
Go for the Silver? Evidence from field studies quantifying the difference 
in evaluation results between “gold standard” randomized controlled trial 

methods versus quasi-experimental methods 
 

Anna Spurlock, Peter Cappers, Ling Jin, Annika Todd, LBNL  
Patrick Baylis, University of California at Berkeley 

 
 

ABSTRACT 

Randomized controlled trials (RCTs) are widely viewed as the “gold standard” of 
evaluation. However, analysis of the effect of energy pricing has largely been conducted through 
quasi-experimental methods. Using a rare set of large-scale randomized field experiments of 
time-based electricity pricing, we compare the estimates obtained from commonly used non-
experimental methods against RCT estimates.  

We demonstrate empirical evidence in favor of four stylized facts that highlight the 
importance of understanding two important sources of bias in this context: selection bias and 
spillover effects. First, difference-in-difference and propensity score methods tend to 
underestimate the true average treatment effect. Second, regression discontinuity methods tend to 
overestimate the effect. Third, selection biases in quasi-experimental methods tend to be more 
pronounced in opt-in treatments relative to opt-out treatments. Fourth, the three-in-five day 
baseline with an additive adjustment recommended by KEMA (2011) tends to underestimate the 
impact of the intervention, a pattern we attribute to intertemporal spillover effects.  

Introduction 

In this paper we scrutinize several methodologies commonly used in the evaluation of 
electricity demand response (DR) and pricing programs. We compare them to the “gold 
standard” randomized, controlled trial (RCT) experimental evaluation methodology, and find 
systematic evidence of selection and spillover effects that bias the non-experimental estimates. 

RCTs have been widely used in fields such as public health and psychology. They are 
considered to be the “gold standard” in research design for empirical social science because the 
randomization process holds potential confounding factors equal across control and treatment 
groups, allowing the researcher to isolate the treatment effect of interest. However, some argue 
that obtaining the gold standard comes at a price; that RCTs tend to be expensive and time-
consuming, can be challenging to implement correctly, are limited to settings where an 
experimental intervention is feasible, and are subject to concerns regarding external validity. 
While some of these barriers are important, many can easily be overcome with experience or 
sufficient advanced planning. 

Meanwhile, a long history of empirical work has used an array of quasi-experimental 
research designs intended to simulate the experimental process, such as matching, propensity 
score weighting, regression discontinuity, and within-unit estimators. These research designs can 
often be applied after a program has taken effect, which can disincentivize the need to plan for 
evaluation carefully at the program implementation stage. However, these quasi-experimental 
techniques are potentially more likely to suffer from biases. 
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This paper builds on prior work in the peer-reviewed literature that compares results 
obtained using non-experimental research designs with experimental results.1 Recent work has 
extended this type of analysis to residential electricity consumption data. In particular, a working 
paper by Jessoe, Miller, and Rapson (2015) examines the possibility of using high-frequency 
electricity data to recover causal effects without an experimental comparison group. An 
advantage of our approach is that we use an experiment with multiple treatment arms to validate 
trends in our results. Implementing quasi-experimental estimators across all treatment arms allow 
us to ascertain if consistent biases relative to experimental estimates exist. In particular, we 
provide evidence that selection biases and spillover effects drive the observed biases in the non-
experimental results in our setting.  

Empirical Context: Residential Electricity Pricing Programs 

Accurate evaluations of DR and pricing programs in the electricity industry are important 
for several reasons. First, settlement and payment for incentive-based programs (such as peak 
time rebates) require an accurate evaluation of how consumption for a specific household 
changed on a single critical event window relative to their baseline (or counterfactual) 
consumption.  In these programs, customers are paid for the amount of electricity they saved 
during a given critical event relative to this baseline. Second, utilities often claim savings and 
recover costs from ratepayers as authorized by regulators, and these savings need to be 
accurately measured through a program impact evaluation. Third, an assessment of how well a 
program is working is crucial for future program and portfolio planning, so that ratepayer dollars 
are spent on programs that achieve the highest savings at the lowest cost. Forth, accurate short- 
and long-term grid-level energy and capacity forecasts are necessary for maintaining reliability.  
These forecasts enter into resource planning efforts that inform the need for future infrastructure 
investment.  Understanding the true savings resulting from a given program ensures that both 
utilities and ratepayers are being appropriately compensated for their efficiency efforts, while 
helping prevent the construction of unnecessary generation capacity. 

Until recently, RCTs have been met with substantial resistance in the residential energy 
sector.  Concerns that have been raised include: they require substantial planning up front at the 
program implementation phase in contrast to quasi-experimental techniques which typically 
require analysis only ex-post; they are seen as difficult to implement; and they are sometimes 
described as “unfair” because they restrict program participation to exclude the control group. As 
such, the majority of the evaluation and baseline methods used historically have been non-
experimental. The specifics of several of these methods will be outlined later in the paper.  

However, there has been a recent increase in interest in the application of RCT evaluation 
methods in the residential electricity sector. This trend has been enabled by increasingly 
available high-frequency data from smart meter infrastructure, and was spurred forward with the 

                                                 
1 Much of the seminal work in this area was conducted in the labor economics literature (labor economics is the 
subfield of economics that studies work and employment, focusing on questions of labor supply and demand, wages, 
and the role of skill, motivation, education, and other factors on success outcomes). LaLonde (1986) conducts such a 
comparison in the context of an employment-training program, finding that the non-experimental estimates 
frequently fail to align with the experimental results. Heckman, Ichimura, and Todd (1997) analyze a separate 
program and find that non-experimental estimates can perform well so long as the comparison samples are drawn 
from a similar sample. Dehejia and Wahba (1997) find that propensity score estimates can outperform traditional 
econometric estimators, although Smith and Todd (2001) note that the former finding may be due to the sample 
selection imposed. 
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increased visibility and popularity of behavior-based programs, such as Opower’s Home Energy 
Reports (e.g., Allcott 2011a). The average treatment effect sizes are quite small for behavior-
based programs, and so regulators have tended to require a higher bar for their evaluation in 
terms of accuracy and robustness in order to accept the savings from these programs claimed by 
utilities. This is in contrast to savings claimed by energy efficiency programs, for example, for 
which average savings tend to be higher, and are assumed to be more lasting. The discussion 
around RCT in the context of behavior-based programs, however, facilitated the expansion of 
these methods beyond these programs alone.  

In the context of time-based pricing programs, in 2009 the United States Department of 
Energy (DOE) issued a funding opportunity announcement for its Smart Grid Investment Grant 
(SGIG) that requested proposals from utilities seeking funding to expand their smart meter 
infrastructure. DOE required these proposals to include randomized pricing experiments, which 
were to be enabled by the new advanced metering infrastructure. Ten utilities were ultimately 
funded under SGIG and undertook Consumer Behavior Studies (CBS) that utilized randomized 
evaluation methodology for their pricing pilots.2  

We use the opportunity offered by the randomized time-based rate pilots under the SGIG 
CBS in order to assess the accuracy of the non-experimental methods most commonly employed 
to evaluate DR and pricing programs historically. Building on the pioneering work by LaLonde 
(1986), we take a set of electricity pricing RCT experiments as the gold standard against which 
we compare our set of non-experimental estimates. Because electricity consumption is a data-
rich context, we are able to implement a range of non-experimental techniques. Specifically, we 
estimate three quasi-experimental evaluation methods: (1) difference-in-differences (DID) (2) a 
propensity score estimator that reweights observations by their treatment likelihood, and (3) a 
regression discontinuity (RD) design that discontinuously influences treatment likelihood. We 
compare the estimates of the average treatment effects obtained using these quasi-experimental 
techniques to those obtained from the RCT. We additionally examine three common baseline-
derived estimation methods and compare estimated average savings for each critical event day 
using these methods to those obtained from the RCT. The baseline methods we examine are: (1) 
a four-in-five day baseline, (2) this same four-in-five day baseline method with an additive 
adjustment (KEMA 2011), and (3) an individual customer regression estimator. Our primary 
purpose in this exercise is to document any systematic biases (e.g., selection bias and bias from 
spillover effects across days) present when these estimates were obtained using non-
experimental methods.  

We document empirical support for five results. First, difference-in-difference and 
propensity score methods tend to underestimate the true average treatment effect, suggesting the 
presence of selection bias when using these methods. Second, RD methods tend to overestimate 
the size of the true average treatment effect, underlining the limitation of RD to provide 

                                                 
2 More information on the SGIG CBS studies can be found at 
https://www.smartgrid.gov/recovery_act/overview/consumer_behavior_studies.html. While time-based pricing for 
electricity has existed for a long time, and many evaluations of this type of pricing have been conducted and 
documented in white papers (some of which will be references below), academic researchers have typically focused 
on the fairly small set of programs that did happen to be implemented using experiments. Aigner (1984), Train and 
Mehrez (1994), and Jessoe and Rapson (2012) analyze the effect of separate time-of-use (TOU) experiments. Allcott 
(2011b) analyses a real-time pricing (RTP) experiment. Wolak (2007) examines the response to a critical peak 
pricing (CPP) program. The fact that past instances of randomized experiments are relatively limited is indicative of 
the resistance we’ve mentioned to these methods in this industry historically.  
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externally valid estimates. Third, biases in non-experimental research designs tend to be more 
pronounced in opt-in treatments relative to opt-out treatments, further confirming the selection 
effect interpretation. Fourth, the baseline methods, particularly the four-in-five day baseline both 
with and without the adjustment, tend to underestimate the impact of the intervention, pointing to 
the importance of intertemporal spillover effects.  

For policy-makers, this work contributes to our understanding of the usefulness of non-
experimental methods in ex-post measurement of changes in consumption as a result of 
electricity rate design. Many utilities and public utilities commissions are considering a broader 
implementation of time-based pricing of electricity in the next decade.3 Policymakers may want 
to test the effects of these changes, but may not have the resources or time to implement a full 
RCT.4 Our results suggest the following: (1) while RD is viewed favorably by the empirical 
economics community, it may in fact be more biased relative to the population average than 
properly constructed difference-in-differences or propensity score estimates due to the 
limitations associated with using it to estimate average treatment effects across a broad spectrum 
of the population; (2) practitioners considering an implementation of a time-based electricity rate 
should note that a non-experimental evaluation of default or opt-out rates is less likely to be 
biased due to selection considerations than a non-experimental evaluation of an opt-in rate; and 
(3) four-in-five day baseline methods, if used, must include a adjustment for weather and usage 
patterns, but are likely to be bias due to spillover effects. The individual customer regression 
baseline method we assess performs slightly better, but also suffers from spillover effects. 

Overview of the Time-Based Pricing Experiments 

The set of experiments analyzed in this paper come from the SGIG CBS studies 
conducted by the Sacramento Municipal Utility District (SMUD). SMUD’s customer base has 
approximately 530,000 residential households. After many were excluded based on pre-defined 
eligibility criteria, approximately 174,000 households remained in the study.5 

There were three pricing treatments tested: a time-of-use (TOU) program where 
customers faced higher prices 4pm to 7pm on non-holiday weekdays, but lower prices off-peak; 
a Critical Peak Pricing (CPP) program where they faced very high prices during the peak period 
of 24 critical event days in total called a day in advance over the course of two summers, but 
lower prices during all other hours; and a combined rate where a CPP was applied on top of a 
TOU.  The experimental prices were in effect between June 1st and September 30th for the two 
summers in the study (2012 and 2013). In addition, there was an enabling technology associated 
with some of the treatment groups in which customers were offered in-home displays (IHD). 
There were two forms of recruitment: opt-in, where households were encouraged to enroll in the 
rate program, but would not be enrolled unless they actively opted in; or opt-out, where 
households were notified that they were enrolled by default and were encouraged to stay in the 
rate program, but had the opportunity to leave the program if they wished. 

As a result of different combinations of these parameters, households in the experimental 
population were randomly assigned into ten groups; in this paper, we examine eight of those 

                                                 
3 For example California is moving towards TOU as the default rate (CPUC 2015). 
4  We note that the existence of the present set of RCTs is due to a large DOE grant, which also funds this study. 
5 Households were excluded from the experiment if: they did not have interval meters to capture hourly electricity 
usage installed prior to June 2011; they were participating in one of SMUDs other concurrent programs; or if they 
had master metered accounts. 
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groups, seven of which were encouraged to participate in a time-based pricing treatment, while 
the eighth group was the control group, which received no encouragement and remained on the 
standard rate.6 Specifically, the treatment arms included: (1) CPP opt-in with IHD, (2) CPP opt-
in with no IHD, (3) CPP opt-out with IHD, (4) TOU opt-in with IHD, (5) TOU opt-in with no 
IHD, (6) TOU opt-out with IHD, and (7) TOU-CPP opt-out with IHD. 

Data 

The data consist of hourly energy consumption, in kilowatt-hours (kWh) for each 
household in our control group, as well as for each household in our seven treatment groups, 
regardless of whether or not they ended up enrolled on the treatment pricing, or whether or not 
they opted out at any point in the pilot period. These energy consumption data were collected for 
one year prior to the start of the pilot period (June 1st, 2011 - May 31th, 2012) and for two years 
during the pilot period (June 1st, 2012 - September 30th, 2013).7  

We also use hourly weather data, including dry and wet bulb temperature as well as 
humidity. There is only one weather station in close proximity to all participants in the SMUD 
service area, so the weather data does not vary across households, only over time.  

Theory 

The fundamental problem of causal inference is that it is impossible to simultaneously 
observe units in both treated and untreated states. In the context of estimating the effect of 
electricity pricing treatments, this means that researchers cannot observe how much electricity a 
control customer would have demanded had she been exposed to the treatment or how much a 
treatment customer would have demanded had she not been treated. Experimental methods 
circumvent this problem by randomizing, while quasi-experimental methods use a variety of 
techniques to claim that treatment is “as good as random.” Econometrically, the goal in any 
evaluation is to ensure that the error term (capturing any and all unobserved factors) is 
uncorrelated with the independent variable of interest. For example, in an electricity pricing 
setting, it must be assumed that households who participate in a new pricing program are not 
systematically different in ways that affect their electricity consumption and ability to respond to 
the treatment compared to households that do not participate. In a randomized setting, this 
assumption is known to be true, by virtue of the randomization itself. In quasi-experimental 
settings, this assumption cannot be proved, but must be claimed. The following section provides 
an overview of the evaluation methods we employ, with an emphasis on the assumptions 
required to overcome the fundamental problem of causal inference.8 

                                                 
6 The final two treatment arms were alternative control groups used for an evaluation based on a recruit and delay 
RCT experimental design, and did not face time-based prices during the 2012-2013 timeframe. 
7 Coverage of the hourly energy consumption and billing data was quite complete. While there are a handful of 
missing observations (less than one percent), they do not differ systematically across treatment groups, nor across 
those who did and did not end up in treatment.  A comparison of pre-treatment energy usage shows that there is no 
statistical difference between the control group and each of the six experimental treatment groups (including average 
kWh per day, peak hours, and peak to off peak ratio) 
8 For a detailed explanation of different types of impact evaluations see Cappers, Todd, Perry, Neenan & Boisvert 
(2013) for energy savings impact evaluations, and Imbens and Wooldridge (2009) for a comprehensive econometric 
discussion. 

2-5©2016 ACEEE Summer Study on Energy Efficiency in Buildings



Experimental Design 
The key feature of RCTs is that units are assigned randomly between control and 

treatment groups. Proper randomization and sufficient sample size should ensure that these two 
groups are similar across both observable and unobservable attributes. If this is the case, then any 
differences in the average outcome between the control and treatment groups should be entirely 
attributable to the treatment itself.  

In our context, customers were randomly assigned to treatment and control groups. Each 
treatment group is then comparable to the control group. To account for statistically insignificant 
but slight differences in the two groups, we estimate the difference between the average change 
in electricity usage in the pre-treatment period and the post-treatment period between the 
treatment and control groups. Because not all customers from the treatment groups enrolled in 
the program, we are actually using a Randomized Encouragement Design (RED), which allows 
us to estimate the average effect of taking up the treatment. This design requires the additional 
assumption that treatment status (i.e., being encouraged to enroll) did not affect energy usage 
except by causing enrollment. The treatment effect from an RED can be estimated using two-
stage least squares. 

Quasi-Experimental Average Treatment Effect Estimators 
 

Difference-in-differences (DID). The difference-in-differences estimate compares the 
difference in before- and after-treatment electricity usage between customers who chose to enroll 
in the treatment and the randomly selected control group that was not informed about the pilot. 
Customers that were encouraged to enroll in treatment but did not are omitted from the analysis. 
For this estimate to be unbiased, we require that the selection into treatment choice be as good as 
random, i.e., customers’ decisions to enroll are uncorrelated with their electricity usage. This is a 
strong assumption, since it is natural to expect that individuals who choose to enroll in a time-
based electricity pricing program, such as a TOU or CPP, may have different electricity use 
patterns as compared to those who choose not to enroll. For example, customers with lower peak 
consumption may be more likely to enroll than those with higher peak consumption because they 
may anticipate being able to save money with the time-based rate. Because of the potential for 
self-selection, we anticipate that the DID estimate will show evidence of selection bias. In 
addition, we note that there may be important differences between the opt-in and opt-out 
treatments. Since the opt-in treatments enrolled at most 20% of treated customers, the selection 
effect for these groups is likely to be substantial. However, since the opt-out treatments enrolled 
at least 90%, selection is likely to be more muted. 
 
Propensity score matching. Our third quasi-experimental technique theoretically improves 
upon the DID approach by trying to control for selection using observable characteristics. It does 
this by using a standard propensity-score matching approach to account for selection into 
treatment. We construct estimates of each customer’s enrollment likelihood based on their pre-
treatment electricity usage. We then estimate a regression that adjusts for differences due to 
selection into treatment using the propensity score. The required assumption in implementing 
this methodology is that the variables used to construct the propensity fully account for 
unobserved differences between the control and treatment groups. If this assumption does not 
hold, then we would expect the propensity score estimate to also be subject to selection bias.  
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Regression discontinuity (RD). RD designs take advantage of cutoffs that affect selection into 
treatment. In the electricity context, a relevant cutoff might be generated if a program offers 
time-based pricing to any customers with total pre-treatment summer electricity usage above a 
given threshold but not to those below. The underlying assumption is that customers above and 
below the eligibility threshold are similar except in their ability to join the pricing program. In 
essence the assumption is that customers cannot anticipate the cutoff and manage their 
consumption such that they are able to orchestrate their qualification, or not, for treatment. It is 
reasonable to assume that this is the case, as in order for a household to manage their 
consumption so that they landed just above or below the cutoff, they would have to pay close 
attention to their aggregated electricity consumption over the course of several bill cycles. The 
RD approach, therefore, assumes customers just above or below the cutoff are as good as 
randomly assigned, and similar in most other ways. However, in order to ensure this similarity, 
the treatment effect is estimated using only customers existing in a narrow band (in our case 
10%) right below and above the cutoff. This means that RD methods are likely to suffer from 
reduced external validity, and may not be able to recreate the average treatment effect for the 
entire population if the treatment effect is highly correlated, particularly in a non-linear way, 
with the variable used to define the cutoff.  

Non-Experimental Baseline Methods 

Four-in-five day baseline. To estimate the average energy savings for each critical event day, 
we create a baseline by using the average consumption from the four highest consumption days 
out of the last 5 non-event business days, to which the customer’s usage on a critical event day is 
compared. This is referred to as the four-in-five day baseline method. In addition, we 
implemented the additive adjustment to this baseline as recommended by KEMA (2011). The 
purpose of this adjustment is to help control for weather and underlying usage pattern differences 
across days. We chose this baseline method because it performed the best in KEMA’s review of 
a variety of baseline methods (KEMA 2011). This estimate may be biased if the non-event days 
are substantially cooler, or if there are spillover effects (i.e., customers who are enrolled in a CPP 
treatment have started reducing their consumption, through habit formation or technological 
investments, outside of the critical event days).  
 
Individual customer regression baseline. We also estimate a within-customer treatment effect 
for the critical events, which uses non-event hours across the entire treatment period for each 
customer, controlling for temperature, as a baseline for comparison to the event hours. The 
temperature adjustment is achieved by running regressions for individual customers separately 
while using the same model specification. The key assumption in this method is that there are no 
treatment spillovers as described above (i.e., that customers do not systematically adjust their 
behavior outside of the critical event days as a result of being in a CPP treatment). This method 
also assumes that the temperature dependence (determined from the individual customer 
regressions) of customer’s usage does not change over the range observed between non-event 
versus event periods.  
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Results 

Comparing Average Treatment Effect Estimates 

Figure 1 summarizes the differences between the average treatment effect estimated 
using the experiment and those obtained using the quasi-experimental approaches described in 
the previous section. The comparison is show for the DID (top left panel), propensity score (top 
right panel), and two versions of the RD (bottom two panels). The two RD estimates differ in the 
location of the eligibility cutoff used in constructing the simulated RD. In the bottom left panel 
the cutoff limited enrollment to those above the 40th percentile of pre-period summer usage, 
while the bottom right panel shows results when the cutoff was limited to those above the 50th 
percentile of pre-period summer usage. In all graphs the experimental estimate of average per-
household hourly kWh peak period savings are show by the blue solid bars, the corresponding 
quasi-experimental estimated treatment effect is show in the outlined orange bars. The difference 
as a percent of average hourly peak consumption is shown in the lower scale in grey. The 
whiskers on the bars indicate the 95 percent confidence intervals of the two sets of estimates. We 
document three stylized facts related to the biases in the average treatment effects estimated 
using the quasi-experimental methods shown in Figure 1. 
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DID     Propensity Score 

 
RD (40th percentile cutoff)   RD (50th percentile cutoff) 

 
 

Figure 1. Comparison of treatment effect estimates. Source: Author calculations. 

 

Difference-in-difference and propensity score methods underestimate the treatment effects. 
The DID approaches and the propensity-score method underestimate (in absolute value) the 
effect of the treatment relative to the randomized design. If an evaluation of these rates were 
done using one of the quasi-experimental approaches, the bias would have reduced the estimated 
treatment effect by as much as 5 percentage points. So, if the true average treatment effect were 
20% of hourly peak consumption for example, the quasi-experimental estimates would have 
generated an estimate of only 15% in some cases. To interpret the result, we recall that the 
treatment group in this design consists entirely of customers who deliberately select into 
treatment. This group is observationally different from the control group and is likely to have 
different electricity usage patterns. We interpret the difference between the DID estimates and 
the propensity score estimates as driven by this selection effect: customers who actively chose to 
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participate in the time-based pricing program had different underlying trends, biasing the result 
downwards. We note that this bias could have been either towards or away from zero, depending 
on the nature of the selection effect or trends in weather. 
 
RD methods tend to overestimate the treatment effects. As discussed above, the simulated 
regression discontinuity method that we construct avoids the selection bias present in the other 
two methods by design. In contrast to the DID estimate, the RD estimates tend to overestimate 
(in absolute value) the true effect for the opt-in groups. Empirically, the only difference between 
these two estimates is that the RD method excludes treated customers below the threshold and 
control customers above the threshold, while the RCT method includes all treatment and control 
customers above and below the threshold. The magnitude of the difference is as much as 20 
percentage points in some cases. So, a true treatment effect of 20% of hourly consumption, for 
example, would have been estimated to be as much as 40% in some cases if evaluated using the 
RD method. The overestimation is more pronounced the higher the eligibility cutoff. This 
highlights the fact that, if the variable used to define the cutoff is correlated, particularly in a 
nonlinear way, with the likelihood of selecting into treatment and the treatment response, the RD 
is likely to be biased, which is what we see here; because the treatment groups have, by design, 
higher pre-period usage, they are able to reduce more in the post-period.  
 
The biases are more pronounced in opt-in versus opt-out designs. In all designs, estimation 
of the average effect of the opt-out treatments is less biased than the opt-in treatments. We 
interpret this finding as strong evidence that selection bias is driving the larger differences for the 
opt-in treatment arms: because at-most 20% of individuals chose to opt-in to treatment when 
offered, the sample obtained using an opt-in enrollment method is likely to be more heavily 
selected than that obtained using an opt-out enrollment method, which achieved 90% enrollment. 
Because the quasi-experimental methods are potentially subject to sample selection bias, using a 
less-selected sample to begin with naturally improves the quality of the quasi-experimental 
estimate.  

Comparing Event Day Treatment Effects 

Figure 2 documents average differences in estimates of event-day treatment effects, 
comparing the four-in-five (with and without adjustment) and individual customer regression 
baseline-based estimators to the experimental estimates. These estimates were generated using 
the CPP opt-in and CPP opt-out treatment groups only. The differences in kWh, while the 
bottom set of panels shows the difference as a percent of average electricity consumption by the 
control group during those events.  
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Figure 2. Comparison of event day treatment effect estimates using baseline methods. Source: Author 
calculations. 

All baseline-based methods tend to underestimate the treatment effects. We find that the 
baseline approaches tends to underestimate (in absolute value) the effect of event days on the 
electricity usage of the treatment group on average. In the case of the four-in-five day baseline 
method with the adjustment, the difference is as much as 20 percentage points in some cases, 
meaning a true effect of 25%, for example, might be estimated to be as low as 5%. The 
underestimation using the four-in-five day baseline without the additive adjustment is 
substantially worse, while the individual customer regression baseline performs slightly better on 
average. This systematic bias is not correlated strongly with temperature on event days, we 
therefore interpret the bias to be due in large part to spillover effects: through habit formation or 
technology changes customers are reducing their usage during non-event hours as a result of 
being in treatment, this means that event savings compared to this reduced baseline are 
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underestimated.  Note that these differences are averaged across all the households. This means 
that the difference is likely to be even worse for some households individually. Therefore, if the 
four-in-five day baseline method were being used to determine repayment for a peak time rebate 
program, for example, the variation present, both in terms of the direction of bias 
(underestimating savings) and magnitude of the inaccuracy (as much as completely washing out 
the average treatment effect) would mean that the utility would likely be significantly 
undercompensating households if using this method. 

Conclusion 

Using a rich set of field experiments designed to test customer response to time-based 
pricing, we compare a set of established non-experimental evaluation methods to their 
corresponding experimental estimates. By comparing across multiple treatment arms we are able 
to provide support for a set of stylized facts, each of which has important policy implications for 
ex post estimation of time-based pricing programs. 

First, we document that the DID and propensity score estimates are likely to generate bias 
due to selection. In our setting, weather variation between the pre- and post- period and the 
nature of the self-selection caused these estimates to be biased towards zero. Second, we show 
that even well-constructed RD estimates can be biased away from the treatment estimate due to 
energy use level differences between the treatment and control groups. Third, we observe that 
selection biases are more pronounced in all designs under opt-in treatments as compared to opt-
out treatments. This finding strongly suggests that policy-makers should take this into account 
when designing the enrollment mechanism for a time-based pricing program: in addition to being 
less costly and more effective at reducing total electricity usage, ex post estimation of opt-out 
designs using quasi-experimental designs are less likely to be unbiased. Finally, we find that 
non-experimental baseline-based savings estimates tend to underestimate the actual savings, 
which we interpret to be likely a result of intertemporal spillover effects. 

We caution that these results are limited to a set of treatment arms in a single 
experimental setting, and we emphasize that the direction of the biases in the quasi-experimental 
estimates is not necessarily likely to be stable in other contexts. Instead we suggest that careful 
consideration be given to underlying trends in treatment and control groups when interpreting 
quasi-experimental results, and that, when possible, opt-out enrollment mechanisms should be 
implemented. We also find evidence in favor of using within-customer estimation strategies 
instead of a four-in-five day baseline approach to estimate the effect of individual critical event 
days, but caution that practitioners should carefully consider the effect of spillovers in this 
context. 

This work was supported by the U.S. Department of Energy’s Office of Electricity 
Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. 
DE-AC02-05CH11231. 
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