

You Can't Buy Clean if it's not Made Clean.

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Embodied Carbon Workshop

ACEEE 2023 Industry Summer Study, July 11, 2023

Joe Cresko

Chief Engineer, DOE Industrial Efficiency & Decarbonization Office (IEDO)

Outline:

- DOE Industrial Decarbonization Roadmap Pillars, and associated pathways to near-zero GHG emissions by 2050, and key industrial subsectors.
- Rethinking the opportunity space The potential new and robust technology solutions.
- Innovation Research, development & demonstration (RD&D) for more sustainable manufacturing.

Goal: a sustainable, decarbonized, internationally competitive US industrial sector

Decarbonization Research and Development Efforts Toward Technological Solutions

Industrial

Sustainable

Manufacturing

U.S. Industry's Significant Energy Demand and CO₂ Emissions ...

EIA, Annual Energy Outlook 2020 with Projections to 2050. Source: Industrial Decarbonization Roadmap.

...Result in Significant Embodied Carbon

What is "Embodied Carbon"?

- "Embodied carbon" refers to the amount of greenhouse gas (GHG) emissions associated with the extraction, production, transport, and manufacturing of material
- Traditional manufacturing uses energyintensive processes to extract raw materials like limestone, taconite ore, and silica converting those raw materials via industrial processes to produce an end product

- For example, virtually all embodied carbon in concrete originates from the first step in the process – cement production
- Federal and local governments purchase almost 50% of the concrete poured in the U.S. each year

Figure 1. Lifecycle emissions of cement and concrete showing percent GHG emissions associated with the production of concrete. Cao & Masanet, 2021. Reprinted with permission of Eric Masanet.

DOE Industrial Decarbonization Roadmap - Pillars and Sector Focus Areas

Industrial Decarbonization Pillars

- Invest in all pillars
- Leverage cross-sector approaches
- Interdependencies require systems solutions

https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap

Cement & Concrete Decarbonization Levers

Technology Advancement	Examples	Advantages	Disadvantages
Alternative Binders or Process Routes to OPC	 Alternative chemical routes to OPC clinker Non-OPC binders and non-hydraulic 	 Alternative routes to OPC → Same product Eliminate limestone calcination 	 Processes at low TRL Different products (code/acceptance/performance)
Carbon Capture	Cement kiln flue gas capture at full scale	 Reduces process and energy emissions Same product 	 High CAPEX, OPEX (energy) Infrastructure for CO₂ transport Siting and permitting
Clinker Substitutes	 Waste glass, LC3 (calcined clay), synthetic pozzolans Blended PLCs 	 High impact (displace clinker use) Less code compliance issues Properties enhancement 	 New standards & testing Limited regional feedstocks Impacted concrete property
CO ₂ Mineralization	 CO₂ cured concrete (non-hydraulic/ hydraulic) SCMs from CO2 Mineralized waste 	 Durable storage of CO₂—Carbon Negative Enhanced properties (strength) Short cure time (concrete) 	 Complex equipment/process New codes/standards/testing Durability (Rebar corrosion)
Energy Efficiency (Thermal & Electric)	 Smart monitoring, waste heat use Process optimization (machine learning) Grinding process innovations 	 High industry acceptance 20% improvement since 1990 Readily implemented 	 Low overall impact for electricity ~ 15% of energy consumption; < ~10% CO₂e). State of art plants ~ 80% thermal efficiency
Electrification & Low-carbon fuels	 H₂, trash, bio-fuels, oxy-combustion Electric heating (kiln/calciner) 	Same productSame existing standards	Supply & infrastructureCAPEX for retrofitting
Alt Building Materials/ Construction	 Ultra-high strength structural concrete Insulated precast panels Intelligent engineering design 	 Reduced concrete/material use Existing or new cement/supply chain 	Can't eliminate cement useReduced safety factor

2050 Industrial Net-Zero Emissions Reductions Potential*

*Iron & Steel, Chemicals, Food & Beverage, Petroleum Refining, and Cement. (Net-zero GHG scenario, excluding feedstocks).

Source: DOE Industrial Decarbonization Roadmap, Sept. 2022. https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap

Industrial Decarbonization is also a Systems Challenge

Industrial GHGs require approaches at multiple levels: Core process Facility Beyond plant bounds

What are the implications of:

- Expanded H₂ generation & use
- New thermal energy sources & systems
- Smart manufacturing, automation, & data analytics
- Transition to clean electricity
- Policies

Landscape of major RD&D investment opportunities for industrial decarbonization between now and 2050.

LCFFES = Low Cost Fuels, Feedstocks, and Energy Sources; CCUS = Carbon Capture Utilization and Storage

https://www.energy.gov/eere/iedo/energy-analysis-data-and-reports

Environmentally Extended Input-Output for Industrial Decarbonization Analysis

Environmental Justice Analysis

U.S. Federal Buy Clean Initiative - https://www.sustainability.gov/buyclean/

THE WHITE HOUSE

 The Department of Energy (DOE) is supporting Buy Clean with training, technical assistance, and innovation grants. The Building Technology Office is building tools such as <u>GREET</u> > for whole building lifecycle analysis and the Advanced Manufacturing Office is supporting with tools such as <u>LIGHTEnUp</u> > and <u>MFI</u> > to support standard-setting for specific products. FACT SHEET: Biden-Harris Administration Announces New Buy Clean Actions to Ensure American Manufacturing Leads in the 21st Century | The White House

Jener	-getics
	Clean Energy Consulting

Linear network model of the U.S. industrial sector. It can model a range of manufacturing scenarios, including the effects of changes in production technology and increases in industrial energy efficiency.

https://www.nrel.gov/manufacturing/mfi-modeling-tool.html

Environmentally-Extended Input/Output (EEIO) models Input/output techniques to estimate the total impact of an industry's products on <u>environmental</u> metrics, such as greenhouse gas emissions.

LIGHTEn-UP Tool

Scenario framework for assessing prospective net energy impacts of a technology/product, accounting for both manufacturing and end-use life cycle phases.

https://energyanalysis.lbl.gov/tools

LIGHTEn-UP: Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase

GHG Emission in Context: Significance of Supply Chain Emissions

Emerging Opportunities for Material Circularity

82%

70%

80%

90% 100

93%

Calculations in figure based on data in "Advancing Sustainable Materials Management: 2018 Fact Sheet" (EPA 2020). https://www.epa.gov/sites/default/files/2020-11/documents/2018 ff fact sheet.pdf

DOE Study on Sustainable Manufacturing. https://www.energy.gov/eere/amo/articles/sustainablemanufacturing-and-circular-economy

What will it take to decarbonize industry?

Risk to Industry's Bottom Line

by 2050 will come from technologies that are **not currently market ready** (IEA, 2022)

Targeted investment for research, development, and pilot-scale demonstrations can help U.S. industry overcome these barriers

Innovation is not linear – low TRL opportunities at all manufacturing scales.

DOE Offices Share a Common Strategic Framework

DOE Energy EarthShots

Develop cost competitive industrial heat decarbonization technologies with at least 85% lower greenhouse gas emissions by 2035

https://www.energy.gov/policy/energy-earthshots-initiative

IEDO Strategic Analysis Team

Thank You

joe.cresko@ee.doe.gov

For additional information:

https://www.energy.gov/eere/iedo/energy-analysis-data-and-reports

- ANL Sarang Supekar, Nwike Iloeje, David Thierry, Diane Graziano
- LBNL Arman Shehabi, Prakash Rao, Jibran Zuberi
- NREL Alberta Carpenter, Samantha Reese, James McCall, Darlene Steward, Taylor Uekert
- **ORNL** Sachin Nimbalkar, Kristina Armstrong, Prashant Nagapurkar, Kiran Thirumaran, Ikenna Okeke, Dipti Kamath
- **Energetics** Heather Liddell, Caroline Dollinger, Brian Ray
- DOE Zach Pritchard

Backup slides