                                    (b) CTG #2                                    (c) CTG #3 

 
(d) CTG #4                                    (e) CTG #5                                     (f) CTG #6 

Figure 5. Cooling water temperature prediction by transfer learning model (CTG denotes 

cooling tower group illustrated in Figures 1-2).  
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(a) CTG #1                                    (b) CTG #2                                    (c) CTG #3 

 
(d) CTG #4                                    (e) CTG #5                                     (f) CTG #6 

Figure 6. Cooling water temperature prediction by artificial neural network model (CTG 

denotes cooling tower group illustrated in Figures 1-2).  

The authors simulated fan control of one of cooling tower models under the virtual 

conditions to compare the physical causality between the TL and ANN models (Table 2). Figure 

7 demonstrates the results of physical causality. On the x-axis, the fan value represents the 

aggregate of all four cooling towers, with high fan speed calculated as 2, low fan speed as 1, and 

stop as 0. It is notable that the lowest outlet temperature occurs when the fan setting is at 6 for 

ANN. Additionally, when the fan setting is at 7, the calculated outlet temperature is lower than 8. 

In contrast, the outlet temperature of TL shows a linear relationship with the number of Fan and 

maintains physical causality. This due to the data imbalance resulting from operations mainly 

using high fan speed. The fully data-driven models face challenges in accurately capturing the 

system dynamics when sufficient data is unavailable. As a result, the hybrid models combining 

physics knowledge and operation data ensure reliable results, even if they are slightly less 

accurate, making them suitable modeling approaches for MPC. 
 

Table 2. Assumed operational conditions  

Input variables August March 

Cooling water volumetric flow 

rate of each cooling tower [m3/h] 
 1,450  1,100 

Cooling water inlet temperature [℃]   35.5   25.1 

Outdoor air dry-bulb temperature [℃]   33.5   11.3 

Outdoor air wet-bulb temperature [℃]    26.9   10.8 
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(a) August                                                  (b) March 

Figure 7. Physical causality comparison  

 

Cross-comparison of CTGs 

For MPC, control variables are determined by considering the performance priority of 

CTGs derived from develop system models. The identification of priority among CTGs obtained 

from these models can also help us understand the selection of control variables and the systems’ 

performance degradation. In this section, authors conducted a comparative analysis of 

performance of CTGs under specific conditions. Except CTG #2 and #5, the other four CTGs 

(#1, #3, #4, #6) have the same number of cooling towers. 

Figure 8 illustrates a cross-comparison of the heat removal rate of each cooling tower 

group. In Figure 8(a), a black dot means the design condition specified in the manufacturer’s 

specification. Except for CTG #6, three cooling tower groups (#1, #3, #4) fall short of meeting 

the design condition at high fan speed mode. While CTG #6 outperforms the other groups at high 

fan speed mode, CTG #1 performs best at low fan speed and fan off modes (Figure 8(b)-(c)). 

Compared to other CTGs, CTG #4 underperforms most regardless of the fan control. This might 

be attributed to many unknown factors, e.g. fan efficiency, unwanted air recirculation from 

neighboring cooling towers, blocked cooling tower fills, etc. Conclusively, in order to optimize 

system performance in MPC, control variables to maximize fans of CTG#6 in MPC can be 

determined. In addition, the priority identification can also improve system efficiency by 

informing pre-determined order of high heat removal efficiency to operators. Please note that a 

fan’s nominal power is 130 kW.  
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(a) High fan speed                                                       (b) Low fan speed 

 

   
(c) Fan off 

Figure 8. Cross-comparison of heat removal rate between cooling tower groups  

Optimal control  

Based on the simulation, the authors conducted an optimal control study of the target 

system at the interval of three hours for six days comprising two days each of summer, winter, 

and mid-seasons. As the target building had a slow dynamic change of cooling load to perform 

control on one-hour or two-hour intervals, the authors chose three-hour interval for applying a 

simulation study. The possible control variables, objective function and constraints in the target 

system are as follows (refer to Figure 2 regarding the cooling tower and pump numbers. Also, 

note that the lower bounds of the operating fans and pumps are strictly limited by the facility 

team): 

 

Control Variables 

⚫ 0 ≤the total number of operating cooling tower fans (CTG#1-#3) ≤11 

⚫ 0 ≤the total number of operating cooling tower fans (CTG#4-#6) ≤11 

⚫ 4 ≤ the number of operating cooling water pumps (#1-#13) ≤13 
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⚫ 2 ≤ the number of operating cooling water pumps (#14-#21) ≤8 

 

Objective function 

⚫ min ∑(𝑃𝑜𝑤𝑒𝑟𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑡𝑜𝑤𝑒𝑟 𝑓𝑎𝑛 + 𝑃𝑜𝑤𝑒𝑟𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 𝑝𝑢𝑚𝑝) 

 

Constraints 

⚫ ∆𝑇𝑐𝑤,𝑜𝑝𝑒 – 2.5℃ ≤ ∆𝑇𝑐𝑤 ≤ ∆𝑇𝑐𝑤,𝑜𝑝𝑒 + 2.5℃ 

⚫ ∆𝑇𝑐𝑤,𝐶𝑇𝐺 ≤ ∆𝑇𝑐𝑤 + 3.5℃  (for each CTG) 

⚫ 
∑(𝑚̇𝑤𝑎𝑡𝑒𝑟,𝐶𝑇𝐺×𝑇𝑤𝑎𝑡𝑒𝑟,𝑜𝑢𝑡𝑙𝑒𝑡,𝐶𝑇𝐺)

∑ 𝑚̇𝑤𝑎𝑡𝑒𝑟,𝐶𝑇𝐺
≤  𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟,𝑖𝑛𝑙𝑒𝑡 − ∆𝑇𝑐𝑤 

 

Figure 9 illustrates the process of MPC in details. Firstly, the heat removal at each time 

step is calculated using the cooling water volumetric flow rate (𝑄) and the temperature difference 

in cooling water (∆𝑇𝑐𝑤) between the inlet and outlet from operational data. Then, required 

pressurization from the pump was determined based on the operational data, including the 

number of pumps and 𝑄, using a pump model. Then, the feasible number of operating pumps 

was determined to meet ∆𝑇𝑐𝑤 and required pressurization. Specifically, the number of pumps 

was selected as a feasible control variable calculating Q to meet the range within ±2.5℃ of the 

operation ∆𝑇𝑐𝑤 (∆𝑇𝑐𝑤,𝑜𝑝𝑒). 

Subsequently, the cooling water outlet temperature (𝑇𝑐𝑤,𝑜𝑢𝑡) was calculated according to 

the fan control modes. However, if we explore three speed modes for 22 fans each, the number 

of possible control options is 322, greater than ten billion. Hence, instead of the exhaustive 

search, we selected control variables that calculate ∆𝑇𝑐𝑤 within ±3.5℃ for each CTG as a 

hierarchical search. As a result, the cooling water outlet temperature was calculated by Equation 

7 and the optimal variables were selected which satisfying the ∆𝑇𝑐𝑤 and minimizing the system 

energy consumption. Using the operation data of each timestamp, the federated model calculated 

only optimal variables without predicting future state of system and outdoor conditions. Then, it 

calculated the system energy by applying these optimal control variables. 

 

 

Figure 9. Optimization optimization of the target system. 
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Figure 10 shows the optimal control results. During summer days (August 20-21, Figure 

10(a)), the existing control operated 13 CWPs (#1-13) and 8 CWPs (#14-21), while optimal 

control could reduce the number of operating pumps and fans. In other words, as 𝑄 of each 

cooling tower decreases, ∆𝑇𝑐𝑤 increases accordingly and fans of CTG #4-6 were also reduced. 

As a result, the optimal control could save energy by 20.8% (existing: 257,430 kWh, optimal: 

203,925 kWh).  

For winter days (February 21-22, Figure 10(b)), the optimal control increased the number 

of CWP #14-21 and maintained the number of operating fans of CTG #4-6, and also reduced the 

number of operating fans of CTG #1-3. Due to low outdoor air temperature in February, CTG 

#4-6 could efficiently remove the heat by increasing 𝑄 without increasing the number of 

operating fans. Consequently, the optimal control could save 13.4% of the total energy (existing: 

150,033 kWh, optimal: 129,972 kWh).  

For intermediate days (April 20-21, Figure 10(c)), the optimal control reduced the 

number of CWPs, similar to winter. Due to comparatively low outdoor air temperature, the 

optimal control could search the reduced number of cooling tower fans, while handling the 

required heat removal rate. Accordingly, the optimal control achieved a 14.7% reduction in 

energy consumption (existing: 151,842 kWh, optimal: 129,549 kWh).  
 

 
(a) August 20-21  

 

© 2024 ACEEE Summer Study on Energy Efficiency in Buildings



 
(b) February 21-22 

 

 
(c) April 20-21 

Figure 10. Optimal control results of the target system for three seasons. 
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Conclusion 

The data-driven model has attracted much attention for its good accuracy and low 

computation demand. However, it has several limitations such as data availability and 

extrapolation ability beyond the training data. In this regard, the authors developed the transfer 

learning model approach for a large-scale cooling water system in an existing building. The 

target system comprises 22 cooling towers (3,000 USRT each), 21 pumps (1,500 m3/h) and 

provides cooling water for 22 chillers (2,900 USRT each). To handle such a large-scale target 

system, the authors selected a federated modeling approach where cooling tower, pump, and 

pressure drop models are combined. 

Firstly, the cooling tower model was developed using transfer learning where the 1st 

principles of the cooling tower and its actual dynamic characteristics extracted from on-site 

measured data were beneficially merged together. The pump and pressure drop models were 

based on empirical regression equations. The federated model demonstrated a good-enough 

accuracy and physical causality (MAE: 0.7℃ - 0.9℃, R2: 0.94-0.98, and NRMSE: 0.03-0.05) 

compared to the data-driven model and then was used for optimal control of the target system. 

Owing to the MPC, it is found that energy consumption can be saved by 13.4-20.8% over six 

days in three different seasons (Feb. 21-22, Apr. 20-21, Aug. 20-21). 

The proposed modeling methodology using the transfer learning could be widely applied 

to many MPC applications in existing buildings because it could overcome major hurdles of the 

data-driven model including data availability and extrapolation ability.  
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