Industrial
Assessment
Centers:
Workforce
Development

MSU IAC —Center

Industrial
Assessments
(MSU & Michigan Tech)

Throughout Michigan & surrounding areas

Targeting central/south Michigan

Industrial Assessment Center @ MSU

Leadership @ MSU

Dr. Kristen CetinCivil and Environmental Engr.
Director
Building and operation

Dr. Rob HandlerChemical Engr. - Sustainability *MTU Lead*

Dr. Annick AnctilCivil and Environmental Engr.
Assistant Director - Industrial
Process

Dr. George BerghornConstruction Management
Assistant Director - Commercial
Buildings

Chad Richert
HFC Lead

Ryan GallagherMSU IPF
Assistant Director - HVAC

Pete Kiser
Energy Technology
HVAC Systems

Industrial Assessment Center (IAC) @ MSU

Additional Diverse Expertise

Dr. Tim MrozowskiAssessment Leader
Building Envelope Systems
Architect

Dr. Susan MastenEnvironmental Engr.
Water and Wastewater
Treatment

Dr. Qiben YanComputer Science and Engineering
Cybersecurity

Dr. David ShonnardChemical Engineering
Sustainable Materials

IAC Mission & Goals: Energy & Cost Savings

(1) Supporting Manufacturers and Commercial Buildings

- 20 SME industrial assessments/year
- 10 commercial building assessments/year
- No-cost assessments
- Focused on energy, productivity, decarbonization, waste reduction
- Including supporting disadvantaged/ underserved communities

Assessments: On-site 1-day assessment

Common Systems:

- -Lighting
- -HVAC
- -Compressed air
- -Envelope
- -Pumps, fans & drive
- -Process heat and cooling
- -Misc/plug loads

Assessments: Post-Assessment & Report

Assessment Report Prepared For: An Injection Molding Facility in Alma, MI NAICS: 336360 SIC: 2396

Completed on Behalf of the U.S. DOE By:

Michigan State University Industrial Assessment Center Team

in Collaboration with Michigan Technological University and Henry Ford College

MU0014 June 2nd, 2022

Assessment Report

Reviewed by IAC program
Results entered into IAC database

TABLE OF CONTENTS	
ASSESSMENT TEAM	1
MSU-IAC CENTER DIRECTORS	1
CENTER CONTACTS	1
DISCLAIMER	2
PREFACE	2
ACRONYMS	3
TABLE OF CONTENTS	4
EXECUTIVE SUMMARY	5
BUILDING DESCRIPTION	8
BEST PRACTICES	11
UTILITY ANALYSIS	12
ASSESSMENT RECOMMENDATIONS	25
AR 2.4146: Install VFDs on Motors	26
AR 2.4236: Fix Compressed Air Leaks	30
AR 2.4231: Reduce Compressed Air Pressure to Minimum Required	34
AR 2.7211: Abandon Alarm Condition Cooling Tower	37
AR 2.7142: Replace non-LED lights with LED equivalent	40
AR 2.2211: Setback HVAC in engineering office and front office AR 2.6218: Turn off AC in break room when not in use	43 46
AR 2.6218: Turn Off Lights and Screens When Not in Use	48
AR 2.2437: Utilize Exhaust Heat to Preheat Heater Air Intake	50
ADDITIONAL ASSESSMENT RECOMMENDATIONS	55
ADDITIONAL RESOURCES AND TOOLS	59
CYBER SECURITY	61
DATA CONFIDENTIALITY AND DISCLOSURE	62

Report Contents

Assessments: Implementation of ARs

Follow up ~1 year Post-Assessment

- Which recommendations have been implemented
- Other resources, grant funding, etc...

30	Assessments
	Recommendations
0.09	Tbtu Energy Saving*
\$1.17	million Cost Savings*
18	Students Trained

*Recommended Savings

"Thank you to your amazing team to help us determine areas we can make improvements. The whole experience was very beneficial to our company. We will be implementing a lot of your recommendations to save us energy and money."

Already completed 22/30 this year

National data on concrete & concrete industry

Only 0.4% of total IAC assessments since 1981

ТОР	NAICS	Description	Assessments	Recommendations	Recommended \$ Savings	
back	327xxx	Nonmetallic Mineral Product Manufacturing	327	2,447	\$81,905,344	Мар
	3273xx	Cement and Concrete Product Manufacturing	81	540	\$20,197,811	Мар
open	32731x	Cement Manufacturing	17	101	\$15,792,156	Мар
open	32732x	Ready-Mix Concrete Manufacturing	19	119	\$1,027,341	Мар
open	32733x	Concrete Pipe, Brick, and Block Manufacturing	20	138	\$1,590,192	Мар
open	32739×	Other Concrete Product Manufacturing	25	182	\$1,788,122	Мар

NAICS **3273** Cement and Concrete Product Manufacturing

ARC	Description	Recommendations	Recommended \$ Savings	Average Payback (yrs)	Implementation Rate
open 2.xxx	ENERGY MANAGEMENT	504	\$17,185,785	1.6	46.6%
open 3.xxxx	WASTE MINIMIZATION / POLLUTION PREVENTION	15	\$473,292	1.0	20.0%
open 4.xxx	DIRECT PRODUCTIVITY ENHANCEMENTS	21	\$2,538,733	0.6	50.0%

Looking only since 2013

- Most recommendations are not specific to the cement/concrete industry
- Implementation rate for all but motor systems are low

TOP	ARC	Description	Recommendations	Recommended \$ Savings	Average Payback (yrs)	Implementation Rate
	ARC	Description	Recommendations	Recommended \$ 3avings	Average Payback (yrs)	implementation Nate
back	2.xxxx	ENERGY MANAGEMENT	251	\$13,473,515	1.7	42.7%
	2.2 xxx	Thermal Systems	31	\$1,914,373	2.0	27.6%
open	2.21 ××	STEAM	8	\$107,961	2.4	57.1%
open	2.22××	HEATING	-	-	-	-%
open	2.23 ××	HEAT TREATING	-	-	-	-%
open	2.24××	HEAT RECOVERY	11	\$1,524,474	1.7	20.0%
open	2.25××	HEAT CONTAINMENT	10	\$249,016	2.1	20.0%
open	2.26 ××	COOLING	2	\$32,922	0.8	0.0%
open	2.27××	DRYING	-	-	-	-%

IAC Mission & Goals: Workforce Development

(2) Train future workforce

- Engineering & non-engineering students
- Develop curriculum
- Teach energy & manufacturing related skills;
- Hands-on involvement/learning
- Provide & support internship/traineeship opportunities

Students Trained	MICHIGAN STATE UNIVERSITY	HENRY FORD COLLEGE FUTUREDRIVEN	Michigan Technological University*
2022	17	2	2
2023	19	10	2

IAC Mission & Goals: Workforce Development

(2) Train future workforce

- Student Certificates
- Student Research Awards

IAC Mission & Goals: Workforce Development

Workforce Development: Pilot 3-credit course

Spring 2023 Training Schedule

Date	Topic
Week 1	Introduction to Energy and Sustainability Assessments of Commercial and Industrial
	Buildings – motivations and need
Week 2	Building Assessment – Field work practice Part (1) - Identifying building equipment, components, asking energy assessment questions; ASHRAE Level 1, 2 and 3 assessments
Week 3	Utility Bill Analysis, AMI Data analysis, Building Benchmarking, CO2 emissions
Week 4	Starty Bar Amarysis, Fatta ariarysis, Barraining Bernermian and go each emissions
Week 5	Building Energy Balance, Significant Energy Users
Week 6	Pre-Assessment Meeting Procedures & Practice
Week 7	Building Envelope Systems - components, energy use, operation, energy savings
	opportunities, field equipment
Week 8	Spring Break – NO CLASS
Week 9	Lighting Systems
Week 10	Compressed Air Systems
Week 11	Pumps, Motors & Drives
Week 12	HVAC systems
Week 13	Solar Energy Systems; Field Work Practice Assessment Part (2)
Week 14	Post Assessment Processes & Implementation Follow up
Week 15	Water and Wastewater Treatment
Week 16	Combined Heat and Power (CHP)

Resources
cement/concrete
industry
would help train
students and develop
recommendations
specific for this sector

Traditional scope of IAC

New areas

Workforce Development

Training Research

Evaluating the use of Virtual Reality to improve training and better prepare students for assessment processes; improve Post-Assessment process

Assessing the use of virtual reality for training

Virtual environment for assessment training

Collaborate with us!

Contact Us:

Email:

IAC: iac@msu.edu

Director, Kristen Cetin: cetinkri@msu.edu

Assistant Director – Industrial process: Annick Anctil anctilan@msu.edu

http://iac.msu.edu http://iac.university

