gti.

Results from the Demonstration of GHP "Combi" Systems in the Upper Midwest

Paul Glanville, PE Gas Technology Institute

Presented at 2019 ACEEE Hot Water Forum Nashville, TN March 13th, 2019

Agenda

- > Project Motivation
- > GHP Combi System
- > Preliminary Results & Analysis
- > Conclusions

Motivation

- In Chicago, it's still cold!
- > "Polar Vortex" has hit the upper Midwest again
 - -23 F recorded at O'hare, after long period below 0 F
 - Frequency impacted by climate change*
- > Most homes heated with gas furnaces/boilers (87%)
 - 46% of housing units built before WWII
 - Despite oversize, most could not keep up during Vortex
- > If 28% of Chicago's GHGs are from residences, need to address emissions from home heating

Lake Michigan on Jan. 31st, 2019

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

*As reported by the Guardian ; Image Source: Chicago Tribune, Data sources: City of Chicago Greenhouse Gas Inventory Report, 2015, 2010-2012 US Census American Community Survey

Motivation

Of the ~57% of U.S. homes with gas-fired heating/DHW:

- > For 85% of those with central furnaces, less than half have 90% AFUE or better
- Only 5% of 4MM gas storage water heaters are 0.67 UEF or better (EnergyStar)
- > In Canada, 65% of homes have gas-fired heating/DHW
- Greater deployment of high-efficiency products limited by:
- > Low, stable utility costs diminish economics
- Declining loads (relative & absolute), migration, occupancy

Fraction of Housing Units Heated with NG/Propane

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

Data sources: US DOE EIA RECS 2009/2015, EnergyStar, and DOE SNOPR 2016. Technical Support Document: Residential Furnaces, prepared for the DOE by Navigant Consulting, Inc. and Lawrence Berkeley National Laboratory., NRCan.

Motivation

Residential GHPs, available overseas, have many advantages:

- > Best-in-class operating efficiency (primary basis)
- > Good part-load performance and in cold climates
- > Typically do not require backup heating and can continue operation during defrost
- > Opportunities for peak load management
- > Commonly use natural refrigerants/working fluids with low/no GWP/ODP
- > NOx and GHG emissions are decreased by half or greater and combustion 'sealed' or occurs outdoors (IAQ & venting)

Gas Heat Pump Combi

Prior research on combi systems reveals following themes for system design and controls to integrate space heating with DHW:

- > Majority are field-engineered, some installed without proper controls/sizing to assure condensing equipment have sufficiently cool T_{return}
- > For **DHW priority**, system must also be sized to minimize loss of thermal comfort when loads are simultaneous.
- > For potable systems, proper care for **Legionella control**

- Non-potable system has "higher mass", lower turndown ratio
- Capacity affected by operating conditions
- Greater motivation for packaged systems

Gas Heat Pump Combi

Previously described the development* and initial demonstration** of a low-cost GAHP for wholehouse combi heating and light commercial:

- > Base tech. is gas-fired single-effect ammonia water absorption cycle and design to be easily manufactured design to assure low-cost (30%-50% of existing GHPs)
- > Absorption cycle development by startup, tech. support from research institute and OEMs
- > Nominal 80 kBtu/h (23 kW) output with 4:1 output modulation, no aux./backup heat, Ultra-low NOx emissions, defrost capable, projected 140% AFUE (Region IV) and 3-5 yr. payback*

2nd Pilot (2017-Present)

Add'l Pilots (2018-Present)

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

*Glanville, P, Keinath, C., and Garrabrant, M. (2017) Development and Evaluation of a Low-Cost Gas Absorption Heat Pump, Proceedings of the ASHRAE Winter Conference, Las Vegas, NV. ** Glanville, P., Suchorabski, D., Keinath, C., and Garrabrant, M. (2018), Laboratory and Field Evaluation of a Gas Heat Pump-Driven Residential Combination Space and Water Heating System, Proceedings of the ASHRAE Winter Conference, Chicago, IL.

Gas Heat Pump Combi - Site

For all four sites, team uses similar data collection platform for combination space/water heating system

- Focus on 2nd pilot, at split level 2,700 sf (251 m2) house with four occupants in Western WI (Climate Zone 6A)
- > GAHP combi system replaces 93% AFUE / 100 kBtu/h (29.3 kW) two-stage furnace and 60 gal (227 L) 40 kBtu/h (11.7 kW) input water heater

Gas Heat Pump Combi - Site

At 2nd Pilot Site: Brief baseline at beginning of 2017-18 heating season, followed by system commissioning in February '18. > 1,500 operating cycles and > 1,970 operating hours

Space Heating: Used HDD approach and extrapolate to TMY3 data (Oct-Apr), 32%-46% therm savings

DHW/Combined: Focusing on extended DHW-only Summer, 50% therm savings for 75 gal (284 L) per day (avg); 35%-45% therm savings estimated, when combined*

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

*Assumes 75 gal (284 L) per day DHW, extrapolated energy use for space heating, and in combined SH/DHW mode includes average pre/post cycling energy penalty

- > With snowiest/coldest April on record for 2018, efficiency is lower
 - Though GAHP steady state efficiency in-line with prior lab testing (below)
- > Significant effort to limit short-cycling, full-cycle efficiency below potential for < 1.0 hr on-time
 - Results in slight, unexpected tilt for DHW-operation in warmer summer

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

Stanville, P., Suchorabski, D., Keinath, C., and Garrabrant, M. (2018), Laboratory and Field Evaluation of a Gas Heat Pump-Driven Residential Combination Space and Water Heating System, Proceedings of the ASHRAE Winter Conference, Chicago, IL.

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

Maximizing Runtime:

In shoulder season and when operating in DHW-only mode, long runtimes are critical

- System modulation is important, HVAC controls and loop/tank volume also
- Greater runtime per cycle limits this energy "tax"
- Typical DHW-only cycle (7/20), shows first 2 min. of 47 min. cycle for 'heat up', 2% of energy delivered
- For typical DHW-only week*, ~90% of GAHP output delivered to tank, ~81% delivered as DHW

Power Consumption:

- GAHP unit modulates power consuming components (evaporator fan, solution pump) with overall system modulation
- Using TMY extrapolation, GAHP system would consume: 817 kWh/heating season (with DHW)

Thermal Comfort: Qualitatively (host feedback) and quantitatively, the GAHP is providing thermal comfort for DHW/space heating

Defrost: Hot gas bypass with GHP allows the unit to continue operation (at a reduced COP) providing heat to the conditioned space during defrost period without supplement inputs or drawing heat from conditioned space

Defrost Lab. Test (0 F / -18 C)

gti

GHP Combis in the Upper Midwest – ACEEE 2019 Hot Water Forum

Image source: Local Installation Contractor

Conclusions – Next Steps

Conclusions

- GHP technologies are important solution towards goal of reducing GHG emissions from US/Canadian Homes
- Energy savings with comfort feasible with GAHP combi systems, even in cold climates
 - Important to design/control system to minimize short-cycling

Next Steps

- Continue demonstration/analysis at multiple sites over next 12 months, incl. integration with improved system components
- Summarize challenges/opportunities to reduce installation cost
- Continue supporting add'l applications of low-cost GHP tech.

Further information:

pglanville@gti.energy

RD&D Discussed Supported by:

Utilization
Technology
DevelopmentCenterPoint
EnergyNW NaturalImage: CenterPoint
DevelopmentImage: CenterPoint
Development</t

Gas Technology Institute

1700 S Mount Prospect Rd, Des Plaines, IL 60018, USA

www.gastechnology.org

in 🛗 🔰 @gastechnology

http://www.stonemountaintechnologies.com/