ALBERTA CARBON-CENTRIC ENERGY EFFICIENCY PROGRAMMING

PRESENTED AT THE 2019 ACEEE NATIONAL CONFERENCE ON ENERGY EFFICIENCY AS A RESOURCE

KAREN MAOZ OCTOBER 17, 2019

ENERGY EFFICIENCY ALBERTA

Raise awareness

Deliver programs for energy efficiency, development of microgeneration and small-scale energy systems Energy Efficiency Alberta

Develop an energy efficiency services industry

PORTFOLIO PLANNING CHALLENGES

»Policy and funding uncertainty makes it difficult to plan programs and develop a stable market presence

»Pressure to balance policy and stakeholder demands with internal objectives

INFORMATION FOR DECISION-MAKING

Lack of information about baseline market conditions makes it difficult to prioritize investment, measure progress and benchmark performance

MARKET READINESS

»Consumers lack awareness of the impacts of energy use and the value of energy efficiency

»Contractors need training to effectively promote and deliver EE services

MANAGING OPERATIONS IN FAST-PACED ENVIRONMENT

Portfolio managers need adequate time to plan, contract vendors, train workforce and develop effective market entry strategies

PORTFOLIO FOR CARBON REDUCTION

AVOIDED COSTS AND ELECTRIC EMISSIONS INTENSITY

COST EFFECTIVENESS SCREENING AND REPORTING VALUES

Indicator Type	Screening			Reporting		
Description	GHG emissions	Cost	Social responsibility (societal)	EEA perspective (program)	Customer perspective (project)	
Metric	Cost per tCO ₂ e	Modified TRC	Societal Cost Test	Program Administrator Cost Test	Participant Cost Test	
Carbon price	Market Rate*	Market Rate*	Social Cost of Carbon	Market Rate*	Market Rate*	
Discount rate	Societal discount rate (3%)**			7%**	5.39%**	
Uses to assess performance	EEA's mandate (GHG emissions reduction)	EEA's level of investment	Global damages and managing climate change risk	EEA Corporation; Communications	Customers; Communications	

* Market rate, as *originally* defined by Government plans (e.g., carbon levy). There is no longer a carbon levy in Alberta. ** All discount rates are real discount rates

TOTAL RESOURCE COST (TRC) TEST

\$/tCO₂e (project abatement cost)

= $\frac{PV(Technology\ Costs-Energy\ (bill)\ Cost\ Savings)}{Lifetime\ Emissions\ Reductions}$

CARBON-CENTRIC PROGRAM DESIGN

Design for cost-effective lifetime emissions reductions

$^{$}/tCO_{2}e$ (program abatement cost)

 $= \frac{PV(Program Administrator Costs)}{Lifetime Emissions Reductions}$

BENEFITS FOR ALBERTANS

 $^{$}/_{tCO_2e}$ (societal abatement cost)

= <u>PV(Technology Costs+Program Administrator Costs – Avoided Costs*)</u> Lifetime Emissions Reductions

* Only gas avoided costs includes the market price of carbon. A different mechanism is used for carbon pricing in the electricity sector.

- Economic potential included all measures that passed the TRC (0.85) or exceeded the abatement cost threshold (\$/ton)
- Societal abatement cost test passes more measures for electric, but fewer for gas
- Carbon intensity of electric grid **decreases over time**, however, carbon emissions from natural gas (i.e. emissions factor) is constant

Indicator Type	Screening		
Cost test	Societal (\$/tCO ₂ e)	Co ₂ e) TRC	
Carbon price	Market rate		
Discount rate	Societal discount rate		
Uses to assess performance	EEA's mandate (GHG emissions reduction)	Total investment	

$$TRC = \frac{PV(Avoided \ Costs + External ties)}{PV(Technology \ Cost)}$$

Societal
$$[\$/tCO2e] = \frac{PV(Technology Costs - Avoided Costs)}{Lifetime Emissions Reductions}$$

SCENARIOS

KEY FINDINGS

- Program abatement cost (carbon price floor) - \$30/tCO2e
- Total cost of EE (Incremental Measure Costs + Admin Costs through 2038) / Lifetime Energy Saved
 - \$30/lifetime tonne CO2e reduced
 - -2.4 ¢ / kWh (EE)
 - -\$3.88 / GJ (EE)
 - $-5.5 \notin$ / kWh (PV Solar)

- Program \$/First Year GJ (Incentives + Admin Costs Spent on Gas-Saving Measures through 2028) / GJ Saved in 2028
- Program \$/First Year kWh (Incentives + Admin Costs Spent on Electricity-Saving Measures through 2028) / kWh Saved in 2028

- •Gas to electric fuel substitution is not cost effective with the TRC or societal abatement cost threshold
- Reasons include high electric avoided costs and lingering high carbon emissions intensity
- Potential analysis did include CHP only when it saves carbon on a lifecycle basis

LESSONS LEARNED

- Specific lessons for the Alberta Province
- Lessons beyond for Portfolio Planning and Potential Study Analysis

Choosing the Right Metric

- Sensitivities across metrics
- What is the appropriate threshold

Benchmarking

- Check that the results are meaningful
- Losing some previously costeffective solutions

Future Proofing

- Beyond EE
 - DERs
 - Fuel Substitution
 - Other?
- GHG Abatement Goals

CONTACTS

JESSE ROW

VP Corporate Performance, EEA 403.808.5985 Jesse.row@efficiencyalberta.ca

ANDREA HARDIE

Director, Research & Evaluation, EEA 403.807.8986 andrea.hardie@efficiencyalberta.ca

KAREN MAOZ

Associate Director, Navigant 415.399.2172 karen.maoz@navigant.com

STU SLOTE

Director, Navigant 802.526.5113 stu.slote@navigant.com