\$3.6 Billion in the Basement

Market potential of grid-interactive water heaters, how to tap it, and implications for the grid

ACEEE Hot Water Forum, February 22, 2016 Mark Dyson, Manager – Rocky Mountain Institute mdyson@rmi.org | @mehdyson | http://www.rmi.org/electricity_impact

FURTHER, FASTER, TOGETHER

About RMI and our recent electricity work

Rocky Mountain Institute, a Colorado nonprofit corporation, works across industries on challenging energy issues to drive the efficient and restorative use of resources using market-based approaches.

NET ENERGY METERING, ZERO NET ENERGY AND THE DISTRIBUTED ENERGY RESOURCE FUTURE

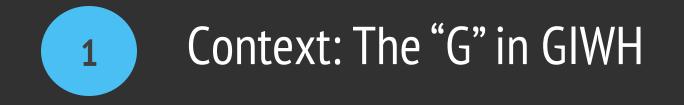
BRIDGES TO NEW SOLAR

BUSINESS MODELS:

ADAPTING ELECTRIC UTILITY BUSINESS MODELS FOR THE 21ST CENTURY

http://www.rmi.org/electricity_impact http://www.rmi.org/elab_doing

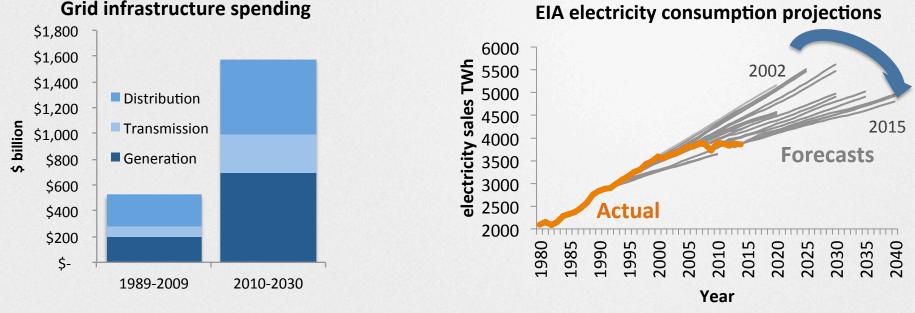
A REVIEW OF SOLAR PV


BENEFIT & COST STUDIES

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.

Decision Investment

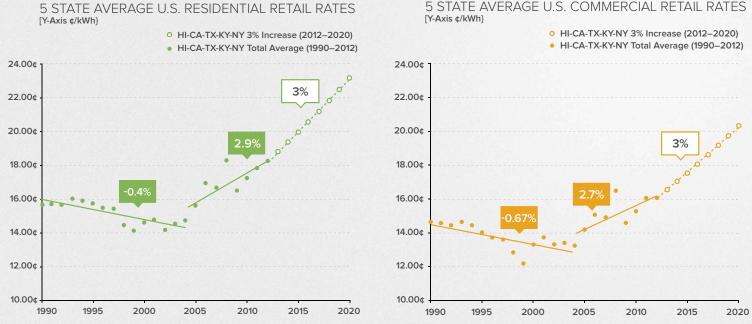
NEW BUSINESS MODELS FOR THE DISTRIBUTION EDGE THE TRANSITION FROM VALUE CHAIN TO VALUE CONSTELLATION

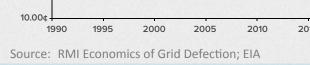


Grid spending is rising, but demand is flat Utilities plan to invest \$1.4 trillion in infrastructure upgrades through 2030, but sales have

declined 5 out of the last 7 years, and growth forecasts have been systematically lowered.

4



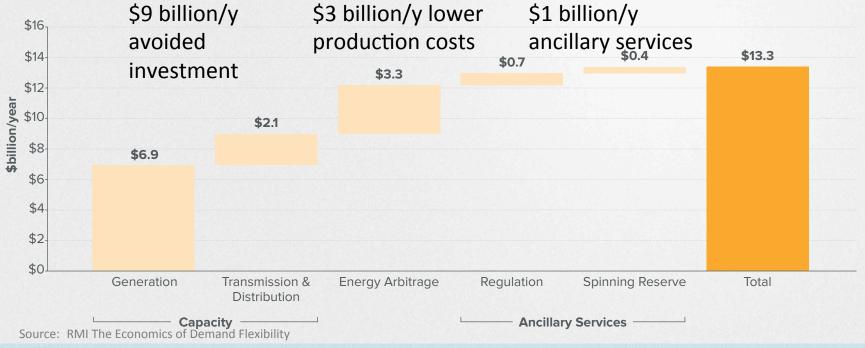

Source: EEI/Brattle Group; EIA EPM and AEO

Retail rates are rising

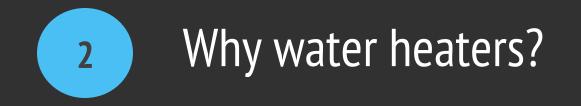
Across many states, retail electricity rates are rising for commercial and residential customers alike, and forecast to continue to do so.

Consumers have expanding options To meet demand for electricity, utility customers used to buy it. Now, it is increasingly easy for third parties or utilities to help them make it, avoid it, or shift it.

6


Grid Purchases	Distributed Generation	Energy Efficiency	Demand Flexibility
Buy kWh from the grid as and when needed.	Generate electricity, changing the profile of net grid demand while reducing total grid demand.	Reduce demand whenever load is operated, thus lowering the daily load curve.	Shift eligible loads across the hours of a day to lower-cost times, reshaping the daily load curve.
		2^{-1} 1^{-1} 0 4 8 12 16 20 24	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \\ 4 \\ 8 \\ 12 \\ 16 \\ 20 \\ 2 \\ 2 \\ 3 \\ 2 \\ 16 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$
hour	hour	hour	hour
Normal Load	Normal Load PV Net Load	Normal Load Efficient Load	Normal Load Flexible Load

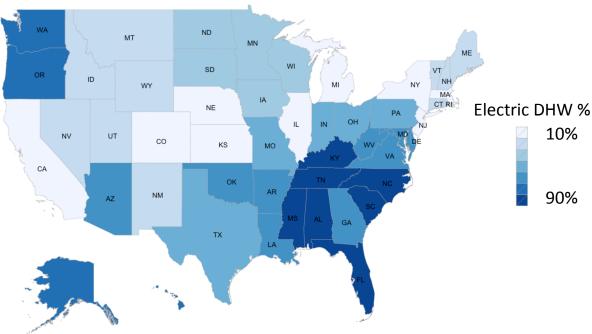
Source: RMI The Economics of Demand Flexibility



Demand flexibility can unlock \$13 B/year

Enabled by sophisticated rate design, utility programs, or third-party aggregators, the demand side can be a powerful source of flexibility for the grid

0



Water heaters are ubiquitous

There are ~50 million electric water heaters across the US, with several distinct geographic concentrations

- The Northwest and the Southeast represent concentrated markets for GIWH technology
- In other regions, electric water heating is concentrated in rural areas

Source: EIA RECS

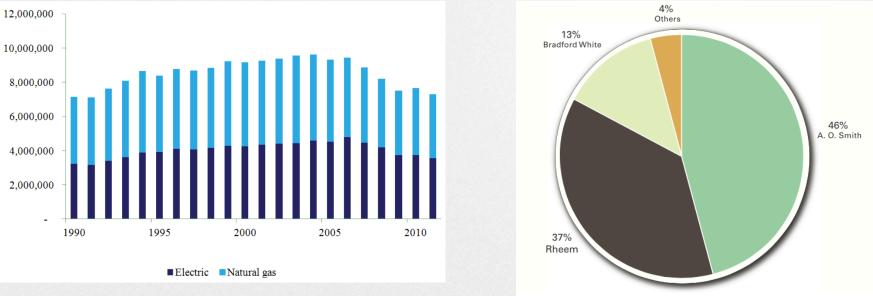
Transforming global energy use to create a clean, prosperous, and secure low-carbon future.

9

Water heaters are highly flexible

Electric water heaters have a low load factor, a tank heat capacity of 7 kWh, and thermal stratification and insulation that allow for many forms of grid value

- Depending on the draw profile and grid use case, between 40-60% of kWh used for water heating can be shifted
- Letting average tank temperature drift while keeping tank-top temperature within bounds keeps showers hot while flexing energy use


- Energy arbitrage: Shifting kWh use to lowercost hours of the day
- Ancillary services: Modulating or cycling power use for a water heater fleet to balance grid supply with demand
- Peak demand reduction: Briefly curtailing electricity use during the highest-demand periods for a home, feeder, or utility

Source: Brattle 2016; RMI The Economics of Demand Flexibility

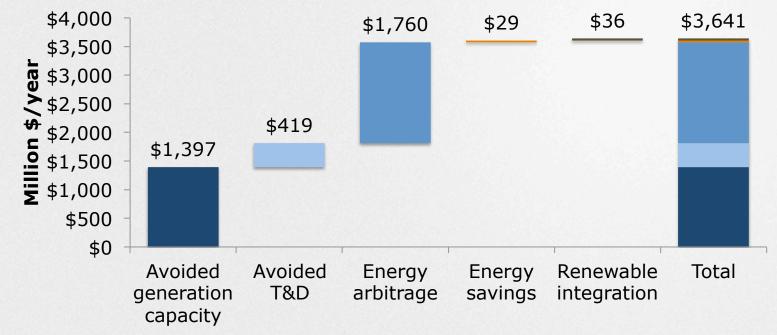
Water heater innovation is scalable

Residential water heaters are manufactured at scale, with a few big companies dominating market share, and adding controls is potentially very inexpensive

US annual water heater sales

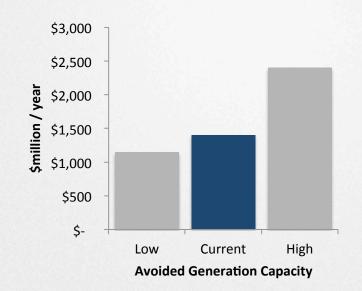
Source: NEEA 2012; US DOE ENERGY STAR

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.


11

US water heater market share (2008)

We estimate a \$3.6 billion/year value of a 100% grid-interactive electric water heater fleet

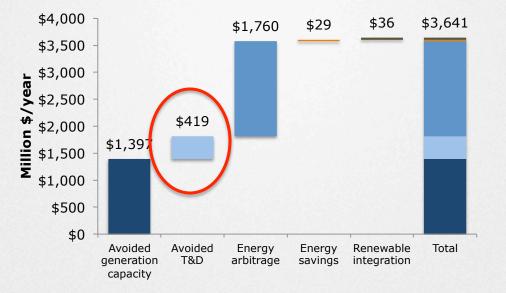


Source: RMI analysis

Avoided generation capacity: \$1.4B/year This value is highly sensitive to the assumed peak-coincidence of baseline electric water

- We estimate that water heater load has a peak coincidence of approximately 5-12%, depending on region.
- With 7% peak coincidence (i.e. 300 watts on-peak per unit), electric water heaters would make up 1.6% of peak load in the US.

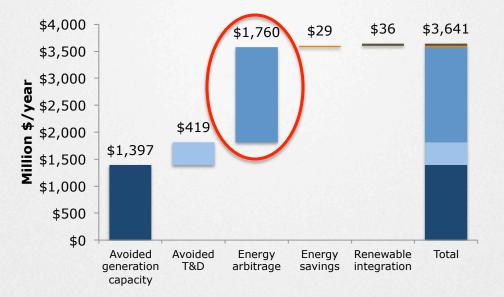
Source: RMI analysis; NEEA RBSA


heating load profile

Avoided T&D capacity: \$420M/year

Lowered peak demand can lead to avoided investment in transmission & distribution infrastructure in addition to generation

- The value of avoided T&D investment has been calculated between \$30-\$100+/kW-yr; we assume the lowest value
- This avoided cost potential is likely concentrated in congested areas and areas with significant growth expected

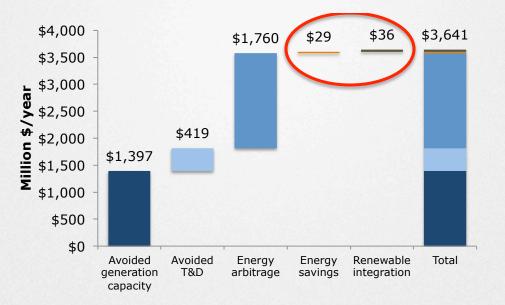

Source: RMI analysis

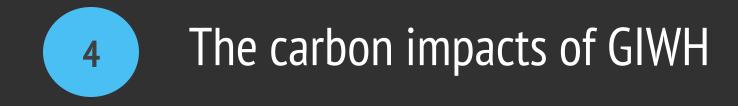
Energy arbitrage: \$1.8B/year

Scheduling water heating load to coincide with low-cost hours in wholesale markets can reduce energy costs by 25-35%

- Using 2014 wholesale market prices, the average marginal energy cost to use an electric water heater across the US was \$125.
- Savings of 25-35% are possible while still ensuring that hot water is available on demand.

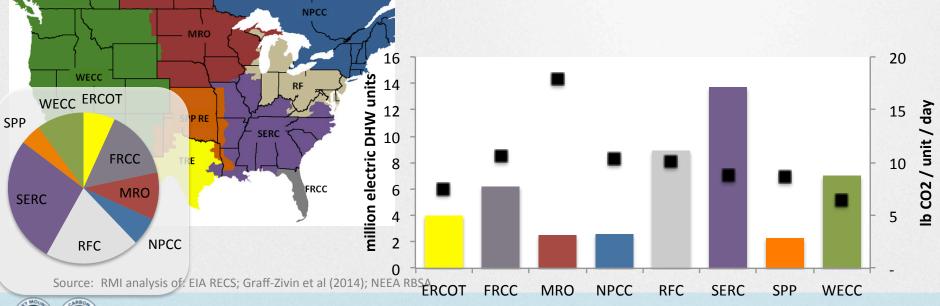
Source: RMI analysis


Other values: \$65M/year, not including ancillaries


Reducing standby losses and avoiding current levels of renewable curtailment can provide additional value; avoided ancillary service costs in wholesale markets could add much more

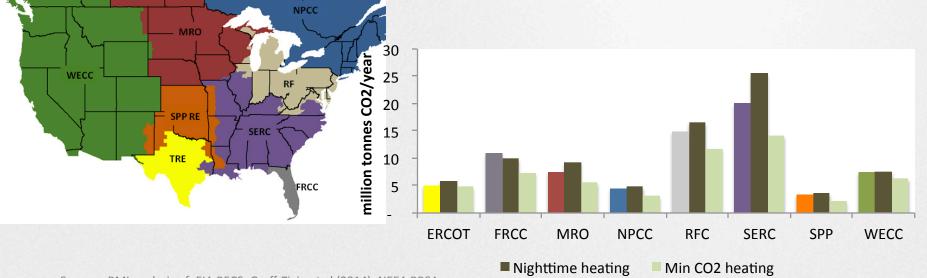
- Enabling "vacation mode" can reduce standby losses and energy consumption
- Charging during windy, low-load hours can avoid renewable curtailment
- The frequency regulation market is currently on the order of \$400-700M/ year, and GIWH can technically participate, but the market is thin

Source: RMI analysis



We estimate electric domestic hot water is responsible for ~74 million tonnes/year of CO₂ Water heater-caused emissions are concentrated in the Midwest and Southeast due to grid

composition and electric DHW adoption rates



Low-*cost* versus low-*emissions* heating strategies have widely different CO₂ impacts

20

If all water were heated at night, emissions increase by 13%. If all water were heated during the lowest-emission hours, emissions fall 25%, saving ~18 million tonnes CO_2 /year.

Source: RMI analysis of: EIA RECS; Graff-Zivin et al (2014); NEEA RBSA

Implications & opportunities

Many actors can capture this value Utilities, GIWH manufacturers, installers, solar companies, aggregators, and customers themselves can all capture a piece of this \$3.6 billion/year prize

Successful business models will...

- Capture more than one source of value from GIWH deployment
- Rely on standardization and scale to reduce costs
- Provide customers things that they want, not just services that the grid values

<section-header><section-header><section-header><text>

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.

Competition is not limited to traditional players

Thank you

www.rmi.org

Contact: Mark Dyson, mdyson@rmi.org

Twitter: @mehdyson

FURTHER, FASTER, TOGETHER

