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ABSTRACT 

Evaluating the national impacts of candidate U.S. building energy-efficiency 
technologies has historically been difficult for organizations with large energy efficiency 
portfolios. In particular, normalizing results from technology-specific impact studies is time-
consuming when those studies do not use comparable assumptions about the underlying building 
stock. To equitably evaluate its technology research, development, and deployment portfolio, the 
U.S. Department of Energy’s Building Technologies Office has developed Scout, a software tool 
that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures 
on the national building stock. 

Scout efficiency measures improve upon the unit performance and/or lifetime operational 
costs of an equipment stock baseline that is determined from the U.S. Energy Information 
Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market 
entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a 
consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate 
measure performance specifications to whole-building energy savings; these savings impacts are 
then extended to a national scale using floor area weighting factors. Scout represents evolution in 
the building stock over time using AEO projections for new construction, retrofit, and equipment 
replacements, and competes technologies within market segments under multiple adoption 
scenarios.  

Scout and its efficiency measures are open-source, as is the EnergyPlus whole building 
simulation framework that is used to evaluate measure performance. The program is currently 
under active development and will be formally released once an initial set of measures has been 
analyzed and reviewed.  
 

Introduction 

DOE’s Building Technologies Office (BTO) is charged with meeting legislative and 
executive mandates for energy savings in the national building stock. To achieve these 
objectives, BTO is divided into sub-programs that act as a technology development, 
commercialization, deployment, and regulation pipeline. To help guide its investments along this 
pipeline, BTO uses conventional information channels such as technology reviews, market 
research, and stakeholder feedback. In 2010, BTO began developing a tool to enable additional 
in-house evaluation of the individual and combined impacts of the various technologies and 
deployment efforts on the national building stock in future years. Originally branded as the 
Strategic Prioritization Tool (or “P-Tool”) (Farese 2012a, 2012b), this quantitative analysis 
framework has been used to identify promising technology areas by their energy and carbon 
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impact potential, and to develop performance and cost targets for prospective instances of those 
technologies in future years. BTO has developed a second-generation program called Scout that 
builds upon and improves the analytical capabilities of the P-Tool while establishing a longer-
term framework for building energy-efficiency impact analysis. This paper describes the Scout 
analysis framework and presents initial results. Key features of Scout include: 

 
• Nationwide estimates of the total energy use reductions, avoided CO2 emissions, and 

cost-effectiveness of a suite of energy-efficiency measures over a pre-defined time 
horizon, under various adoption assumptions. 

• A granular view of the building stock that accounts for building type and vintage, climate 
zone, and technology type within a building and a similarly granular view of energy 
consumption by end use and fuel type. 

• The use of energy simulation to translate measure performance to whole-building energy 
savings. 

• Compact measure definitions that support probability distributions for measure inputs and 
grouping individual measures into packages.   
 
Scout is implemented in the Python programming language with an emphasis on 

modularity and flexibility. This approach facilitates the use of different baseline building stock 
models (e.g., state or service territory) and technology and program portfolios, which enables 
Scout to be used by utilities, manufacturers, and other organizations with similar large-scale 
energy-efficient measure analysis needs. To encourage these broad use cases, BTO plans to 
make Scout public and freely accessible.1 Scout is currently under active development and 
testing. Scout will be officially released once an initial set of residential and commercial 
measures have been developed and measure evaluation has been fully tested. 

 

Methodology 

Scout estimates the degree to which baseline building energy consumption markets and 
associated CO2 emissions2 are impacted by various energy efficiency measures that diffuse into 
these markets over time, under three technology adoption scenarios. Baseline markets are 
established from the EIA Annual Energy Outlook (AEO) reference case for the residential and 
commercial building sectors. Efficiency measures are characterized by the baseline markets to 
which they apply and by their per unit installed cost, energy performance, and lifetime. The 
magnitude of each measure’s energy impact is determined by its captured market share, which 
depends on year-to-year stocks-and-flows in applicable baseline markets and its competitiveness 
with other candidate measures that apply to the same markets. Impacts can be summarized at the 
individual measure level or aggregated across all measures, and the cost-effectiveness of 
measure energy savings can also be assessed. 

 

                                                 
1 The Scout source code is available online at https://github.com/trynthink/scout. 
2 Scout accounts for the CO2 emissions attributable to on-site fuel combustion (e.g., natural gas for heating) as well 
as from the on-site consumption of purchased electricity. It does not currently account for emissions of greenhouse 
gases aside from CO2 (e.g., methane), or for CO2 equivalent emissions from refrigerant leaks. 

4-2 ©2016 ACEEE Summer Study on Energy Efficiency in Buildings



Baseline Markets and Market Dynamics 

A Scout market represents a unique subset of total energy use and corresponding CO2 
emissions associated with residential and commercial buildings in the U.S. Markets are generally 
non-overlapping; the sum of energy use in all markets is equal to the total energy use in 
residential and commercial buildings. Each market is defined by a climate zone, building type, 
end use, fuel type, and, if applicable, technology type. For example, a market might correspond 
to cooling with electric air-source heat pumps in single family homes in a southern climate zone. 
The quantitative details of each market include the baseline equipment stock size (e.g., number 
of installed units) and the cost, energy performance, and lifetime (i.e., service life) of the baseline 
equipment. Scout currently uses AIA climate zones (EIA 2016), which are based on heating and 
cooling degree days (HDD and CDD), however, the market data will eventually be recast to 
Building America climate zones, which are defined using a broader range of climate-related data 
(Baechler et al. 2015).  

The baseline energy data for each market are generally derived from the EIA AEO. EIA 
uses an array of models, including the National Energy Modeling System (NEMS), to develop 
projections of domestic energy use through the year 2040 (EIA 2014a, 2014b). Scout uses the 
AEO time-series baseline equipment stock data to create a stock-and-flow model of how the 
installed equipment mix in each market evolves over time. For the purposes of evaluating 
measures, the stock-and-flow model differentiates between new equipment in new construction 
(“new”), equipment up for replacement at the end of its useful life (“replacement”), and elective 
upgrades of existing equipment to reduce operating costs and/or improve operational 
performance (“retrofit”). In addition to stock changes, the AEO baseline case used in Scout 
includes conservative assumptions about improvements in the efficiency of the installed stock of 
equipment over time (EIA 2014a, 2014b). The AEO time-series energy and CO2 data reflect 
these stock-and-flow dynamics and efficiency assumptions. 

 
Measure Definitions 

Scout energy efficiency measures are defined primarily by five attributes, namely: a) 
applicable baseline market, b) year of market entry/exit, c) performance level, d) installed cost, 
and e) lifetime. In general, the transparency of Scout measure definitions is ensured by requiring 
consistent cost, performance, and lifetime input specification across measures and direct 
reporting of input parameter units and data sources. Furthermore, the Scout measure database 
will be posted to a GitHub repository, where all changes to it can be tracked and annotated over 
time. This approach to measure input definition and curation is an important improvement over 
that of the P-Tool, where, for example, measure definitions vary in their use of absolute or 
incremental cost and performance values, and supporting input parameter units and data sources 
are occasionally missing. It is anticipated that measures will be reviewed regularly for program 
planning purposes, and individuals can also review measures and suggest updates via GitHub. 

Scout measures may be assigned a market entry and exit year. The latter typically 
reflects a future efficiency standard that renders the measure obsolete. Where no legislation or 
efficiency standard precludes the future adoption of a measure, the measure may still be 
displaced through competition with other measures.  

Measure performance is defined at the unit level, and may be specified in absolute 
terms (e.g., U-value and solar heat gain coefficient for a window, or COP for a heat-pump) or as 
a percentage relative savings value. In the latter case, Scout improves upon the accuracy and 
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consistency of P-Tool savings definitions by determining savings values using EnergyPlus whole 
building energy simulations (DOE 2016). EnergyPlus can model many of the energy-efficient 
technologies and strategies that are current and potential targets for BTO investment. EnergyPlus 
is also open-source and extensively documented, supporting transparency in the measure energy 
savings calculation process (DOE 2016). Scout uses OpenStudio Measures3 to automatically 
apply a particular measure to prototype building models of different types, vintages, and climate 
zones (Roth, Goldwasser, and Parker 2016; NREL 2016b). The resulting energy savings 
estimates are broken down by fuel type and end use. This granularity provides insight into 
measure performance variability across application contexts, and enables finer control in 
calculating the impacts of measure packages. 

Measure installed cost is defined on a per unit equipment basis for residential measures 
that do not relate to the building envelope, and on a per square foot floor space basis for 
residential envelope and commercial measures. The installed cost is used to determine 
incremental installed cost relative to the baseline. In cases where a measure directly replaces the 
service of a comparable baseline technology (e.g., a more efficient air source heat pump), the 
measure’s incremental installed cost is calculated relative to that of the comparable baseline unit. 
In “add-on” cases where a measure enhances the performance of a baseline technology (e.g., a 
window film), the baseline installed cost is zero and the measure’s incremental installed cost is 
equal to its installed cost. Measure cost data is sourced from relevant product literature, or from 
publicly available building product databases, including the National Renewable Energy Lab 
(NREL) National Residential Efficiency Measures Database (NREL 2016a), RSMeans (The 
Gordian Group 2016), ENERGY STAR Most Efficient product database (ENERGY STAR 
2016), and EIA Building Sector Appliance and Equipment Costs (EIA 2015b).  

Measure lifetime is specified in years. Data sources for measure lifetime are often the 
same as for measure cost, including relevant product literature and building product databases. 

Uncertainty Distributions 
 

Scout measure definitions also improve upon P-Tool measures by accommodating 
probability distributions on cost, performance, and lifetime inputs. Users may specify one of six 
distributions4 along with the values required to parameterize the distribution and the number of 
samples to draw from it. The resultant range of possible input values are propagated through the 
analysis to generate a range of savings and cost-effectiveness outcomes. This ability to represent 
the uncertainty in measure inputs is particularly useful when evaluating the impact potential of 
emerging technology measures with ill-defined or uncertain attributes.  

 
Measure Adoption Scenarios 

Scout measures diffuse into their baseline markets under three possible adoption 
scenarios. The Technical Potential (TP) scenario assumes that all measures that are more 
efficient than the baseline technologies they replace (i.e., “efficient measures”) completely 
replace all applicable baseline market stock in the year of their market introduction and capture 

                                                 
3 OpenStudio is a software development kit for EnergyPlus and OpenStudio Measures are scripts that perform 
transformations on OpenStudio models. 
4 Scout currently supports the normal, lognormal, uniform, gamma, Weibull, and triangular distributions, using the 
Python numpy.random module (see Scipy.org (2015) for more details on each distribution). 
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all new stock added after that year, regardless of cost effectiveness. TP represents the maximum 
impact that a measure could realize, limited only by its baseline market size. The Maximum 
Adoption Potential (MAP) scenario assumes that efficient measures completely replace the 
portions of their baseline market stock that are newly added, at the end of their lifetime, or 
electively upgraded via a retrofit in a given year. MAP represents a measure’s maximum impact 
given realistic stocks-and-flows (see “Baseline Markets and Market Dynamics”). The Adjusted 
Adoption Potential (AAP) scenario assumes that efficient measures partially replace the new, 
replacement, and retrofit portions of their baseline market stock in a given year, while the 
remaining stock slated to turn over moves to an updated version of the baseline technology. AAP 
represents measure impact given both realistic stocks-and-flows and realistic consideration of 
consumer choices between baseline (e.g., conventional) technologies and efficient alternatives.  

The current version of Scout implements only the TP and MAP scenarios. The omission 
of AAP reflects the lack of a comprehensive framework for representing the likely adoption 
tendencies of residential and commercial consumers when given a choice between conventional 
and efficient alternative technologies. While this choice may depend strongly on measure factors 
that are modeled in the current Scout implementation (e.g., incremental installed and operating 
costs), non-economic factors such as impact on user comfort, ease of installation, and social 
benefits must also be considered. The Scout framework has been constructed to accommodate 
the outputs of a viable consumer choice model once developed. 

Measure Outputs 

Scout can model the impacts of energy efficiency measures using several metrics. Scout 
directly calculates the annual energy savings and avoided CO2 emissions potential of each 
measure for all adoption scenarios. Metrics can be aggregated across measures to determine the 
savings potential associated with specific end uses, climate zones, or building types.  

Scout also calculates several metrics that incorporate measure cost or cost effectiveness. 
Simple payback is calculated by dividing the per-unit cost of the measure by the per-unit annual 
energy savings compared to the baseline unit. The Cost of Conserved Energy (CCE) is similar to 
simple payback in that it is a ratio of cost and energy, but it includes a discount rate applied to 
the energy and cost savings potential of a measure (Meier 1983). In the analyses in the “Sample 
Results” section, a common discount rate of 7% is assumed, however, the discount rate in Scout 
can be easily adjusted. The CCE for each measure can be compared to the cost of energy; for the 
purposes of BTO analysis, measures below the national consumption (by fuel) weighted average 
energy price are considered cost effective (see Figure 2). Cost of Conserved Carbon (CCC) can 
be used to consider the cost effectiveness of avoided CO2 emissions, though in the absence of a 
carbon price, CCC is most readily compared to literature estimates for the externalized costs of 
CO2 emissions, such as the social cost of carbon (IWGSCC 2015). 

Internal rate of return (IRR) is the discount rate that balances the net present value of the 
measure cost (negative cash flow) against the savings realized by the measure on a per-unit basis 
(positive effective cash flow). Equivalent annual cost (EAC) is the cost per year of implementing 
a measure over its lifespan relative to a baseline technology. The present value of a measure’s 
equivalent annual costs is equal to its Net Present Value (NPV).  
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Measure Competition 

In some cases, multiple Scout measures compete for the same baseline market. For 
example, comparable residential windows that offer R-5, R-7, or R-10 levels of insulation could 
each replace the same baseline window. In such cases, Scout apportions the baseline market 
among the competing measures based on each measure’s incremental capital and operating costs, 
where a measure with lower incremental capital costs and higher operating cost savings will 
capture a greater share of the baseline market. In an AAP scenario, these market shares would be 
applied to only the portion of the stock that is modeled as choosing a more efficient (non-
conventional) technology. The specific methods used to determine measure market shares differ 
somewhat between the residential and commercial sectors, but generally weigh the EAC of each 
measure’s incremental capital investment and lifetime operating cost. These methods are based 
on approaches developed by EIA and used in AEO simulations (EIA 2014a, 2014b). Once 
calculated, a measure’s market share is used to scale down its un-competed energy savings value, 
effectively removing any overlapping impacts. 

The apportioning of market shares across competing measures departs from the “staging” 
approach that was used in the P-Tool. Under this earlier measure competition scheme, a 
measure’s CCE was used to iteratively rank it against competing measures, and highly ranked 
measures (i.e., those with a low CCE) would remove any overlapping savings for competing 
measures with a lower rank (Farese 2012a). This represented a “winner-take-all” approach to 
measure competition, under which measures with only marginally higher CCE values than the 
highest ranked measure would commonly be estimated to have zero savings potential. In moving 
to a market share-based measure competition approach, Scout accounts more realistically for 
overlapping measure savings because competing measures with similar cost effectiveness will 
have similar savings after adjusting for competition, rather than allowing the slightly more cost-
effective measure to entirely displace the other.  

For example, if two competing windows can each save 25% (or 500 TBtus) of a 2000 
TBtu baseline heating and cooling energy market, but the first has a CCE of $15/MBtu while the 
second has a CCE of $14/MBtu, the P-Tool would apply the lower cost to the entire baseline 
market before the higher cost and “stage out” all 500 TBtus of energy savings potential for the 
higher cost window.  Under the Scout market share approach, the lower cost window would 
achieve a somewhat higher market share than the higher cost window - perhaps a 55% share for 
the low cost window versus a 45% share for the high cost window. Accordingly, 225 TBtus of 
savings (45% market share x 500 TBtus savings potential) would remain for the high cost 
window after Scout competition, contrasting the null energy impact simulated for this measure 
under the former P-Tool staging approach.  

Sample Results 

To demonstrate the use of Scout in defining and evaluating the impact potential of 
efficiency measures, a set of eleven sample residential measures were evaluated under the 
Technical Potential (TP) and Maximum Adoption Potential (MAP) adoption scenarios, across a 
2009-2040 time horizon. These sample measures, which cover a variety of end uses, are 
summarized in Table 1. A twelfth measure groups the “CFL Reflectors”, “ENERGY STAR 
Electric WH”, and “SEER 21 CAC” measures into a packaged measure. To illustrate the effect 
of probability distributions on measure parameters, a normal distribution is placed on the 
performance input of the “SEER 21 CAC” measure.  
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Table 1. Summary of key parameters for eleven residential measures used in a sample Scout analysis. The measures 
cover a variety of end uses, and vary between the use of absolute and relative performance inputs. Measure cost and 
lifetime inputs are both shown in absolute terms. In this sample analysis, no legislation or standards changes were 
modeled, thus none of the measures have a market exit year specified.  

Measure Name Applicable Baseline Market 
Market entry/ 

exit year 
Performance Cost Lifetime 

ENERGY STAR 
CFL Reflectors 

All incandescent and halogen 
reflector lighting 

2010 / NA 40 lm/W $8.83/unit 6.6 years 

ENERGY STAR 
Refrigerators and 
Freezers 

All refrigerators and freezers 2015 / NA 10% savings 
$1025/unit (refrg.) 
$625/unit (freezer) 

16 years 

ENERGY STAR 
Electric WH 

All electric water heaters 2010 / NA 2.0 EF $1850/unit 13 years 

ENERGY STAR 
Gas WH 

All gas water heaters 2010 / NA 0.67 EF $1245/unit 13 years 

SEER 21 CAC All central air conditioners 2013 / NA 
N(μ =42% 

savings, σ=5% 
savings) 

$6480/unit 17 years 

Cold Climate HP 
All electric heating and cooling 
in AIA climate zones 1, 2, and 4 

2014 / NA 47% savings $4960/unit 18 years 

ENERGY STAR 
Gas Heating 

All gas furnace and boiler 
heating 

2010 / NA 0.88 AFUE 
$2500/unit (furnace) 
$5050/unit (boiler) 

15 years 

ENERGY STAR 
Window SHGC 

All homes in AIA climate zones 
3, 4, and 5 

2012 / NA 17% savings $12/sq.ft. 30 years 

R-5 Windows All homes 2013 / NA 67% savings $13.33/sq.ft. 30 years 

Reduce 
Infiltration 

All homes 2010 / NA 25% savings $0.52/sq.ft. 30 years 

VIP in Walls (N) All single-family homes 2015 / NA 68% savings $16/sq.ft. 30 years 

 
Figure 1 shows primary energy consumption results for the packaged measure and for the 

three individual measures that contribute to this package. Consumption is shown under both 
competed and uncompeted TP and MAP scenarios, where savings that overlap across measures 
accessing the same baseline market are removed in the competed scenarios. As a result, 
competed measure energy consumption within the TP or MAP scenario is always higher than 
uncompeted consumption within that scenario. Additionally, the higher energy consumption in 
the MAP scenario than the TP scenario for earlier years reflects the consideration of realistic 
stock turnover in the MAP scenario; these stock changes yield a more gradual diffusion of the 
efficient measure into its baseline market and slower accumulation of associated measure energy 
savings. These results do not include a complete portfolio of measures, and since there are not 
more favorable measures competing in the reflector lamp market, the “ENERGY STAR CFL 
Reflectors” measure shows some energy savings throughout the modeled time horizon. Finally, 
the normal uncertainty distribution in the “SEER 21 CAC” performance input has propagated 
through to the individual and packaged measure primary consumption outputs. 
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Figure 1. Primary energy consumption outcomes for a packaged Scout measure (bottom row) and its three 
constituent measures (top row), under a baseline, competed/uncompeted Technical Potential (TP), and 
competed/uncompeted Maximum Adoption Potential (MAP) measure adoption scenario. Competed scenarios 
account for overlapping savings between measures and therefore yield higher measure primary energy consumption 
than their uncompeted variants. Higher MAP vs. TP consumption outcomes in earlier years reflect the consideration 
of realistic stock-and-flow dynamics in the MAP scenario, which force more gradual diffusion of the efficient 
measure into its baseline market and the slower accumulation of associated energy savings. Note that a normal 
probability distribution has been placed on the performance input for the “SEER 21 CAC” measure, and this 
uncertainty has propagated through to the consumption outcomes for this measure and the packaged measure in 
which it is included. These results do not include a complete portfolio of measures, and since there are not more 
favorable measures competing in the reflector lamp market, the “ENERGY STAR CFL Reflectors” measure shows 
some energy savings throughout the modeled time horizon. 

Figure 2 plots each of the sample measures’ competed MAP energy savings for the year 
2030 against its associated CCE in 2030, comparing its CCE to: a) the average cost of residential 
building energy in 2030 across fuel types (EIA 2015a), and b) the 2030 cost of energy plus an 
additional carbon price of $52 per metric ton (MTon) CO2 (IWGSCC 2015). Note that different 
measures have different years of market entry; commercially available measures have a year of 
market entry corresponding to the current year, while R&D measures enter the market in future 
years. A measure is considered cost effective if its CCE is lower than the cost of energy or cost 
of energy and CO2 threshold in the given year. Data points towards the bottom and right of the 
plot are most favorable (highest cost-effective energy savings impact). 
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In Figure 2, seven of the twelve sample measures have CCE values that are below the 
2030 cost of energy threshold, together representing approximately 2 quads of cost-effective 
energy savings. Moving the cost effectiveness threshold upwards through the introduction of a 
carbon price does not change this result. Examining the figure by individual measures, ENERGY 
STAR electric water heaters yield the greatest cost-effective energy savings, while CFL 
reflectors have the lowest CCE due to their increased lifetime over baseline (incandescent and 
halogen) reflector lights (> 6 years versus < 1 year). All envelope measures are shown to be cost-
effective, though the ENERGY STAR window solar heat gain coefficient (SHGC) and vacuum-
insulated panels (VIPs) in walls measures have the lowest savings (<0.05 quads), likely due to 
their restricted baseline market applicability (see Table 1). Finally, the packaged measure looks 
far less favorable in Figure 2 than each of its three constituent measures, with lower savings than 
all but the SEER 21 CAC measure and a higher CCE than all three measures. This result is likely 
due to the packaged measure using the combined cost of all three measures, which overwhelms 
the competed energy savings benefits of the package. Scout can capture complementary cost 
and/or performance benefits from measures when packaged, and future analyses may explore 
these effects. 
 

 
Figure 2. Maximum Adoption Potential (MAP) scenario primary energy savings versus cost of conserved energy 
(CCE) of eleven sample residential Scout measures and one measure package, shown for the year 2030. Each 
measure’s CCE is compared to a cost effectiveness threshold determined by either the cost of energy in 2030 or the 
cost of energy in 2030 plus a carbon cost threshold (dotted horizontal lines). Seven of the twelve measures – 
together representing 2 quads of primary energy savings – are shown to be cost effective in 2030. ENERGY STAR 
electric water heaters offer the largest cost effective savings of the sample measures, while CFL reflectors have the 
lowest CCE. The four envelope-focused sample measures are all cost effective, though two with restricted markets 
yield low savings (VIP in walls and ENERGY STAR window SHGC). The packaged measure appears substantially 
less favorable than its constituent measures from both cost effectiveness and savings potential perspectives. 
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Future Directions 

A principal motivation for developing Scout was to facilitate later extension of the model 
to other parameters and metrics. Beyond energy use and CO2 emissions, the effects of various 
measures on peak electricity demand are of significant interest. EnergyPlus can compute time-
dependent energy use metrics such as energy cost, and those metrics could be propagated to 
Scout and used in measure evaluation and competition. EnergyPlus also tracks both domestic and 
HVAC water use (e.g., cooling towers for commercial HVAC). Combining this metric with 
climate-zone specific indirect water use (i.e., water used for power plant cooling) would allow 
Scout to evaluate measures based on water use impacts. 

DOE currently uses Scout to evaluate its technology R&D portfolio, but is interested in 
extending the Scout framework to evaluate commercial and residential market-engagement 
programs. Doing so would require the development of “adoption” measures that represent 
initiatives such as product campaigns, information services, and rating labels. Characterization of 
such measures requires a more sophisticated technology diffusion modeling framework than is 
currently available, as mentioned in the discussion of an “Adjusted Adoption Potential” model 
scenario. Addressing this gap in current building technology diffusion modeling capabilities is an 
area of potential future focus for DOE. 

Although Scout is currently used for U.S.-wide technology investment portfolio analysis, 
the Scout framework is flexible and can support other applications. One promising application is 
analysis performed by many utilities to develop “deemed savings” values and corresponding 
incentives for ECMs. Re-purposing Repurposing Scout for this use case requires defining an 
energy baseline model corresponding to the appropriate service territory. The stock-and-flow 
model could also be customized if more specific regional projections are available, though re-
scaled AEO stock-and-flow baseline data for the regionally-appropriate climate zone(s) might be 
an acceptable first approximation. OpenStudio Measures for the ECMs of interest would be 
needed, but might already be available or can be developed using existing OpenStudio Measures 
as templates. Adoption model parameters can also be readily replaced with region-specific 
market assumptions, if those data are available. An AAP analysis with measure competition 
would then be performed to develop a portfolio of ECMs to meet a regional energy savings 
target. ECM-specific incentives could be established by testing the effect of adjusted costs on 
adoption outcomes. 

Scout is an open-source software project, but to promote its broader use, DOE is 
considering exposing it via a web interface. The interface would initially allow users to review 
measure definitions and to explore results and modeling assumptions from a pre-defined set of 
simulations. Potential extensions would allow users to define their own measures and explore the 
implications of changing the modeling assumptions.  
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