
A Plug Load and Lighting Model for ZNE Residential Buildings 

Eric Rubin, Phi Nguyen, Maxmilian Hietpas, Energy Solutions  
Daniel Young, San Francisco Public Utilities Commission 

Stuart Tartaglia, Pacific Gas & Electric  
 
 

ABSTRACT 

California’s goal is for all new residential buildings to be Zero Net Energy (ZNE) by 
2020. To ensure new homes are ZNE, we must predict with an energy simulation model how 
much on-site renewable generation will be needed to offset each home’s energy consumption. 
Particularly for plug loads and lighting, which represent over half of residential electricity use, 
this can be a considerable challenge, as many of these loads are evolving quickly. Because 
modeling inaccuracies may result in improperly-sized on-site generation systems, a current and 
easily updatable model is critically important for cost-effectively achieving ZNE goals.  

This paper discusses the methodology developed by the California Statewide Utility 
Codes and Standards Program to model energy use of plug loads and lighting for newly 
constructed homes. In particular, we discuss challenges and lessons learned from developing a 
model that predicts energy use based on house characteristics (principally number of bedrooms 
and floor area). We conclude that although such a model can effectively estimate average energy 
use, it is unlikely to accurately predict the energy use of a given new home, because occupant 
behavior and consumer preferences strongly affect energy use but are poorly correlated with 
house characteristics.  

We also present the estimated energy use breakdown for a typical home and how our 
results differ from the prior algorithms, highlighting the prominence of “residual MELs” and the 
major decrease in lighting energy use. Finally, we discuss future research possibilities, including 
how additional survey and submetering data can be leveraged to improve the model. 

Introduction 

This paper discusses the algorithms developed by the California Statewide Utility Codes 
and Standards Program Team (hereafter “C&S Team”) to predict energy use of plug loads and 
lighting in newly constructed California single family and multifamily homes built in 2017 and 
beyond. These algorithms model Time Dependent Valuation (TDV) energy use,1 which is used 
to verify compliance with the California Building Energy Efficiency Standards (Title 24, Part 6) 
and the California Green Building Standards (CALGreen or Title 24, Part 11).  

Plug loads are defined in this paper as appliances or electronic devices that are generally 
plugged in to a receptacle, such as white goods and consumer electronics, while lighting includes 
all portable and hardwired interior, exterior, and garage lighting. Based on California Energy 
Commission’s (CEC) estimates of annual energy consumption (AEC), plug loads and lighting 

                                                 
1 TDV energy use accounts for energy used at the building site as well as energy consumed as part of power 
generation, transmission and distribution losses. TDV energy is assigned a valuation factor for each hour of the year 
to reflect the total societal cost of energy used at that time. For example, energy use that occurs during peak periods 
is valued more than savings that occur off-peak. 

1-1©2016 ACEEE Summer Study on Energy Efficiency in Buildings 1-1©2016 ACEEE Summer Study on Energy Efficiency in Buildings



constituted the vast majority (81 percent) of California home electricity consumption in 2008 
(KEMA 2010b). However, in recent years there have been significant changes in plug load and 
lighting energy use. Advances in efficiency, many of which have been codified into federal and 
state energy efficiency requirements, have reduced energy consumption from these end uses.  To 
some extent, efficiency gains have been offset by increasing energy services from consumer 
electronics, such as more computers per home, larger TV screen sizes, and the proliferation of 
novel electronics. These technological and social trends necessitate an up-to-date model of plug 
load and lighting energy use. However, CEC’s plug load and lighting had not been updated since 
2008 (CEC and AEC 2008), and the existing algorithms tend to overestimate energy use from 
these end uses, with the error increasing for larger homes. 

The outdated models are particularly problematic because beginning January 1, 2017, the 
2016 CALGreen Standards include a voluntary requirement that newly constructed homes 
achieve zero net energy (ZNE), and energy use from plug loads and lighting is a key determinant 
of the capacity of the on-site renewable generation system that is needed for a home to qualify as 
ZNE. Updating the algorithms in preparation for implementing the voluntary 2016 CALGreen 
Standards will also put the state in a better position to achieve the statewide goal that all newly 
constructed California homes be ZNE by 2020.  This paper focuses on the challenges and lessons 
learned when developing updated AEC estimates. The detailed project report explains the 
approach for both AEC and load profiles in more detail (Statewide Utility Codes and Standards 
Team 2016).  

I. Generalized Methodology 

An important goal for the present work was to create a model with a transparent 
methodology that could be easily updated with new data, as it becomes available. With this goal 
in mind, the C&S Team increased the number of independently modeled end uses, developed a 
methodology that relies on a foundation of modular components, and refrained from adding 
complexity to the approach unless it would substantially increase modeling accuracy. 

The generalized methodology template used by the C&S Team for estimating AEC as a 
function of home size follows four major steps for each end use modeled: 

1. Determine product inventory and usage patterns: Data on the number, type, and usage 
of products inputs was generally derived from the 2009 California Residential Appliance 
Saturation Study (RASS)—a detailed survey of 25,000 California households that asked 
respondents about the characteristics of their house, the occupants, and their devices 
(KEMA 2010a). 

2. Estimate likely product efficiency in 2017: Product efficiency was based on estimates 
of average product age when the building is new, using applicable energy efficiency 
standards, ENERGY STAR® specifications, or ENERGY STAR Qualified Products 
Lists (QPLs). 

3. Calculate the “2017 AEC” for every household in RASS: The C&S Team calculated 
the AEC for each household in RASS, assuming the products met the efficiency levels 
estimated for new California homes built in 2017, following Steps 1 and 2.  

4. Develop algorithms that predict AEC from number of bedrooms (NBr): To create an 
equation that predicts AEC based on NBr, the C&S team performed a linear regression 
analysis, relating number of bedrooms (NBr) to calculated 2017 AECs for every 
household surveyed in RASS. 
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The process diagram shown in Figure 1 presents these four steps in detail.  

 
Figure 1. Process diagram of our high-level methodology for producing algorithms that predict per-household 

annual energy consumption (AEC) for a given product category based on number of bedrooms (NBr).  

The C&S Team was able to generally follow this approach for the white goods 
(ovens/ranges, refrigerators/freezers, clothes washers/dryers, and dishwashers) and the three 
most energy consumptive “major” consumer electronics (defined here as televisions, set-top 
boxes, and computers and monitors). For lighting, in place of RASS, the C&S team relied on 
California Public Utility Commission’s (CPUC) 2012 California Lighting and Appliances 
Saturation Survey (CLASS), which includes a detailed on-site lighting audit for every surveyed 
household (DNV GL 2012). Neither RASS nor CLASS were sufficient to estimate AEC of 
residual miscellaneous electric loads (MELs) because neither could exhaustively catalogue all of 
the MELs in a home. As such, residual MELs necessitated a unique approach, which is described 
below. 

II. Challenges and Lessons Learned 

Estimating AEC of Residual MELs 

 Residual MELs consist of a large variety of products, such as microwaves, DVD players, 
aquarium pumps, tablets, and all other end uses that were not modeled independently. The 
extreme diversity of product classes presents a challenge to developing an exhaustive model of 
residual MELs: some end uses may be increasing in efficiency as technologies evolve, while 
others may be adding new features and growing in power demand. Meanwhile, new end uses 
also enter the market, while others become obsolete.  

The C&S Team took a bottom-up approach to modeling residual MELs, calculating AEC 
as the sum of the AEC of 114 constituent end-uses. The C&S team derived the largest portion of 
the total AEC estimate from a 2014 meta-analysis of residential energy use of residual MELs and 
consumer electronics (Kisch, Zakarian, and Dewart 2014). This study, led by Southern California 
Edison (SCE), synthesized the extant estimates of the AEC of the miscellaneous product 
categories with the highest statewide energy use. The C&S Team added to the SCE meta-
analysis estimate the AEC of battery chargers and external power supplies for those MELs that 
were not included in the SCE report (DOE 2012) as well as AEC estimates from the 2014 
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Building America House Simulation Protocols (Wilson et al. 2014). The change in residual 
MELs AEC between 2013 and 2017 was modeled using a 4.3 percent growth rate, as determined 
by the 2013 CEC demand forecast (CEC 2014). Since no reliable method currently exists for 
scaling the residual MELs AEC with home size, the C&S team assumed that for a given home, 
residual MELs AEC scaled with consumer electronics by keeping the ratio of residual MELs 
AEC to consumer electronics AEC constant for all home sizes. The resulting equation for AEC 
vs. number of bedrooms appears reasonable in magnitude and form when benchmarked against 
other major models (Parker, Fairey, and Hendron 2010; Wilson et al. 2014). 

Accounting for Technology Trends and Changing Product Use Patterns 

Forecasting Product Inventory and Usage. Where possible, the C&S team tried to draw the 
inventory and usage of devices from RASS, because this is what allows the C&S Team to 
empirically infer the relationship between AEC and NBr.2 Because the efficiency assumptions 
are fixed for individual devices/end uses, the fundamental reason that estimated AEC increases 
with NBr is that the average number, type, size, and/or usage of products tends to increase with 
NBr in the RASS data.  

Unfortunately, RASS data may not always be reliable because it is self-reported and 
sometimes outdated. Television usage is a prime example of both of these challenges. Therefore, 
the C&S team instead drew the television usage assumptions from a 2012, California-specific 
Nielsen study, which measured daily hours of use of every television in the home (Nielsen 
2012). It could be argued that because television usage patterns will have changed so much from 
2012 to 2017—largely due to the rise of online streaming services (e.g. Netflix) that are shifting 
viewing to computers and tablets—the C&S Team should have developed an adjustment factor 
to account for these trends. In general, the C&S team chose not to create such adjustment factors, 
both because the requisite data is often unavailable and also because this would greatly 
complicate updates to the model.  

                                                 
2 In the final methodology, the C&S Team did not rely on RASS self-reported usage data for dishwashers and 
clothes washers/dryers. Instead, the C&S Team scaled AEC to NBr based on how annual dishwasher/clothes washer 
cycles vary with NBr in the domestic water heating (WH) ruleset used in the Title 24 compliance software. 
Correlations from the original (RASS) approach are shown in this paper, because the final approach does not lend 
itself to statistical analysis. The results presented in this paper reflect the final, WH ruleset usage assumptions. 
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Forecasting Efficiency. For the present modeling effort, the ideal data source for estimating 
AEC would be a recent submetering study that analyzed a large sample of new California homes 
for at least a year. Lacking this perfect data, the C&S team chose a simplified engineering 
approach to forecasting efficiency for two main reasons. First, using older or less applicable 
submetering studies would have required either justifying their applicability to new California 
homes or adjusting the data to account for differences in time, geography, and building vintage. 
Second, one of the C&S Team’s goals was to create a model that could be easily updated to 
better track with ever changing trends. To that end, the C&S team estimated efficiency using 
data sources that are expected to be updated regularly and employed a modeling structure that is 
designed to easily take advantage of new data as it becomes available. 

For all products covered by federal efficiency standards, the C&S team generally 
assumed products are minimally compliant with the standard3 and in some cases provided the 
option to override the default AEC assumptions with additional information about product 
efficiency, if known. One problem with estimating AEC based on efficiency standards is that the 
way product efficiency is measured in a laboratory (to assess compliance with the standard) can 
be quite different from how people use those devices in the real world.4 

The C&S Team forecasted the efficiency of the major consumer electronics based on 
ENERGY STAR® voluntary specifications, relying on the specification that the C&S team 
expected most products would meet in 2017, given trends in the ENERGY STAR market share 
and average device age. One benefit of this approach is that as ENERGY STAR specifications 
are updated, efficiency assumptions in the model can usually be easily refreshed.  

For lighting, the C&S team estimated a weighted-average lighting efficiency by 
forecasting the relative abundance of different lighting technology types (e.g. LED, CFL, 
incandescent) and then using that to weight the forecasted efficiency of each lighting technology 
type in 2017. A chief consideration for estimating the share of various lighting types was that 
Title 24, Part 6, will require high-efficiency hard-wired lighting in new homes beginning in 
2017. As new data about the abundance and efficiency of different lighting types becomes 
available, the C&S team can update these assumptions. 

Predicting AEC from Observable House Characteristics 

 It is incredibly challenging to develop equations that accurately predict the AEC for 
newly built homes based only on observable house characteristics, without knowing the number, 
type, or usage of the devices in the home.5 

Figure 2 diagrams the factors that mediate the relationship between house characteristics 
and AEC. Arrows indicate the proposed direction of dominant causation. House characteristics 
                                                 
3 More precisely, federally covered products are assumed to be minimally compliant with the standard that was in 
place when the device was manufactured, based on assumptions about the typical age of devices in new homes. For 
example, the C&S Team assumed dishwashers are new in a new home and thus modeled them as compliant with the 
2015 federal standard by default. 
4 For example, the cloth used in the DOE Test Procedure for laundry equipment tends to be smaller and thinner than 
real clothes. Real clothing retains more moisture, which makes the washer load heavier to spin and increases the 
requisite dryer energy (Calwell 2014). 
5 The C&S Team was able to use certain information about builder-supplied appliances as model inputs. For 
example, homes are only assigned AEC for ovens/ranges, dishwashers, and clothes washers/dryers if those devices 
are present. Furthermore, whether the ovens/ranges and clothes dryers use gas or electricity is dependent on what the 
builder reports will be installed. Builders can also receive limited credit for installing more efficient appliances. 
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(number of bedrooms, floor area, house type) can directly influence product characteristics 
(number, type, usage, and efficiency of devices), primarily because larger homes have more 
space for more/larger devices. Occupant characteristics (number of residents, their income, and 
other demographic factors), can also influence product characteristics. For example, households 
with more income tend to purchase more consumer electronics and households with more elderly 
residents tend to watch more television. There is also an indirect linkage between house 
characteristics and product characteristics, mediated by occupant characteristics. For example, 
households with more people and tend to live in larger homes and also tend to do more laundry, 
which contributes to and indirect correlation between home size and number of annual laundry 
loads. Finally, product characteristics are ultimately what determine the actual AEC of those 
products. If the C&S Team is to accurately estimate AEC based on NBr, there must be strong 
correlations between at least some of the top three layers in Figure 2.  
 

 
Figure 2. Layers of causation separating the possible predictor variables for a newly built home—house 

characteristics—from what the C&S team is ultimately trying to predict—actual AEC. Arrows represent what the 
C&S team theorize to be the primary direction of causation. 

When analyzing the correlations between the top three layers of Figure 2, a consistent 
pattern emerges: there are clear, intuitive trends in the averages but no strong correlations. In 
statistical terms, p-values are consistently low (because there is a real trend, on average) but R2 
values are also low (because the correlations are weak).6 Figures 3 and 4 demonstrate these 
patterns by quantifying the average trends and pairwise correlations between the house and 
occupant characteristics, based on RASS data. Figure 3 shows that as one would expect, average 
conditioned floor area (CFA), number of residents (NRes), and total household income (Income) 
all increase with NBr.7  

                                                 
6 R2 is a measure of correlation strength that varies from 0 to 1, where 1 indicates a perfect correlation. 
7 This pattern reverses with 8-bedroom homes, but RASS only has data on seven of these exceptionally large houses, 
so the 8-bedroom average is not reliable. 
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Figure 3. Average between the house and occupant characteristics. “0-bedroom” homes are almost all studio 

apartments. Data bars show the relative magnitude of rows within each column Source: RASS 2009 raw data.  

Despite the clear average trends, there are weak pairwise correlations between house and 
occupant characteristics—quantified by the low R2 values in Figure 4. These low R2 values 
demonstrate that NRes and Income cannot be accurately predicted for a given household based 
on NBr or CFA. For example, NBr explains only 11% of the variation in NRes and only 16% of 
the variation in Income. CFA is a comparably poor predictor of occupant characteristics, 
although somewhat better for predicting Income (R2 = 0.22) and worse for predicting NRes (R2 = 
0.03). The strongest pairwise correlation is between NBr and CFA. 

 
Figure 4. Correlations between the house and occupant characteristics. Data bars show the magnitude of the pairwise 

correlations (R2 values) compared to the maximum possible value of 1. Source: RASS 2009 raw data.  

Although the correlations are likely diluted because data is self-reported within the 
constraints of the RASS multiple choice questionnaire, these results are an important reality 
check: while it is reasonable to assume, for example, that larger homes will tend to have larger 
televisions because they have more household income on average, those average trends do not 
imply that NBr or CFA can be reliable predictors of television AEC for a given home. 

This conclusion is supported by the results of the regression analysis the C&S team 
conducted to create an equation that predicts AEC based on NBr (step four of the generalized 
methodology). For example, Figure 5 shows the regression analysis results for computers and 
monitors based on the AEC values the C&S team calculated for every home in RASS, assuming 
products meet 2017 efficiency levels. Although the algorithm captures the trend in how computer 
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and monitor AEC varies with NBr on average, the R2 is only 0.14. This low R2 is visually 
apparent as the large vertical spread of the per-home AEC estimates, which range from 0 to 891 
kWh/yr across all home sizes in RASS. As NBr increases, the distribution of per-home AEC 
estimates shifts upward, but the vertical spread remains quite wide. 

 
Figure 5. Regression analysis results for computers and monitors based on calculated 2017 AEC for every home in 
RASS. The blue dots represent the average calculated AEC for each NBr. The green line is the algorithm that 
predicts computer and monitor AEC based on NBr. The C&S team fit the green line by regressing the calculated 
AEC for each RASS household against the corresponding NBr. This underlying data is shown as gray, translucent 
bubbles. To show which values are most common, bubble size proportional to the number of households with a 
given combination of NBr and AEC. “0-bedroom” homes are studio apartments. 

The computer and monitor results are exemplary of what the C&S team found when 
assessing the predictive capabilities of the models: the algorithms are effective at predicting the 
average AEC for a given NBr but do not perform well for individual homes. Figure 6 
summarizes the correlations between NBr and calculated per-home AEC, as well as correlations 
with other house and occupant characteristics. The R2 of the algorithms when applied to the 
RASS data—shown as purple bars—is always less than 0.20, ranging from 0.19 for the primary 
refrigerator down to 0.01 for our ovens. CFA has similar predictive power to NBr for every 
product category.8 Because NBr and CFA had similarly low R2, the C&S Team standardized to 
use NBr as the predictor variable for all plug load end uses and CFA for all lighting, instead of 
trying to optimize the choice of NBr or CFA for each one.9 

To approximate the upper limits of how accurately one could predict AEC with 
knowledge of occupant characteristics and use of a more sophisticated statistical approach, the 
C&S team tested a “kitchen sink” multivariate regression analysis, modeling the AEC values 
calculated for every home in RASS based on: NBr, CFA, Income, NRes, education, and whether 

                                                 
8 This is likely because: CFA and NBr are correlated with each other; they are comparably correlated with NRes and 
income; and they have the same mechanism of direct effect on AEC (i.e. more physical space more devices per 
household). 
9 The choice of NBr for plug loads and CFA for lighting was largely motivated by: a desire to harmonize with the 
RESNET 2013 plug load and lighting algorithms; the constraints of the RASS and CLASS data; and a preference for 
predictor variables that scale linearly with AEC. 
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the dwelling is single-family or multi-family. The C&S team found that this complex approach 
yielded only marginal benefits, as the R2 was generally not that much higher in absolute terms. In 
other words, these results indicate that the factors that affect calculated AEC (number, type, 
usage of products) are not primarily a function of house characteristics or demographics. The 
C&S team posits that individual preferences, such as people’s preference for home-cooked 
meals, graphics-intensive video-games, or attitudes towards energy conservation could have a 
significant impact on AEC as well. 

 
Figure 6. Accuracy (R2) of algorithms that predict the AEC calculated for each home in RASS based on NBr, CFA, 
Income, NRes, or a combination of variables. Lighting and residual MELs are not included because the C&S Team 

was not able to use the RASS raw data for those end uses as discussed previously. Source: Regression analysis using 
RASS raw data combined with engineering calculations to estimate 2017 AEC. 

The C&S Team explored some additional methods of improving the R2 of the algorithms, 
such as using ZIP code or climate zone in the multivariate analysis and nonlinear curve-fitting. 
None of these approaches improved the R2 dramatically, but all introduced a series of technical 
challenges and added complexity. Ultimately, the C&S team concluded that a simple, 
standardized approach to curve-fitting best serves the goal of creating a “living model.” 
Moreover, given the layers of poor correlations between observable home characteristics and the 
dominant influence of individual preferences, it follows that future improvements should focus 
primarily on ensuring the equations are not biased high or low, as opposed to optimizing the 
accuracy of the model for individual homes. Put simply, these algorithms cannot ensure that 
every new home is truly be ZNE, because it is not possible to account for individualized and 
dynamic occupant behaviors and preferences; rather, the focus should be to ensure that on 
average, all homes evaluated together are ZNE. 
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III. Results 

All else equal, the largest end uses have the greatest potential to cause over- or 
underestimates of a home’s total energy use (and the capacity of the on-site renewable generation 
system needed to achieve ZNE status). Figure 7 shows the modeled electric AEC for all plug 
loads and lighting estimated by three different energy models—including the updated and 
existing California algorithms—applied to an average (3-bedroom) single-family home with all 
electric appliances. According to the proposed model, by far the largest end use is residual 
MELs, followed by an electric clothes dryer (if present), primary refrigerator, and interior 
lighting. The most substantial change to the magnitude of the end uses is that the interior lighting 
AEC in the updated algorithm is roughly half the estimate of the previous California model. The 
dramatic decline in lighting energy is attributable to lighting efficiency requirements in 2016 
Title 24, Part 6 that will effectively require the majority of hard-wired lighting to be LED. 
Equally noteworthy is the increased granularity of the updated modeling, which will better 
facilitate the use of new data to make future improvements. 

Figure 7. Comparison of estimated electric AEC for all plug loads and lighting under three energy models, including 
a breakdown of the updated models. Estimates are for a 3-bedroom single-family residence with all electric 

appliances; however the C&S Team also developed equations for gas appliances, if those are present. Multi-family 
dwelling units have generally very similar equations. Sources: Residential Energy Services Network standards 
(RESNET 2013); algorithms used for California’s 2013 Title 24, which are based on the equations in the 2008 

California HERS Technical Manual (CEC and AEC 2008); present modeling. 

IV. Future Research Goals and Possibilities  

Better Characterize Residual MELs. Better characterizing the composition and average AEC 
of residual MELs is perhaps the most consequential improvement that could be made to the 
updated algorithms. Residual MELs are the product category with by far the largest AEC and are 
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also the most challenging to model. In future updates to the model, it will be important to 
consider how building audit and sub-metering data can be leveraged. In particular, the C&S 
Team should evaluate whether to keep using a purely bottom-up approach—modeling residual 
MELs as the sum of constituent end uses—or if this could be combined with a true “residual” 
approach—estimating residual MELs AEC as the leftover electric AEC after subtracting major 
loads.  

There are many benefits to the bottom-up approach employed by the C&S Team that are 
important to retain. For example, modeling all of the constituent MELs makes it easier to create 
functional categories of MELs, each with its own assumed growth rate, scaling with home size, 
and time-of-use patterns. A key drawback of the bottom-up approach is that it potentially 
requires current data on every conceivable MEL product category.  

Taking a “residual” approach instead would be extremely useful for ensuring that the whole-
home electric AEC is accurate, which is ultimately the goal of the present work from a ZNE 
perspective. If a sufficiently large and diverse sample of new ZNE homes were submetered, 
measuring all loads except for the residual MELs, the residual MELs AEC could be estimated 
with much greater confidence than is afforded by the C&S Team’s bottom-up approach. This 
total could then be disaggregated into functional categories using a bottom-up engineering 
approach for the sake of analyses such as forecasting growth rates, targeted program design, 
identification of efficiency standards opportunities. 

Separate Single-family and Multi-family Units. Single-family and multifamily dwelling units 
are very different, and could therefore have different energy usage characteristics. Within the 
multifamily subset, low income housing units may exhibit different energy usage characteristics 
as well. The existing and updated rulesets generally do not distinguish between single family and 
multi-family; however, using the proposed methodology and existing data sources, it is possible 
to analyze the differences in product characteristics between single-family and multi-family 
homes. It is recommended that the analysis be expanded to include separate single-family and 
multi-family rulesets, and possibly low-income housing rulesets, for estimating AEC. 

Model Idle Loads Explicitly. To some extent, the resulting models already build AEC from 
standby and active mode AEC. Given the high fraction of residential electricity consumption 
caused by wasteful standby loads, it may be helpful to explicitly distinguish between standby and 
active mode AEC in future modeling results in order to support targeted efficiency measures that 
address this issue. 

Use Data from “Smart devices” that Self-Report Energy Use. Networked devices, which 
record and wirelessly report their own energy use, are becoming increasingly common. Although 
privacy concerns are a likely barrier to using even anonymized UEC data from energy reporting, 
the public may have fewer concerns about releasing anonymized data on the number of devices 
per household. Because “smart” devices in homes generally report to a single piece of network 
equipment, that central node could store data on how many devices of each type there are per 
household. Potentially, this could be a source of real-time data on the evolving saturation 
patterns of major consumer electronics and certain residual MELs. 
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V. Conclusions 

The updated algorithms are able to predict the average annual energy consumption 
(AEC) for homes of a certain size (using number of bedrooms or floor area as a scaling factor for 
homes size); however, the C&S Team’s statistical analysis of the RASS data and the reasoning 
presented in this paper indicate that a home energy use model based on house characteristics 
cannot accurately predict AEC for specific homes. There is simply too much variation in product 
characteristics (number of devices per household, size, type, and usage) that is not well 
correlated with house characteristics (number of bedrooms, floor area, house type) or even 
occupant characteristics (number of residents, income, household demographics). The C&S 
Team posits that the wide variation in product characteristics (and energy use) within physically 
similar houses is best understood as being a product of individual preferences and behaviors. 
Therefore, the greatest opportunity to improve the models is not to more accurately predict 
specific homes, but to make sure the estimated average AEC values are not biased low or high 
for homes of a given size (and house type). 

In particular, it will be important to refine the estimate of residual MELs AEC, as this is 
the highest estimated electric AEC, appears to be increasing over time, and is the most uncertain. 
According to the C&S Team’s model, an electric clothes dryer (if present), primary refrigerator, 
and interior lighting are also among the top electric end uses, although interior lighting AEC will 
be much lower in new California homes because of building efficiency standards that require 
high-efficiency hard-wired lighting. 

One of the greatest strengths of the methodology presented here is that it can be updated 
relatively easily. The modeling approach is streamlined and the underlying assumptions are 
transparent and well documented. Individual assumptions can be replaced with more recent data, 
including: more recent survey data, such as the upcoming 2018 RASS; building audit data on the 
number and type of devices in modern, California homes; or submetering data on power draw by 
mode, hours of operation in each mode, or total AEC. Moreover, the residual MELs AEC 
estimate total could be based on submetering data, by subtracting major loads from a whole-
home (or whole-circuit) AEC measurements. A “living model” is critically important at this time 
when plug loads and lighting are quickly changing and detailed data on home energy use is 
increasingly abundant.  
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