ACEEE – Building the Industrial Heat Pumps Domestic Market

Andrew Hoffmeister Neal Elliott Paul Scheihing Hellen Chen

10/16/23

About ACEEE:

The American Council for an Energy-Efficient Economy (ACEEE), is a nonprofit research organization that develops policies to reduce energy waste and combat climate change. Its independent analysis advances investments, programs, and behaviors that use energy more effectively and help build an equitable clean energy future.

Learn more at aceee.org

Presenters

Andrew Hoffmeister, ACEEE

Andrew Hoffmeister conducts research on industrial decarbonization for ACEEE's industrial team. His work focuses primarily on the analysis of emerging technologies, such as industrial heat pumps, policy research at the state, federal, and international level, and the study of other prominent decarbonization pathways, including intelligent efficiency

Paul Scheihing, 50001 Strategies LLC

Paul Scheihing is principal of 50001 Strategies LLC, where he provides industrial energy efficiency and energy management expertise and is a consultant for ACEEE. He previously worked within the U.S. Department of Energy Advanced Manufacturing Office for 30 years and was the lead on the Superior Energy Performance program. He has also managed many other RD&D programs including DOE's Industrial Heat Pump program from 1988 to 1995.

IHP Technology Readiness Level

Temperature °C >1100

550-1100 1022-2012

٥F

>2012

Table 1.2 Industrial heat pump technology readiness by temperature range

Temperature range		Technology readiness level (TRL)	Example process
<80 °C	•	TRL 11: Proof of market stability	Paper: De-inking Food: Concentration Chemical: Bio-reactions
80 °C to 100 °C	•	TRL 10: Commercial and competitive, but large- scale deployment not yet achieved	Paper: Bleaching Food: Pasteurisation Chemical: Boiling
100 °C to 140 °C	•	TRL 8-9: First-of-a-kind commercial applications in relevant environment	Paper: Drying Food: Evaporation Chemical: Concentration
140 °C to 160 °C	•	TRL 6-7: Pre-commercial demonstration	Paper: Pulp boiling Food: Drying Chemical: Distillation Various industries: Steam production
160 °C to 200 °C	•	TRL 8-9: First-of-a-kind commercial applications for small-scale MVR systems and heat transformers TRL 4-5: Early to large prototype	Various industries: High-temperature steam production
>200 °C	•	TRL 4: Early prototype	Various industries: High-temperature processes

Market transformation is needed in both IHP supply and stoking demand

Where we are (2023):

- End-users have process heat needs that can be met with available IHP tech and new plants are looking to be 100% electrified and fueled by 100% carbon-free electricity
- The U.S. has fallen behind the EU and others in IHPs, industrial electrification technology and knowledge
- There is limited knowledge and experience on the application of IHPs for end-users
- There is **limited commercial product availability** of IHPs in the U.S

Current Barriers

Where we want to be (2030)

- IHP implementation at scale in both new and retrofitted facilities
- Decarbonization of process heat, boiler heat, enabling of integrated solutions (i.e., thermal storage, on-site renewables, smart manufacturing)
- Full market awareness of IHP potential; IHPs viewed as standard practice for process heating
- Robust domestic IHP manufacturing, value chain supported by capable workforce, creating jobs in underserved communities

How to transform the market

IHP Supply	IHP Demand	Utility Regulators and Program Designers	
Limited domestic workforce for manufacturing IHPs, handling of high-pressure refrigerants	Limited domestic IHP product and vendor support available, complicating implementation timelines	Large-scale industrial electrification not considered in current grid planning	
IHP suppliers not manufacturing product at scale domestically	Lack of proven energy, GHG, and cost savings demonstrated with validated,	Few programs currently exist to incentivize IHP implementation	
Codes and regulatory inconsistencies restrict importing	domestic, public case studies	Regulatory restrictions on fuel	
product for pilots, and eventually for domestic manufacturing	Economic constraints for end-users, especially in retrofits and for early- adopters	switching in some states	
Perceived risk from suppliers and implementers due to lack of demonstrations and market assessments	Need for engineering and TA to support design, implementation and integration of IHPs	Need to find interested candidate sites for pilots, analysis for best opportunities	

Narrative Theory of Change – Qualitative Milestones

*assumes workforce and clean electricity efforts occurring in parallel

Key

Overcomes utility barriers

Overcomes supply and demand barriers

Emerging Focuses

• Refrigerants

 O Upcoming ACEEE LinkedIn Article, engaging with refrigeration companies, IHP manufacturers to overcome barriers

• Thermal design

 Shift from engineering analyses predicated on steam systems and designing for maximum thermal quality/quantity, to designing for minimum thermal requirements

• Boiler decision-making timelines

o Need to determine repair and replacement dynamics

• Pilots and demonstrations

 Need for pilots and demos through utilities, DOE TAP territories, manufacturing facilities to build market confidence

| ACEEE IHP Workshop | IHP Domestic Market | 10 | •••

Contact

ahoffmeister@aceee.org hchen@aceee.org paul.scheihing@50001strategies.com

Upcoming conferences and resources

October 16–18, 2023	Philadelphia, PA
October 19-20, 2023	Washington D.C.
March 12– 4, 2024	Atlanta, GA
August 4–9, 2024	Pacific Grove, CA
November 2023	
December 2023	
	October 19-20, 2023 March 12- 4, 2024 August 4-9, 2024 November 2023

