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ABSTRACT 

Energy efficiency consulting is becoming increasingly reliant on effective data 
management and cutting-edge analytics. These days, data science skills are in high demand but 
short supply. In this paper, the authors outline a set of guiding principles used to formalize 
analytics within their own data science team and provide lessons learned throughout the process.  

Those principles are threefold. First, it is crucial to put aside spreadsheets and unify the 
team around a standard set of programming tools such as R, SQL, Python, or other data-focused 
languages. This means investing in internal training and cloud computing resources so that staff 
have the technology and skills they need to do their work.  

Second, the team needs to be able to communicate effectively. The free flow of 
information via internal mailing lists and internal social media makes it easier for beginners to 
get timely help with questions about code. Regular data science team meetings provide an 
opportunity to show off project work internally and balance workload. The most experienced 
programmers must lead the way, providing trainings and developing best practices.  

The third and final principle is collaboration. Mature data science teams adopt certain 
development best practices like code version control, code reviews, and reusable code. As the 
energy industry evolves into a more data-driven business, existing teams need to develop their 
capacity to work with that data. While no two data science teams look alike, the authors share 
their experience in developing a strong data science team at a top energy consulting firm. 

Introduction 

This summer, you have decided to give up on the weekend adventures of cutting your 
own lawn and trimming your hedges and have decided to hire a professional landscaper. In 
interviews with two potential landscapers, you notice that one has an old-fashioned push mower 
and hand clippers and the other has a gas-powered riding mower and gas-powered hedge 
trimmers. But it turns out they both charge the same rate. Which one would you choose?  

Now consider being a utility collecting large amounts of data from smart meters and 
needing help understanding it. Do you hire the spreadsheet heroes who will try to get it done the 
old-fashioned way or do you choose a well-equipped data science team with cutting edge 
infrastructure and analytics tools? Data science used to happen on paper, written in pencil and 
calculated by a slide rule. Then calculators came and went, and data grew to require computers 
and eventually servers. Now data science happens in data centers, and data scientists have access 
to vast computing resources through virtual machines and cloud computing (Conry-Murray 
2017). Every industry is scrambling to keep pace with the volumes of data that are only getting 
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bigger. At the end of the day, it is the actual team of people that will make the biggest difference 
in staying relevant.  

The Global Energy Practice at Navigant Consulting, Inc. (Navigant) has been cultivating 
a data science team with an intentional focus on tools, training, and culture. Although there are 
many legitimate approaches to modernizing an analytical team, the Navigant team has learned a 
few things and hopes to contribute to the conversation and help to push the energy efficiency 
industry forward. What follows is Navigant Energy’s take on getting a data science team to 
achieve its full potential. 

Tooling and Resources 

What does a landscaping business have in common with a data science team? In both, the 
tools available to the employees make a dramatic difference in their ability to get work done. A 
landscaping company that used only hand tools and old-fashioned push mowers would never be 
able to compete in today's gas-powered industry. Similarly, an analyst trying to set up a linear 
regression on a large dataset using only a spreadsheet is bound to get frustrated and run into 
barriers. The decisions that the landscaping foreman and data science team lead make in picking 
the tools for their team are fundamental to the success of the operation. This section details some 
pathways to success when equipping a modern data science team. The first step toward growing 
an energy data science team is to select the right kind of tools for the job. 

Open versus Proprietary 

In enterprise environments, proprietary software has long been the mainstay of analytics 
and database tools. However, the days of $10,000 per seat licenses for statistical software are 
numbered, and the old, expensive software systems are being supplanted by free or lower cost 
solutions. With the dramatic rise in popularity of open source software (e.g., R and Python), 
expensive closed source tools are no longer the best solution. The benefits of community-driven 
development and support make open source software attractive, especially to academics, small 
businesses, and startups that cannot always afford huge license fees. Even in larger corporations, 
open source is making inroads as more vendors offer enterprise-supported open source tools 
(Hills 2016). This represents a democratization of computing software—a graduate student 
working on her or his laptop can use the same software used by a Silicon Valley tech giant free 
of charge. The Global Energy Practice at Navigant uses a mix of proprietary and open source 
software, but the general trend is toward freely available software in conjunction with enterprise-
level support or add-ons where warranted. This is beneficial in three ways. 

First, as universities introduce more open source software in undergraduate and graduate-
level technical classes, an increasing number of entry-level hires come in with backgrounds in 
open source programming languages and tools (Guo 2014). On-campus recruiting efforts are far 
more effective when there is alignment between what is being taught in class and what is needed 
in the workplace.  

Second, the communities that form around open source software provide a rich 
ecosystem of forums, blogs, and knowledge-sharing sites so that finding help is only a search 
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away. As many open source tools and packages are developed out in the open on sites like 
GitHub, communicating directly with the developers who are writing code is not only possible 
but encouraged. This breaks down the walls of typical software support mechanisms such as 
tickets. It is possible to track the progress of a reported bug or requested feature and see its 
relative priority in relation to other bugs or suggestions. And if all else fails, individuals are free 
to download the source code and make the patch themselves, contributing to the development of 
the software (Singer 2013). 

Lastly, open source tools that have flourished in the past 10 years are simply more fun to 
learn and use. A part of that joy comes from creating code and analyses that can be reused by 
others, which is easier to do with languages developed in the open. Any programmer can 
contribute code to the community and improve their reputation and standing in the community. 
An analysis team can share elegant code solutions and learn from one another to make a better 
end product. As discussed below, Navigant has found that making tools and collaboration fun 
leads to increased productivity.  

Going Beyond the Spreadsheet 

Project leads have a strong incentive to encourage their teams to conduct analyses and 
develop models using software that is already familiar to everyone on the team. The single 
analysis tool familiar to nearly everyone in the energy industry is the spreadsheet, so it is a 
natural starting point in many organizations for doing data work. Spreadsheets certainly have 
their place and have evolved over time to include charts and graphics, pivot tables, and even 
scripting/development languages (such as VBA). However, spreadsheets have a number of 
disadvantages when compared with the flexibility and power of a data-specific programming 
language. Several high-profile spreadsheet errors in recent years have brought this concern into 
public focus (Savier 2013). 

R and Python are two of the most common programming languages used for data science. 
Moving from a visual point-and-click environment like a spreadsheet to a text-based integrated 
development environment (IDE)1 is a big leap and is not easily made by all members of the team. 
Learning a programming language from scratch can be a daunting transition, but it is helpful to 
recognize that some analysts will not only learn, but also thrive using a mature programming 
language. Figure 1 shows a screenshot of the popular RStudio IDE, used by many in the data 
science world to develop analyses in the R language.  

                                                 
1 An IDE is an application that facilitates code writing and software development, and is usually focused on a 
specific programming language or set of languages.  Typical features include a text editor, interactive console, 
object browser, help documentation, compiler, version control, etc. 
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   Figure 1 - Screenshot of RStudio Integrated Development Environment (IDE) for the R language 

Computing Resources 

Just like a spreadsheet has its limitations, so does a single analyst's laptop or workstation. 
A cloud computing environment is essential for security, scalability, and performance. Cloud 
environments allow for better resource management (disk space, CPUs, and RAM)2 and enable 
standardization of software and files structures. Setting up a data science team to work only from 
a virtual machine server in the cloud will pay off dividends as dataset size grows—especially if 
the cloud environment allows for on-the-fly RAM and CPU additions.  

Communication and Collaboration 

Whether landscaping or data science, one thing arguably more important to success than 
choosing the right tools for the job is fostering effective and efficient collaboration among team 
members.  In this section specific tools and platforms for communication are discussed along 
with their implications for a more effective and productive data science team. 

Beyond Email  

Just as spreadsheets have, for good reason, long been the go-to tool for data science work, 
so too has email been the default method of communication. And as with spreadsheets, the 
Navigant team has found that alternative communication and collaboration platforms exist that 
better suit team needs. When a data scientist is having difficulty debugging a chunk of code or 

                                                 
2 RAM stands for Random Access Memory, CPU stands for Central Processing Unit.   

2-183©2017 ACEEE Summer Study on Energy Efficiency in Industry



  
 

  
 

connecting to the analytics server, sending an email and waiting 30 minutes for a reply is not an 
optimal solution. In many cases, someone else on the team has already faced and solved a similar 
problem and can provide a quicker answer. A solution that could take the struggling analyst an 
hour or more to find by searching a help manual can often be provided by another team member 
in a couple quick sentences or a single line of code.  

The data science team needs communication platforms on which it is easy to both ask and 
respond to questions. One requirement for such a platform involves keeping messages brief. 
Email makes it too easy to write long messages with detailed, multipart questions. Potential 
respondents to these messages often feel obligated to reply with similarly verbose answers. This 
slows down the pace of communication and limits the usefulness of the collaboration. By the 
time a response is received, the answer may no longer be relevant. Platforms like Slack or 
Microsoft’s Teams encourage (but do not force) users to keep messages short via a 
comparatively small text messaging box that evokes the best parts of a 1990s-era chat room 
(Backaltis 2017).  

 

 
 Figure 2 - Screenshot of Microsoft Teams® chat app 

Another advantage these team chat-style platforms have over traditional email is the 
inclusion of little features that make communication clearer and more fun. For example, Slack 
allows users to format a section of text as a mono-spaced, color-coded code chunk by simply 
placing it between leading and trailing back quotes, just as you would a normal quote. This 
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makes it obvious that the obscure noun or verb you placed in the middle of your sentence is an 
extract from your code rather than a typo. While it is possible to do this in an email message, it 
requires several mouse clicks and thus is rarely used. Figure 2 above shows a screenshot of a 
workplace chat app showing teams and topic channels on the left, and code highlighting within 
chat messages on the right. 

Code formatting and other such seemingly trivial features of a communication platform 
(e.g., image sharing, emojis, gifs, and the ability to like or up-vote good posts) may seem 
inconsequential to outsiders—such as those making software decisions at a corporate level—but 
they can mean the world to the day-to-day users. For instance, Navigant’s data science team 
previously relied primarily on email for collaboration and had an internal email list that was 
actively used. After switching to Slack, the in-line code chunk creation was quickly adopted as 
standard practice. When the team experimented with a new collaboration platform that lacked the 
code chunk creation feature, they effectively refused to even consider the new platform until 
convinced that the feature would soon be available.  

Maintaining Focus 

One of the often-cited downsides of team chat-style platforms is the potential to 
overwhelm users with communication, notifications, and information. The flood of messages has 
the potential to be distracting. In response to this, we offer three suggestions.  

First, encourage users to make use of and respect status indicators and notification 
settings. When in a meeting or focused on a deadline, change your status to “do not disturb.” If a 
channel or chat thread is generating too many notifications, explore temporary or permanent 
notification settings adjustments for that channel or feed. If all else fails and distraction remains 
an issue, we encourage users to shut down collaboration applications (yes, even their email) until 
the need for increased concentration has passed.  

Second, it is important to manage teams’ expectations around response times and 
message visibility. It is likely that some messages will go unanswered or that messages will be 
buried in a thread or conversation before they are noticed by the right person. This is okay. If 
messages are quick and easy to create, they can easily be created or resurfaced again. Most team 
chat platforms have features for highlighting messages as important or tagging specific people 
who might have more of a need to respond than others (Markovitz 2012). In cases where it is 
vital that certain recipients see or respond to a message, the preferred method of communication 
might still be an email or a phone call. Setting expectations intentionally and explicitly for 
communication priority can help prevent frustration. 

A third suggestion for mitigating the potential downside of abundant communication is to 
make frequent use of built-in search capabilities. If your team knows that they can easily and 
quickly find messages that flew across their screen during a meeting or took place while they 
were away on vacation, they will feel less burdened by the volume of messages. By searching 
based on a combination or date range, user names, and keywords, most users should be able to 
quickly review messages or conversations they were not able to join or respond to in real time.  
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Knowledge Repository 

Even with a powerful search feature in our chat platform, the Navigant team has still 
found it necessary to maintain a knowledge repository in a more static location to supplement the 
live collaboration space. This is used to house frequently asked questions and answers, best 
practices, key knowledge shared in the real-time chat, and pointers to topical reference materials. 
The current platform for Navigant’s knowledge repository is a SharePoint-hosted wiki, but there 
are likely many suitable solutions. The three most important features of this knowledge 
repository are:  

 
• Editable by users. This allows users to update information or correct errors in real time 

without needing to contact an administrator. It also lessens the maintenance burden 
placed on the curators. 

• Searchable. A power search engine with easy to use advanced features (e.g., Boolean 
operators, wildcards, etc.) needs to be available to ensure user adoption.  

• Regularly maintained. Knowledge repositories and internal wikis are notorious for 
containing outdated information. Creating a small team of owner/curators and establishing 
an easy workflow for capturing information from team chat and emails and adding it to the 
knowledge repository should mitigate this. 

 
        Figure 3 shows a screenshot of a typical knowledge repository article, in this case giving 
recommendations on R coding style guidelines. 
 

 
        Figure 3 - Example knowledge repository article on R coding style conventions 
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Meetings 

Despite the usefulness and many advantages of the virtual, asynchronous collaboration 
tools, Navigant has found there is still great value in regularly gathering teams for both formal 
and DIY meetings. Our data science team meets every other week to discuss client projects, 
resources, and workload. The team takes some time at these top-down meetings to share best 
practices and new directions, but the majority of innovation and internal optimization happens 
during monthly meetings of self-organized interest groups. These groups are typically organized 
around a particular tool (e.g., Microsoft's Power BI) or a specific class of problems (e.g., smart 
thermostats). These groups work well because of their narrow focus and ability to attract those 
who are passionate about the topic. 

Culture and Best Practices 

How often have you tried to pick up someone else's work in a spreadsheet and struggled 
to understand how their analysis worked or tried to reverse engineer a process that you cannot 
trace back through hard-coded values or complex formulas? Or have you tried to collaborate on 
something in a spreadsheet and tried to merge your work with someone else's? Everyone has 
seen work that is impossible to recreate, quality check, or easily share because it is chained to a 
spreadsheet file. Moving to more code-based analysis can help with most of these issues—but is 
subject to some of the same problems if analysts are not following a core set of best practices and 
embracing good habits. Establishing the right culture takes time. After sowing the seeds initially, 
it is necessary to continue tending to and reinforcing best practices. 

Formal trainings that last 2 days or more can set a baseline for analysts, exposing them to 
the same tools and methods and giving everyone the same foundational knowledge of how to use 
the software. Today, things are changing so fast that the beyond-the-basics topics are new on a 
monthly basis, and teams need to be actively learning on a regular basis to stay sharp. As one 
person moves up the learning curve on a new function, package, or method, they can give a short 
training (brown bag seminar) monthly or as needed. 

In addition to the knowledge of how to use software and keeping current with the latest 
trends, data scientists can benefit from following some conventions that the software 
development community has converged on to make their lives easier. Code version control, 
functional programming, and code reviews are all means of making code easier to use, share, and 
improve. These have the added benefit of accelerating knowledge propagation among their 
practitioners.  

Version Control 
 
Version control saves the data scientists from having duplicate files, backups, and date-

stamped files. There only ever needs to be one copy of a given file, with a running log of 
changes to that file, accompanied by notes that indicate what the changes are. With proper 
version control, this file is backed up locally and remotely, and it can be reverted to any of its 
prior states at the click of a button. The catch is that version control comes at a price; the data 
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scientist has to get in the habit of entering notes on what she or he has changed and committing 
the changes to the version control system. In other words, the data scientist is forced to do 
something she or he should have been doing all along: keep track of her or his work. Or if the 
data scientist was already keeping notes, version control formalizes the process and puts notes in 
a standardized system and format that others can easily digest. 

Version control also enables easy collaboration. If one person is working on one part of 
an analysis and a partner is working on an unrelated part of the analysis, they can both work on 
the same file and merge their work together seamlessly. If they happen to work on the same part 
of the analysis, the version control system will alert them to the conflicting edits and force 
resolution. Note that effective communication comes back into play here; version control is 
never a replacement for good communication.  

Think about when a smartphone needs to update an app; the app was in a working state 
before the update, then got some minor changes from the software developer and continues to 
work in its new state. This concept of having a production version and patching it or updating it 
is what version control systems were built to help accomplish. If an ongoing analysis task for a 
client needs to be tweaked, the analyst can fork3 their code, create a development branch, add a 
feature, and fully test and debug it. Then, when it is fully vetted and working, the analyst can 
merge it into the production code without disturbing the ongoing analysis. 

Reusable Code 
 
At the single data scientist level, creating reusable code is as simple as writing functions 

to complete tasks that are repeated on a regular basis. A best practice to follow is to write a 
function for anything you have to copy and paste more than 3 times. When copying code, then 
pasting it and changing the inputs or the variable names over and over, it becomes likely a 
mistake will occur eventually.  

At a data science team level, the same basic rule of thumb applies. If multiple people or 
teams are doing the same work over and over, they should create a tool and use it on all projects. 
This leads to consistency in methods and enables everyone to benefit from everyone else's 
improvements. 

In R, formal packages from the Comprehensive R Archive Network (CRAN) are the de-
facto place to find reusable code. Teams can also write their own packages, complete with 
documentation and user guides to make them easy for others to pick up and use. At Navigant, we 
have gone so far as to create internal packages with functions specifically built for the types of 
analysis conducted. These packages give the data science team several competitive advantages: 
updates to methodology are easy to distribute, collaborative improvements are encouraged, and 
analysis approaches are somewhat standardized.  

Code Reviews and Best Practices 
 

                                                 
3 In a distributed version control platform like github, a “fork” is a complete clone of someone else’s code which can 
be modified and potentially shared back to the original author. 
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In a spreadsheet, one person might boldface headers, while another makes them red; one 
person might put different chunks of analysis on different sheets, while another might put 
multiple tables on the same sheet. These stylistic differences can make it easier or harder for a 
new user to pick up an existing spreadsheet and check it for quality or carry the analysis forward. 
In the same way, code written according to different conventions can be easier or harder to 
follow. Luckily, this is another place where the software development world has established 
great conventions that new users can follow (Cohen 2007). It becomes unnecessary to think 
about how much to indent code, whether to capitalize a letter, or use an underscore in a variable 
name. In the same way that document templates guide how to write and style a report or 
presentation, new software development conventions enable workframes in which the stylistic 
and structural decisions have already been made. This allows data scientists to focus hard 
thinking on the actual work rather than on formatting. 

Beyond simple formatting, the overall structure and reproducibility of a script are 
important. The concept of reproducible research means making an analysis script that runs from 
top to bottom to ensure that every step of the process can be checked and verified by someone 
else (Peng, 2009). Following a logical sequence of steps (load data, check data for problems, 
manipulate data, perform calculations, etc.) and including comments to orient a reader make it 
easy to follow someone else's work (or your own work, months or years later). Code reviews 
help to build that consistency into the work of the entire data science team. More senior data 
scientists or those armed with a list of best practices can easily skim through someone else's 
analysis script and pick out potential sources of error quickly. Navigant has adopted conventions 
around where to store files (data, scripts, quality control outputs, report outputs, etc.), how to 
name and order scripts (01-load, 02-clean, 03-plots), which functions to use, and so on. These are 
all things that make it possible to share work and collaborate on projects. A deeper code review 
(re-running the whole analysis) is much harder without a consistent and predictable roadmap to 
follow. 

Most of the best practices and conventions outlined in this section constitute basic 
housekeeping and documentation—which should be a no brainer for any experienced data 
scientist. The challenge is getting an entire team of people on board and in sync, which requires 
upfront investments in new analysts through trainings, ongoing investments in documentation 
and knowledge-sharing, and constant communication and collaboration across the team. Using 
the carrot and the stick analogy, we find that the most effective method of getting buy-in from 
team members and management is through the carrot. At the end of the day, the benefits of 
having reusable, sharable code and tools outweigh the upfront costs of training and well-
documented tool development. Once people can see the benefits, they embrace the newer, better 
tools and wonder how they ever worked in the rows and columns of spreadsheets. 

Conclusion  

At the end of the day, any team—be it a landscaping team or a data science team—boils 
down to its individual members, how well the members can work together, and how well 
prepared they are to meet their objective. In data science, there are some fundamental hardware 

2-189©2017 ACEEE Summer Study on Energy Efficiency in Industry



  
 

  
 

and software tools that can help each team member work better; means of communication that 
make it easier to collaborate; and best practices passed down from the software development 
industry that data scientists can rally around to make their team stronger. Keeping up in a world 
where data-related work is not only growing but also accelerating is not an easy task, but 
meaningful investments upfront and on an ongoing basis can help every data science team to stay 
competitive. 
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