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ABSTRACT 

This paper estimates the effects of strategic energy management practices on plants’ 
energy efficiency using plant-level energy and production data from the Census of Manufactures 
together with detailed Energy-Management data from the Manufacturing Energy Consumption 
Survey (MECS). After documenting considerable variation in plants’ energy consumption both 
across and within industries, we explore whether four types of strategic energy management 
practices lead to improvements in energy efficiency. We find that designating an energy manager 
and undergoing an energy audit result in energy efficiency improvements in our 2006 - 2010 
study period. Plants adopting an energy manager experienced a 6.9% reduction in energy 
consumption per dollar of output. Undertaking an energy audit resulted in a 6.4 % reduction in 
energy consumption per dollar of output. We also examine the effect of energy retrofits and 
computerized energy monitoring systems, finding noisy and mostly statistically insignificant 
short-run effects on energy efficiency. 

Introduction 

It is well known that there is substantial heterogeneity across industries in the amount of 
energy used to make different products.  This is easily quantified using published data, such as 
energy intensity measured by total energy costs divided by total value added.  It is also “well 
known” by businesses that there are substantial differences in energy use within industries by 
plants that make the same products.  Measuring these differences and explaining them is more 
difficult, since plant-level energy and production data are rarely public.  This paper leverages 
access to non-public plant-level data collected by the Census Bureau on energy and strategic 
energy management (SEM) practices to quantify and explain differences in within industry plant-
level energy consumption. We use this data to shed light on the effectiveness of various energy 
initiatives in achieving energy reductions. For example, does designating an energy manager 
result in energy savings? Do energy audits lead plants to become more energy efficient? Answers 
to these questions are of interest to industry leaders wishing to adopt new practices that will lead 
to tangible energy savings. 

Despite considerable industry interest in identifying best practices to reduce energy 
consumption, there exists surprisingly limited research examining whether they achieve their 
intended purpose. Existing research relies on case studies or small surveys, which may or may 
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not be reflective of the manufacturing sector as a whole and are often unable to observe the 
inputs, output or value added of the plant. Using non-public, plant-level data allows us to 
overcome challenges that have hindered previous attempts to answer these questions. First, data 
from Census allows us to observe energy consumption, gross output, materials and value added 
for every manufacturing plant in the United States across multiple years. For a sub-sample of 
nearly 4,000 plants, we are also able to observe whether the plant has undertaken a variety of 
SEM practices. We are able to observe plants’ output, value added, inputs and energy 
consumption both before and after the adoption of the energy initiatives.  

The data allows us not only to measure differences in energy consumption for plants 
within the same industry, but also to attribute observed differences in within-industry energy 
consumption to particular energy initiatives. There are of course many reasons why plants, even 
those that produce the same good, may differ in their energy consumption. Production processes 
and the specific configurations of individual plants vary widely, as does access to fuels, not to 
mention differences in gross output. Our detailed input data allows us to control for differences 
in these specifications. However, even after controlling for these differences, we continue to see 
large variation in energy consumption. We then ask what practices plant managers might adopt 
that could increase energy efficiency relative to other plants in their industry. We ask whether 
appointing an energy manager, undergoing an energy audit, undergoing energy retrofits and 
computer monitoring of energy consumption results in efficiency improvements. We generate 
our estimates of these effects by comparing the energy efficiency of plants before and after the 
adoption of these energy initiatives.  

We find that designating an energy manager results in average energy savings of 6.4% 
with a 90% confidence interval ranging from 1.0% to 11.8%. We also show that undergoing an 
energy audit results in a 6.9% average energy saving with a 90% confidence interval ranging 
from 0.9% to 12.8%. Estimates of the effect of energy retrogrades and adoption of computerized 
energy monitoring are noisier. These results provide perhaps the best available estimates of the 
effect of SEM Practices on energy efficiency. The remainder of the paper is organized as 
follows. We first define our measure of energy-intensity and provide industry and plant-level 
measures of energy efficiency. We examine the variation of energy intensity within different 
industries for any systematic patterns and also compare energy and labor intensities.  Given that 
dispersion is common and sometimes quite large, the bigger question is what specific activities 
might influence some plants to be more efficient than others, in particular different types of 
SEM. We present the results of an analysis of 4 types of energy management on plant-level 
efficiency.  We conclude with some thoughts about future research. 

Within and between industry differences in energy 

Figure 1 plots the ratio of energy cost per dollar of value added to cumulative value 
added at the 6-digit NAICS sector level.  The average ratio of energy cost to value added is less 
than 5% and almost 90% of value added has an energy intensity of under 10%.  What is less 
understood is that even within otherwise narrowly defined industry sectors, in this case a 6-digit 
NAICS code, there is substantial plant-level heterogeneity that results in large dispersion in the 
plant-level measure of energy intensity.  This paper documents this dispersion using non-public, 
plan-level manufacturing microdata from the U.S. Census Bureau. 



 
Figure 1 Distribution of the ratio of energy costs to value added by cumulative  industry value added 
(source: 2007 Economic Census) 

Evidence from other micro data studies 
In a study of a group of 27 energy and carbon intensive, trade exposed 6-digit 

manufacturing sectors (Boyd, Kuzmenko et al. 2011) compare the publicly available industry 
average energy intensity, measured by thousand Btu per dollar value of shipments from the 2002 
Manufacturing Energy Consumption Survey to corresponding microdata, including computing 
four moments of plant-level energy intensity distribution and kernel density plots2.  The four 
moments from this study are shown in table 1. The log normalized kernel density plots (log 
difference between plant energy intensity and industry average intensity, 1.0 = industry average) 
reveals large within industry heterogeneity (see figure 2).  In most of the industries the kernel 
plots reveal differences in intensity that often exceed 50%; some sectors exhibit a very flat 
distribution while others exhibit a highly peaked mode, which is not always at the mean. Using 
the first two moments, a coefficient of variation (C.V.) can be computed as a simple, comparable 
cross industry measure of within sector heterogeneity.  Figure 3 plots the industry C.V. against 
the mean intensity.  A log-log regression suggests a downward sloping relationship between the 
size of within industry dispersion and the magnitude of intensity.  The log correlation coefficient 
between the C.V. and mean intensity is -0.45 and the slope of the log-log regression is -0.28 
(p=0.023, R2=0.21). 

Another study by (Boyd 2016) examines within sector energy variability with a meta-
analysis of 24 case studies.  These case studies include regression models that explain plant-level 
energy use with physical production, weather, and other industry specific factors.  The sectors 
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are at the 6-digit NAICS level or lower and methods include OLS, SFA, kernel density 
approaches.  The meta-analysis characterizes the industry specific efficiency distribution by the 
percent difference between the 50th and the 75th percentile; i.e. one “half” of the inter-quartile 
range.  Figure 4 suggests a relationship between industry dispersion and energy intensity.  The 
slope of the regression line is -0.44 (p=0.05, R2=0.18). 

Table 1  Four moments of total Energy Intensity -plant-level micro data (source: Boyd, 
Kuzmenko et al. 2011 ) 

NAICS 
Code Industry Name Mean Standard 

Deviation Skewness Kurtosis 

311221 Wet Corn Milling 25.828 14.46 0.80 4.03 
321219 Reconstituted Wood Product 22.154 16.20 1.76 8.28 
322110 Pulp Mills 22.573 11.19 1.02 3.90 
322121 Paper Mills, except Newsprint 22.027 15.24 2.51 13.54 
322122 Newsprint Mills 52.049 22.25 -0.23 2.51 
322130 Paperboard Mills 32.275 11.79 1.33 9.75 
325110 Petrochemicals 21.222 20.60 1.22 3.33 
325181 Alkalies and Chlorine 120.307 208.41 3.82 17.49 
325188 Other Basic Inorganic Chemicals 21.711 32.20 4.28 26.90 
325192 Cyclic Crudes and Intermediates 12.779 7.32 0.43 2.31 
325199 Other Basic Organic Chemicals 16.557 19.79 2.28 8.53 
325211 Plastics Materials and Resins 9.297 13.81 7.08 68.68 
325212 Synthetic Rubber 8.515 8.43 1.04 2.78 
325222 Noncellulosic Organic Fibers 12.520 8.64 1.36 4.59 
325311 Nitrogenous Fertilizers 49.250 38.48 0.36 1.68 
327211 Flat Glass 28.788 9.73 0.84 4.27 
327212 Other Pressed and Blown Glass  20.304 11.86 1.51 4.95 
327310 Cements 73.991 30.76 0.27 5.01 
327410 Lime 168.794 323.26 5.47 34.39 
327992 Ground or Treated Earth  23.542 23.54 1.07 2.97 
327993 Mineral Wool 20.581 13.30 0.48 2.78 
331111 Iron and Steel Mills 20.952 14.23 0.55 2.91 
331210 Iron and Steel Pipe and Tube  4.424 3.53 2.33 11.14 
331312 Primary Aluminum 89.457 49.01 0.15 2.61 
331419 Primary Nonferrous Metal  20.810 22.55 1.09 3.41 
331511 Iron Foundries 14.110 6.58 1.08 6.63 
335991 Carbon and Graphite Product 13.268 10.54 0.66 2.00 

 



 
Figure 2 Kernel density of plant-level energy intensity, thousand Btu per dollar value of 
shipments, Log difference from industry mean (source: (Boyd, Kuzmenko et al. 2011) 

 
Figure 3 Industry Energy intensity coefficient of variation vs mean (source: authors’ calculations 
based on table 1)



 
Figure 4 Relationship between the efficiency dispersion for 24 case studies and industry average 
cost: source (Boyd 2016) 

Relationship between dispersion and industry energy costs 
Consider the relationship between “energy efficiency,” represented by the plant-level 

dispersion of energy intensity, and the “importance” of energy to an industry, represented by the 
industry energy costs.  How this might the magnitude of energy costs (industry average cost of 
energy per dollar value added) impact the plant-level dispersion of energy intensity (energy use 
in Btu per dollar value added).   Intuition suggests that as energy becomes more “important”, i.e. 
a larger share of cost, then more managerial attention may be given to controlling those costs, 
lowering dispersion. To investigate this, we explore the within industry variation in energy 
intensity for 316 six-digit NAICS codes. First we compute, for each of the 316 six-digit NAICS 
industries, three measure of plant-level dispersion as the absolute difference between: 

• 90th and 10th percentile of log plant energy intensity  P90-P10    
• 90th and 50th percentile of log plant energy intensity  P90-P50 
• 50th and 10th percentile of log plant energy intensity  P50-P10 

Since the ratio of energy intensity is easier to interpret, taking the exponent of the 
differences above gives. 

• Overall dispersion ratio (OR)   = e(P90-P10) 
• Inefficiency dispersion ratio (IR)  =  e(P90-P50) 
• Efficiency Dispersion ratio (ER)  =  e(P50-P10) 

OR is the full range of intensity dispersion, similar to what is used in other productivity 
dispersion analyses, for example (Syverson 2011).  IR is the spread between the most energy 
intensive plants and the median and ER is the spread between the least intensive and the median; 
this represents the top and bottom of the overall dispersion.   The terms “inefficiency” and 
“efficiency” dispersion are used very loosely here and are only intended to qualitatively describe 



the upper and lower half of the energy intensity distribution, not be a formal definition of 
(in)efficiency, per se.   If overall dispersion is fairly symmetric then the ratio, IR/ER, will be 
close to unity. 

OR, IR and ER are plotted on a log scale against the industry ratio of energy cost to value 
added (figures 5, 6, and 7 respectively). The first observation is that dispersion is very large; 
industry sector cross sectional average OR, IR and ER are 8.4, 3.2, and 2.7 respectively, with 
substantial variation around those cross sectional means.  Contrary to other studies above, OR is 
upward sloping with the industry cost share.  This would have major implications for climate 
policy suggesting that energy intensive industry in the U.S. is highly inefficient, even compared 
to peer establishments in the U.S. within a “narrowly defined” 6-digit NAICS.  The pattern is 
quite different when we look at the upper and lower halves of this distribution.  IR, (difference 
between the 90th and 50th) is downward sloping, while ER (difference between 50th and 10th) is 
upward sloping.  The latter is the dominant effect that drives the overall result.  The average 
asymmetry is 1.4. 

The notion that market competition in energy intensive industry doesn’t “tolerate” high 
levels of inefficiency may seem to be supported by the downward slope of IR with respect to 
average energy cost shares, but reconciling the upward slope of OR and ER with the prior studies 
is problematic.  One possibility is that 6-digit NAICS isn’t sufficiently narrow when it comes to 
energy using processes.  NAICS are defined by product output, not a production process.  
Several examples come to mind where the major energy use in an energy intensive NAICS in 
concentrated in a few large plants.  Ammonia production in Nitrogenous Fertilizer; clinker 
production in Cement; ethylene production in Plastics Material and Resin; steel production in 
blast and electric arc furnaces and in Iron and steel mills and ferroalloy are just a few examples.  
Downstream plants in these industries may purchase these primary products and then only 
perform the final stages of manufacture.  In principle, use of value added would ameliorate this, 
but in practice the energy intensity of upstream (intermediate) product manufacturing in fully 
integrated plants may dwarf the value added difference.  If this is the case, then including 
downstream, non-energy intensive plants in the NAICS classification where energy use is 
dominated by a small number of plants would increase the ER in those sectors. 

Comparison of energy intensity and TFP dispersion 

In light of the productivity dispersion literature reviewed by Syverson (2011), we should 
ask, “Is energy special?”  Past research has shown that both labor productivity has wide, 
persistent, within-industry dispersion. If “energy is just another input” then we would expect 
energy to have similar dispersion as labor.  To examine this, we compare the dispersion of plant-
level energy intensity to the plant-level dispersion of labor.  For the nth plant in industry i the 
energy input intensity ! !
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intensities are plotted below.  Energy intensity has a wider distribution than labor productivity 
dispersion measurements documented in previous research. It has a leftward skew compared to 
labor intensity, suggesting that energy does exhibit a different pattern of dispersion from another 
ubiquitous input. 



 
Figure 5 OR Plotted Against Industry Avearage Cost Share 

 
Figure 6 ER Plotted Against Industry Avearage Cost Share 



 
Figure 7 IR Plotted Against Industry Avearage Cost Share 

 

Figure 8 Kernel Denstiy of 6-digit NAICS energy 
and labor intensity (standardised residuals) 



 
Figure 9 Kernel Density of 6-digit NAICS energy intensity and energy intensity with plant-level  
controls (standardized residuals) 

The plots above suggest a systematic, industry level pattern of the overall level of energy 
intensity dispersion, so we regress energy intensity on a set of industry and plant-level controls, 
including industry fixed effects, plant size (TVS) and energy prices.  These controls, as expected, 
reduce the dispersion but also eliminate the skewness. 

Impact of Strategic Energy Management Practices on Efficiency 

If there is a high degree of dispersion of efficiency are there ways that inefficiency can be 
eliminated?  SEM approaches have been promoted by the U.S. Environmental Protection 
Agency’s Energy Star program and ISO 50001 standard, as well as by state regulatory 
commissions to incentivize utilities to implement demand reduction programs. The cost 
effectiveness of specific programs has been the subject of scrutiny and the literature on 
measurement and verification (M&V) is extensive, but will not be reviewed here.   We take a 
different approach and follow the literature on how management practices impact productivity 
generally and energy specifically. (Bloom, Genakos et al. 2010, Boyd and Curtis 2014) use 
survey data of non-energy management practices to statistically examine the impact of those 
practices on energy intensity in the UK and US, respectively.  Results are mixed; in the UK 
“good management” is associated with lower energy intensity but not in the US.  While some 
management practices in the US appear to support energy efficiency others are detrimental.  
Using plant-level data from the MECS the impact of specific management practices is 
investigated.  



SEM Data Description 

The MECS is a survey performed every four years of approximately 4,000 manufacturing 
plants. The survey oversamples large plants in energy-intensive industries and is designed to 
collect detailed information on energy consumption in the manufacturing sector. Unlike the 
Census of Manufactures, the MECS requests data on all types of fuels consumed in the plant and 
includes both the quantity of these fuels consumed as well as the price paid for the fuel. We use 
data from the 2006 and 2010 MECS surveys and create measures of the total MMBtu purchased 
and consumed by each plant.3 We merge this data to plant-level data from the Annual Survey of 
Manufactures which contains further information on non-energy inputs (labor, capital, materials) 
as well as gross output. We use two outcome variables in the below regressions. The first is the 
logged value of energy per dollar of value added, where value added is the difference between 
gross output and the value of non-energy materials. The second outcome variable is simple the 
logged value of total MMBtu consumption.  We limit our sample to plants that are surveyed in 
both 2006 and 2010. Our measures of SEM practices are mostly binary. Plants report if they have 
an energy manager or not, if they underwent an audit within the past year or not, if they use 
computers to monitor and control their major energy-using equipment. The only non-binary 
SEM variable is our retrofit measure. Plants are asked whether they installed or retrofitted 
equipment in seven different systems.4 Our measure of retrofit is the percent of systems that 
plants reported as having retrofitted. Plants retrofitting all seven systems would receive a retrofit 
measure in our data of 1. Plants not retrofitting any systems would receive a measure of 0. 
Defining the variable this way allows all of our SEM measures to have a 0-1 range.  

Econometric Model 

To estimate the effect of SEM practices on plant’s energy consumption, we consider the 
following model.  

 
𝑙𝑛(𝐸/𝑉𝐴)&. = 𝛽/𝑆𝐸𝑀&. + 𝑋′&.𝛽 + d& + g. + e&. 

 
Our outcome variable is the logged value of energy consumption per dollar of value 

added, for plant I in year t. The variable SEM is the strategic energy management practice of 
interest and 𝛽/ captures the effect of that management practice on our energy outcome. We 
include a vector of controls, represented by 𝑋′&.. This specific controls we use vary across our 
specifications but includes logged gross output, logged materials, logged production worker 
hours and logged capital. Including gross output allows us to control for economies of scale in 
energy consumption. Larger plants tend to have higher productivity and our results show they are 
more productive with their energy consumption as well. Including measures of the plant’s non-
energy inputs allows us to control for differences in input ratios that may drive energy intensity. 
For example, plants that have chosen to automate and replace workers with machines are likely 
to use more energy to create a dollar of value-added.  

The final two terms of the model are critical to understanding how we arrive at the main 
SEM results of the paper. The term  d&  represents a set of plant fixed effects. By including a 

 
3 To obtain a plant’s total Mbtu we convert each fuel quantity to its Mbtu equivalent using standard conversion rates.  
4 These systems are steam systems, compressed air systems, heating systems, cooling systems, machine drive, 
HVAC and lighting. See https://www.eia.gov/survey/form/eia_846/form_a.pdf for the full list retrofit questions. 



separate dummy variable for every plant in our data, we are controlling for any time-invariant 
difference between plants including, but not limited to, differences in industry and geographic 
location. By including d& we are estimating 𝛽/ by measuring how much the energy intensity of a 
plant changes when they change their SEM practice, controlling for changes that may have 
occurred to other plant inputs and the gross output of the plant. The term 	g. is a dummy variable 
equal to one if the year is 2010. This controls for overall trends in energy intensity that are 
common across all plants.  

Discussion and Interpretation of Results 

Tables 2 through 5 are all formatted similarly with each table exploring the effect of a 
particular SEM practice. Each column reports results from a unique regression. Columns 1-3 
report regression results where logged energy per value added is the outcome variable while 
columns 4 and 5 use logged energy as the outcome. By taking the log of the outcome variable we 
can interpret the coefficient estimates as percent changes. Our most basic specification is column 
1 estimates the econometric model above but does not include any controls. The Energy manager 
coefficient is -0.04 with a standard error of 0.037. The coefficient of -0.04 implies that plants that 
hired an energy manager between 2006 and 2010 experienced a 4% reduction in energy per 
dollar of value added. As we add in controls this effect becomes larger and more precisely 
estimated. The energy manager coefficient in column 3, which includes the full set of controls 
shows that plants appointing an energy manager experienced a 6.5% reduction in energy per 
dollar of value added. The coefficients on the controls generally point in the expected direction. 
The coefficient on gross output shows that plants do experience economies of scale in energy, 
whereby plants experiencing output growth see reductions in energy per dollar of value added. 
The coefficient on labor is positive suggesting that plants do substitute between energy 
consuming capital and labor.  

Coefficients in columns 4 and 5 now use logged energy as the outcome variable. Results 
for the energy manager coefficient (and other SEM categories in later tables) are very similar. 
The energy manager coefficient of -0.064 in column 5 can interpreted to mean that plants hiring 
an energy manager experienced a 6.4% reduction in total energy consumption holding constant 
output, materials, production hours and capital.  

Tables 3, 4 and 5 are the same format but now explore the effect of energy audits, 
retrofits and computer monitoring. Our estimates on these measures may not fully capture their 
effect on energy outcomes because they are only able to capture the effect of these practices on 
energy consumption in the year in which the SEM practice was adopted. To better understand 
this, we consider the results in table 3. The Energy Audit coefficient is telling us how much 
energy intensity changed between 2006 and 2010 for plants that underwent an energy audit in 
2010. Any changes in energy consumption that are attributable to the 2010 audit that occurred 
after 2010 will not be picked up in our estimates. As such, this and the coefficients on retrofits 
and computer monitoring will likely underestimate the effect of these practices. Nonetheless, the 
coefficients on energy audit show sizable effects of energy audits on contemporaneous energy 
outcomes. Results in tables 4 and 5 show limited effects of retrofits and computer monitoring on 
energy outcomes. The lack of an effect for retrofits may seem surprising, but perhaps should not 
be given that we might not expect energy reductions from retrofits to occur in the year in which 
the retrofits were made, but rather in later years after they are fully in place. Table 5 also shows 
limited effect of computer monitoring on energy consumption, though again it is possible that 



energy reductions from computer monitoring do not occur simultaneously with computer 
installation but rather in later years that we do not observe.  

Table 2  Effect of Energy Managers (all variables in natural logs) 

 Energy/VA Energy/VA Energy/VA Energy Energy 
Energy Manager -0.04 -0.067** -0.065* -0.077** -0.064* 
 (0.037) (0.034) (0.034) (0.034) (0.033) 
Gross Output  -0.744*** -0.807***  0.236*** 
  (0.038) (0.042)  (0.047) 
Materials     -0.016 
     (0.032) 
Production Hours   0.147***  0.149*** 
   (0.05)  (0.05) 
Capital   0.061  0.063 
   (0.042)  (0.041) 
R-sq 0.951 0.961 0.961 0.973 0.974 

Table 3 Effect of Energy Audits (all variables in natural logs) 

 Energy/VA Energy/VA Energy/VA Energy Energy 
Energy Audit -0.068* -0.070** -0.067* -0.073** -0.069* 
 (0.04) (0.036) (0.036) (0.036) (0.036) 
Gross Output  -0.742*** -0.804***  0.239*** 
  (0.037) (0.042)  (0.047) 
Materials     -0.017 
     (0.032) 
Production Hours   0.147***  0.149*** 
   (0.05)  (0.05) 
Capital   0.062  0.063 
   (0.042)  (0.041) 
R-sq 0.951 0.961 0.961 0.973 0.974 

Table 4 Effect of Retrofits (all variables in natural logs) 
 

Energy/VA Energy/VA Energy/VA Energy Energy 
Retrofits -0.125** -0.039 -0.04 -0.004 -0.038 
 (0.062) (0.056) (0.056) (0.056) (0.056) 
Gross Output  -0.740*** -0.803***  0.239*** 
  (0.038) (0.042)  (0.047) 
Materials     -0.015 
     (0.031) 
Production Hours   0.148***  0.150*** 
   (0.05)  (0.05) 
Capital   0.064  0.065 
   (0.043)  (0.042) 
R-sq 0.951 0.961 0.961 0.973 0.974 

 



Table 5 Effects of Computer Monitoring (all variables in natural logs) 
 

Energy/VA Energy/VA Energy/VA Energy Energy 
Computer Monitoring 0.003 0.013 0.006 0.014 0.004 
 (0.059) (0.053) (0.053) (0.054) (0.053) 
Gross Output  -0.742*** -0.805***  0.238*** 
  (0.037) (0.042)  (0.047) 
Materials     -0.016 
     (0.031) 
Production Hours   0.148***  0.150*** 
   (0.051)  (0.051) 
Capital   0.063  0.065 
   (0.042)  (0.042) 
R-sq 0.951 0.961 0.961 0.973 0.974 

Summary 

It is well known that there is substantial heterogeneity across industries in the amount of 
energy used to make a product.  This is easily measured using published data such as total energy 
costs divided by value added, but measuring and understanding differences in within industry 
requires plant-level data. These data allow us to compute three measures of within industry 
dispersion of energy intensity, OD, ID, and ED.  We find that OD, overall dispersion, averaged 
across industries is 250%, with values of OR that can exceed 500% (upper decile) of the 316 
sectors analyzed.  When we standardize the within industry measures of dispersion we find 
energy intensity does differ from past measures of TFP.  

We then directly analyze the effect of Strategic Energy Management practices on plant’s 
energy efficiency.  We find that plants appointing an energy manager experience energy savings 
of 6.4% with a 90% confidence interval ranging from 1.0% to 11.8%. Plants that undertook an 
energy audit saw 6.9% average energy savings with a 90% confidence interval ranging from 
0.9% to 12.8%.  It is worth noting that this estimate is not identified savings but realized savings. 
It is also worth noting that this estimate is likely a lower bound since plant that undertake an 
audit the same year as the survey will not yet have realized any savings. Due to measurement and 
timing issues, estimates of the effect of energy retrogrades and adoption of computerized energy 
monitoring are noisier. In particular, one model estimate finds large and significant savings from 
retrofits, but other models find no savings. We encourage future research exploring these and 
other energy efficiency initiatives in the industrial sector. 
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