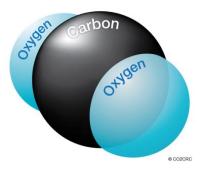


PNNL Lab Home Results for CO2 Combi System Stress Tests

Cheryn Metzger, Joe Petersen, Josh McIntosh Pacific Northwest National Laboratory

Ken Eklund Washington State University February 27, 2017 Portland, OR PNNL-SA-124240


BACKGROUND

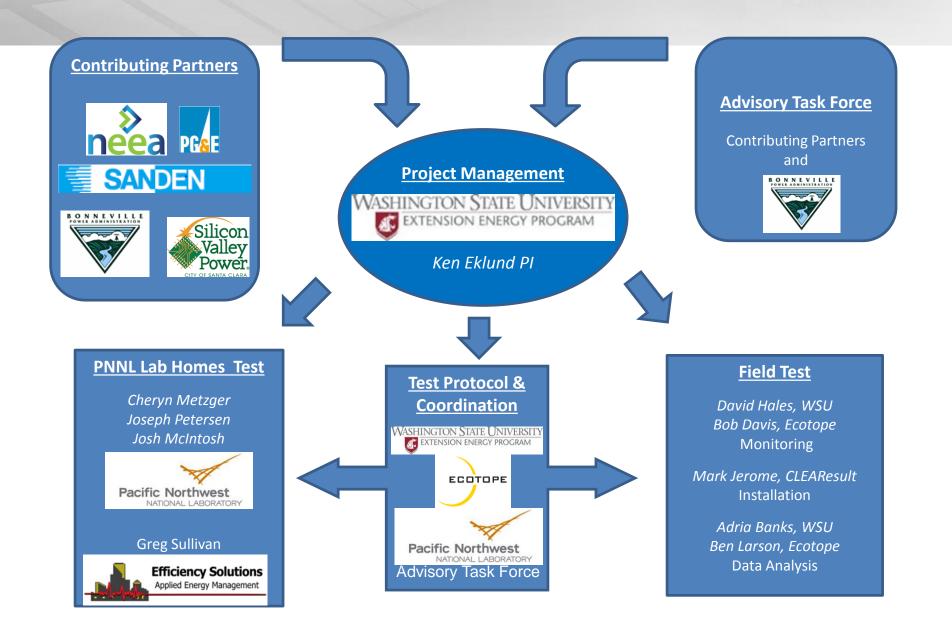
Benefits: CO₂ as a Refrigerant (R744)

Thermal lift at cold temperatures exceeds standard refrigerant capacity

- Flexible in different climate zones
- Non-flammable
- Global Warming Potential of 1 (vs 2,088)

Past Lab Home Demand Response Experiments with Sanden CO₂ HPWHs

Experiment Metric	Unitary System	Split-System
Dispatchable Power (kW)	1.3	1.2
Recovery Energy Shift (kWh)*	2.65	2.95
Oversupply duration (hours)	6	6
Maximum off period while delivered temperature is met (hours)	6	12


*Energy required to recover tank to set point after DR event

Opportunity!

GP Sullivan and JP Petersen. July 2015. <u>Demand-Response Performance</u> of Sanden Unitary and Split-System Heat Pump Water Heaters . PNNL -24224, Pacific Northwest National Laboratory, Richland, WA.

Project Participants

EXPERIMENTAL PLAN

Lab Homes Characteristics

Proudly Operated by Battelle Since 1965

Represent existing homes

- 3 BR/2BA 1493-ft² double-wide, factory-built to HUD code
- All-electric with 13 SEER/7.7 HSPF heat pump central HVAC + alternate Cadet fan wall heaters throughout
- R-22 floors, R-11 walls & R-22 ceiling with composition roof
- Incandescent lighting
- Bath, kitchen, whole-house exhaust fans
- Carpet + vinyl flooring
- All electric
- Modifications include end-use metering, sensors, weather station, and three electric vehicle charging stations

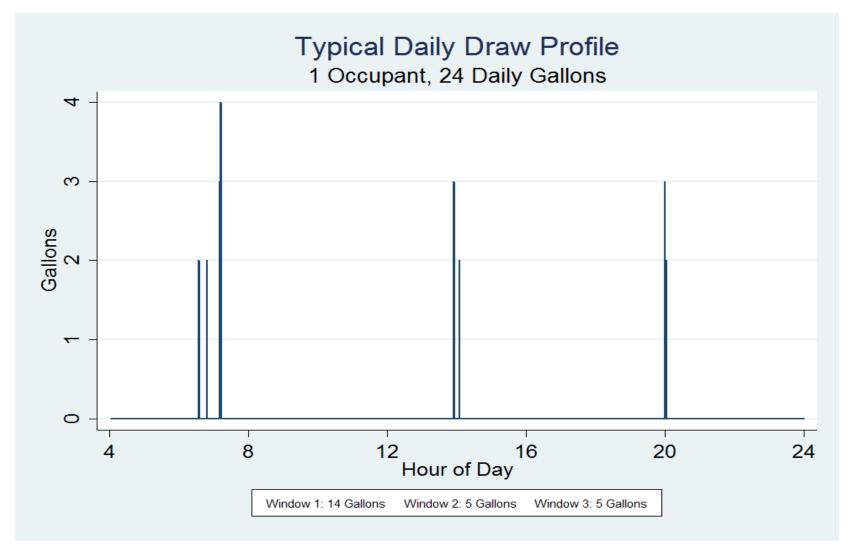
Research Questions

Proudly Operated by Battelle Since 1965

During the heating season:

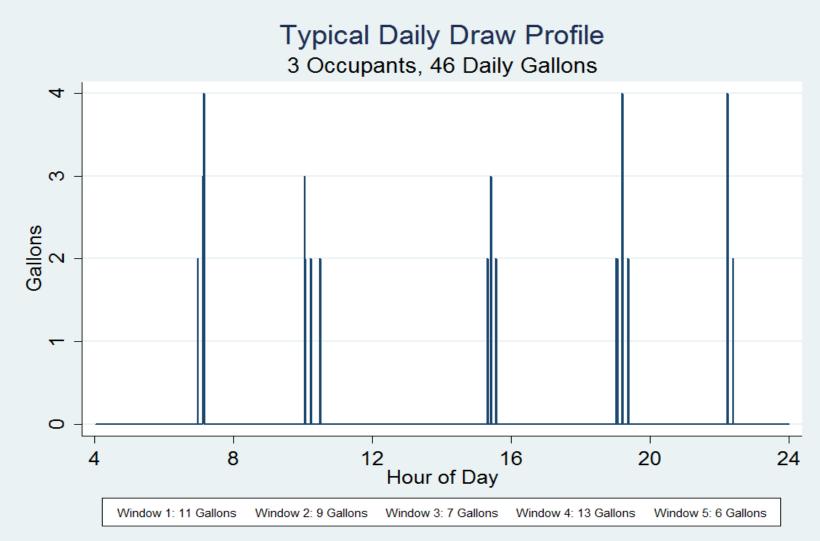
- 1. Does the system meet common space and water heating loads in these homes?
- 2. What is the impact on the system's ability to meet space and water heating needs when occupant-controlled variables such as thermostat settings, hot water draws, and hot water temperature settings are moved beyond average?
- 3. What is the DR oversupply mitigation capability and its ability to meet space and water heating loads?
 - a. When occupant-controlled variables are moved beyond average?

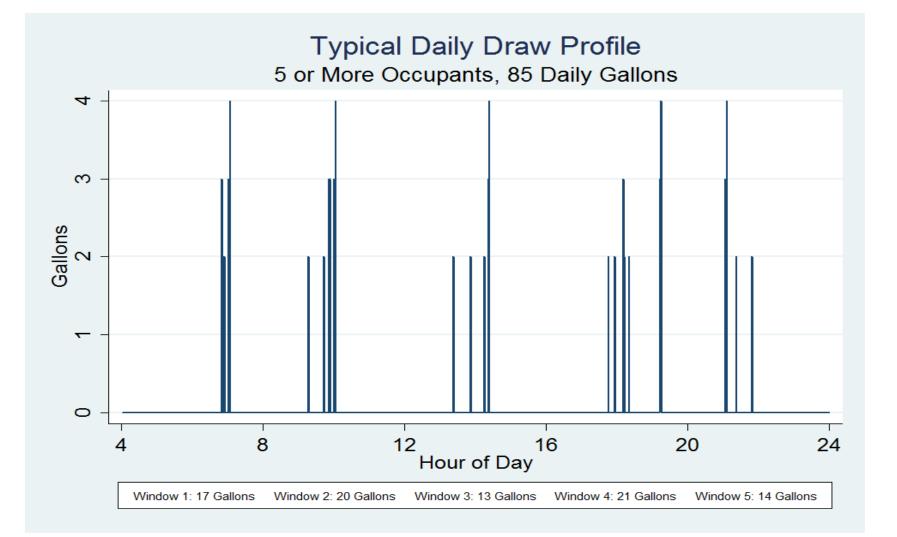
Load Definitions


Proudly Operated by Battelle Since 1965

Thermostat settings

- Low: 65°F
- Medium: 71°F
- High: 80°F
- Water Temperature settings:
 Low: 125°F
 High: 135°F
- Water Load settings:
 - Low: 24 gpd
 - Medium: 46 gpd
 - High: 85 gpd


Low Use – Daily Draw Profile


Average Use – Daily Draw Profile

High Use – Daily Draw Profile

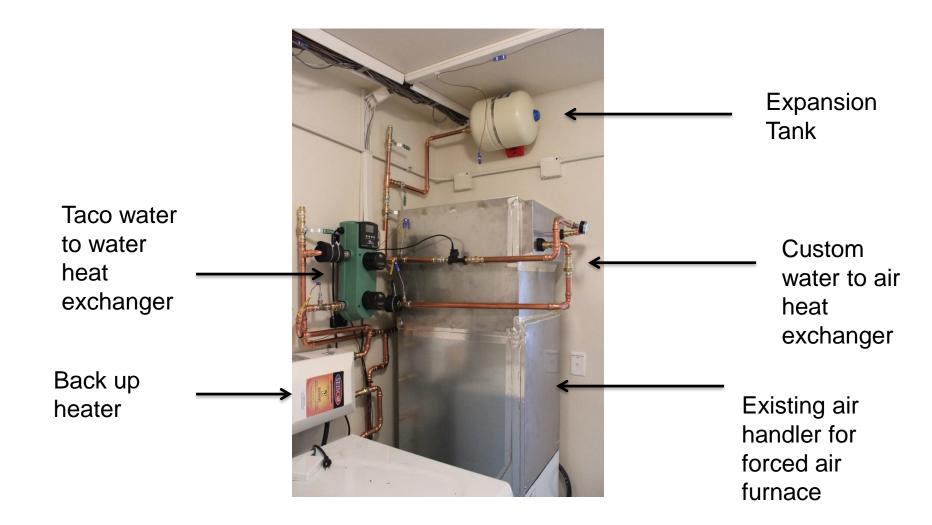
	Lab Home A (Control)			Lab Home B (Experiment)					
Test Name	Heating System	Heat Load	Water System	Water Load	Heating System	Heat Load	Water System	Water Load	DR Schedule
Stress High Flow	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	High	None
Stress Low Flow	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Low	None
Stress High Heat	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	High	Sanden HP	High	None
Stress Low Heat	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Low	Sanden HP	Low	None
Stress High Water T	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	None but water T= 140°F
DR 46 GPD	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	5 hrs off
DR 85 GPD	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	Medium	Sanden HP	High	5 hrs off

EXPERIMENTAL SETUP

Experimental Setup

PNNL Lab Homes Combination System T Cold In **Component Layout** Mixing Valve Water to Water Hx T Hot Out Return Air Water to Air Hx Tempered water Expansion Tank delivered as DHW Ρx Existing Air Sanden DHW Tank Handler, A -Coil, and Resistance Elements Sanden HP/HPWH Outdoor Unit Px T Cold In Supply Air

System design credit to Mark Jerome, CLEAResult

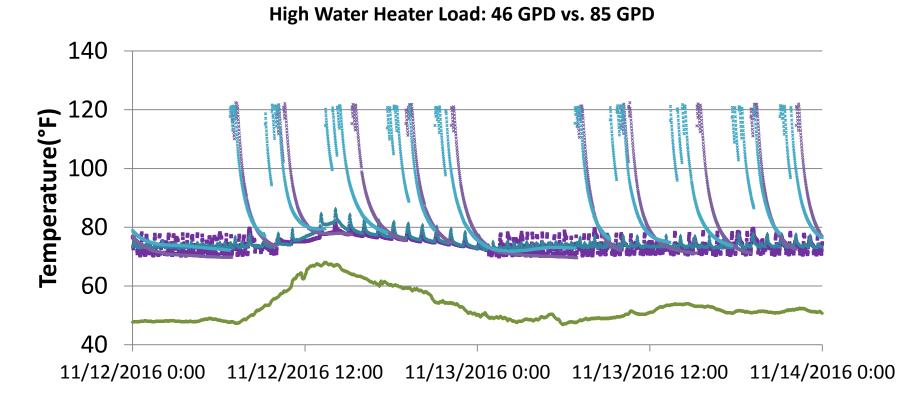


SANDEN From heat pump Pressure relief valve W Cold water supply To heat pump

Hot water out

Interior Heat Exchange System with Electric Forced Air Furnace

Installation Issues

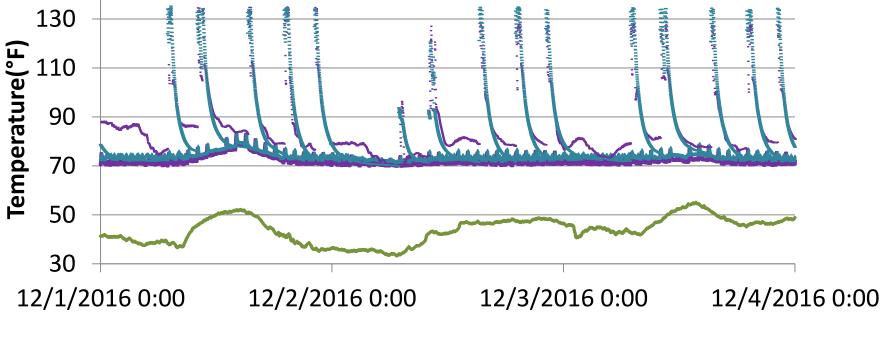


- Equipment procurement
- Limited space of water heater closet and utility room
- Pump leakage on Taco unit due to excess pressure → added expansion tank
- After some initial commissioning, looked closer at control strategy of Taco unit – factory setting was outside air reset control, changed to indoor temperature at thermostat for initial call for heat and on/off state
- Added extra pressure gauges in both homes to help diagnose problems
- Missing a pressure relief valve for one system
- Broke parts upon installation, needed to order new ones
- ► One Taco system ran continuously, even when HPWH was off and no call for heat → Dipswitch reconfigured
- Faulty mixing valve

INITIAL RESULTS

- Oudoor Temp
 Baseline Hall Temp
 Exp Hall Temp
- Base DHW Delivery Temp Exp DHW Delivery Temp

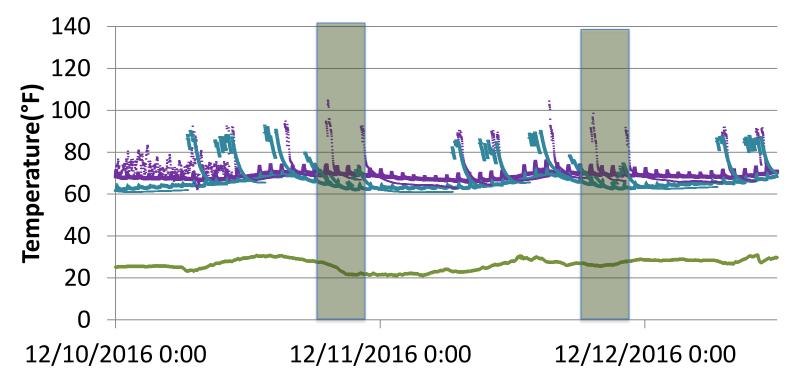
Thermostat Set Point Increase: 71°F vs. 80°F


Oudoor Temp

- Baseline Hall Temp
- Exp Hall Temp
- Base DHW Delivery Temp Exp DHW Delivery Temp

-

DHW Set Point: 125°F vs. 135°F



Oudoor Temp

- Baseline Hall Temp
- Exp Hall Temp
- Base DHW Delivery Temp Exp DHW Delivery Temp

46 GPD vs. 85 GPD with DR Event

Oudoor Temp

- Baseline Hall Temp
- Exp Hall Temp

- Base DHW Delivery Temp March 6, 2017
- Exp DHW Delivery Temp

When outdoor temp is above 40°F, system can meet loads:

- 85 GPD
- 80°F thermostat set point
- 135°F water heater set point
- System cannot meet loads consistently:
 - When outdoor temperature is below 40°F
- Inconclusive if system can meet loads consistently following a DR event if temperatures are above 40°F
- System favors space conditioning temperature over water heating temperature

Future Work

- Technical report
- 1 page fact sheet
- Installation guidance
- Web content
- Power point presentation for funders to share with other utilities

THANK YOU!

Contact Information: Cheryn Metzger PE PMP LEED AP <u>Cheryn.metzger@pnnl.gov</u> 707-623-7091

Let me know if you would like to be added to the new Lab Homes Newsletter!