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ABSTRACT 

While smart meter and AMI infrastructure is installed in the majority of homes in the 
United States, in many states, the penetration remains at less than 15%. In these locations 
however, there is still a need to better inform residential customers of their energy use beyond 
the aggregated monthly energy use data that a traditional energy bill provides. Providing more 
informed insights to customers about their energy use, peer comparisons, and associated 
recommendations to reduce energy use has been shown to correlate with energy saving. This 
work investigates the use of monthly energy use data, combined with a localized weather 
network of highly granular weather data to disaggregate monthly energy data into end uses, 
including HVAC, baseload, and variable loads, and to predict future months’ disaggregated 
energy use. This is accomplished through a methodology that uses 5-degree (F) binned, degree-
time values to determine the percentage of the total energy use attributed to each end-use. This 
methodology then uses a simplified thermodynamic model of the building that determines the 
type of HVAC system in use, and predicts future energy use based on the future month’s weather 
forecast. This methodology was verified using multiple datasets of over 400 homes in multiple 
climate zones. The results are used in a monthly scorecard provided to residential customers, 
which also includes targeted energy savings recommendations driven off peer comparisons. 

Introduction 

In the United States, buildings account for approximately 40% of energy use, over half of 
which is consumed by the residential building sector (US EIA 2015). Residential buildings are 
also responsible for over 37% of electricity consumed, and have also been found to contribute to 
over half of the peak electricity demands on the electric grid, particularly in warm climates 
(Wattles 2012). Residential energy use can be attributed to a number of different types of end use 
categories, including the heating ventilation and air conditioning system (HVAC), baseloads that 
are consistently in use over time, and variable loads that are more inconsistently used or vary in 
use based on the occupants’ behaviors such as plug loads, and appliances that are intermittently 
used. Depending on the climate zone, often the largest portion of residential energy use is 
utilized by the HVAC system (Figure 1). The percentage of energy used by the HVAC depends 
on the climate conditions in which the residential building is located, ranging, on average, from 
less than 40% to over 50% annually.  Baseloads  that are utilized consistently month-to-month 
can include refrigerators and water heaters, and other consistently plugged in appliances and 
electronics.  Of these, refrigerators and water heaters account for 5-7% and 16-23% respectively, 
of residential energy use (Figure 1). Finally, other/miscellaneous loads such as plug loads, 
lighting, etc, account for 25-38% of the total energy use (Figure 1). These loads may behave as 
baseloads or variable loads, depending on the occupants and home studied. 
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Figure 1: Annual site energy consumption (%) of residential buildings by climate zone and end use (US EIA 2009) 

 In recent years, an increasing focus on energy efficiency in residential buildings has been 
spurred by a number of factors, including concerns regarding climate change and greenhouse gas 
emissions (IPCC 2015), increasing demands for electricity and energy (US EIA 2015), and the 
need for improved electric grid reliability. To achieve energy efficiency targets for residential 
buildings, a number of different strategies have been utilized.  Currently, approximately half of 
all residential buildings have Advanced Metering Infrastructure (AMI)/smart meters (IEI 2014).  
The implementation of smart meters enables utilization of data-driven methodologies to develop 
energy use insights determined from the more granular smart meter-provided 15-minute to 
hourly whole home energy use information. In many states smart meters have been deployed in 
the majority of residential buildings, however, in other states including many of the Midwestern 
states, the amount of residential buildings with smart meters is limited, and remains below 15% 
penetration (IEI 2014). However, even for residential buildings without smart meters, 
encouraging energy efficiency remains an important goal.  

For those homes without smart meters, the method of manual energy use meter reading on 
a monthly basis has been a standard practice throughout the United States for many years. This 
manual reading provides the monthly electricity (kWh/month) and/or gas (ccf/month or 
therms/month) use values given on utility billing statements. Similar to insights developed from 
smart meter data, residential customers with monthly data can also benefit from additional insights 
on how energy is used in their home, and to motivate them to reduce energy use.  

Previous studies have found that providing energy use information and feedback to the 
consumer can achieve up to 10-20% reduction in energy use, as summarized in Faruqui et al. 
(2009) and Ehrhardt-Martinez et al. (2010). “Indirect” feedback programs, which provide energy 
consumption information to the consumer after the energy is consumed, such as in a monthly, 
weekly or daily statement showing whole-home energy use and feedback on what can be done to 
reduce energy loads, have achieved energy savings of up to 8.4%, as summarized in Armel et al. 
(2013). The greatest energy savings has been shown to occur if submetered data is available to 
consumers (Neenan and Robinson 2009).  Unlike whole-home data, disaggregated data allows for 
isolation of individual appliances and high energy users. The most important reason cited for this 
increase in energy reduction is due to the enhanced ability to provide personalized 
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recommendations for energy reduction strategies (Armel et al 2013). Peer comparison of energy 
use between similar homes has also showed significant savings (e.g. Ayres et al.  2009). 
 

Recently, data-driven building energy use data analysis has focused on grey-box and 
black-box modeling techniques in which an inverse model of each individual building is created 
(Dong et al 2015, Cross et al 2014, Kim et al 2015, Hallinan et al 2011). However, this family of 
models, sometimes classified as change point models, typically only consider whole-home 
energy use prediction and do not consider the development of insights of disaggregated energy 
use by end use, or future prediction of energy use of residential buildings. Thus, in this research, 
we present a new methodology that employs monthly residential electricity billing data and 
highly granular historic and forecasted weather data from a localized weather network of weather 
stations to disaggregate monthly electricity data into three end use categories, and to predict the 
future billing month’s whole home energy use. Utilizing these insights, the information is 
presented in a digital scorecard report format that is sent to residential customers. This scorecard 
also includes energy savings tips and provides a peer comparison of a particular residential 
building to its neighbors.  

 

Methodology & Results 

The proposed methodology utilizes weather data and electricity use billing data as inputs, 
and ultimately outputs a scorecard report that is provided to residential customers. In between, a 
simplified grey-box inverse model is implemented which uses the weather data and electricity 
billing data to disaggregate the monthly energy use into end uses, and to predict electricity use 
for the future billing month.  Figure 2 summarizes the inputs and outputs of the proposed model 
and a summary of the steps of the methodology’s framework. Each of these steps in the 
framework are discussed in further detail in this section, including the (1) inputs, (2) model, (3) 
outputs, and (4) final product. 

 

 
Figure 2: Flowchart diagram of disaggregation and future monthly energy use prediction methodology 
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(1) Inputs 

The required data input for this methodology includes (a) weather data (outdoor 
temperature), (b) forecasted hourly future weather data for the month following the current 
billing cycle (outdoor temperature), (c) the approximate location of the residential building of 
which a model is being developed, and (d) historical electricity use billing data for the residential 
building being considered.   

The weather data used in this research is provided by matching the house location to the 
closest Earth Networks WeatherBug weather station (Earth Networks 2014). The average 
distance between each house and weather station is 5.9 km, with the house and the weather 
station often found within the same zipcode. These weather data are gathered and stored in either 
5-minute or hourly intervals. The weather network measurements of temperature are made using 
crystal oscillator thermometers. 

The utility electricity billing data input is the meter reading of the monthly energy use 
provided by the electric utility company. This value is in kWh of electricity use per month. As 
residential customers sign up for electricity billing at different times, the billing cycle of each 
individual residential buildings varies in terms of start and end date of each month.  

 

(2) Thermodynamics-Based Model  

Utilizing these inputs, a simplified thermodynamics-based model is used as a basis for 
modeling of residential energy use due to heating and cooling (HVAC). The other two end use 
loads (baseloads and variable loads) are also determined, and are discussed in Step 3a below. 
The model utilized in this research is a modified version of the Bin Method (Kuhen et al 2001), 
which has several advantages over the more commonly used degree-day methodology, including 
the ability to account for a range or multiple values of indoor temperature setpoints. Steady-state 
conditions are assumed in which the most influential factor in the determination of the energy 
use of the residential building is driven by conduction. Assumptions of this method include that 
internal gains and other heat gains, do not significantly affect energy use in comparison to those 
due to conduction. Given the long timescale, thermal mass is also assumed to be negligible. 
These assumptions are generally better for  residential buildings, in which the energy use is more 
governed by the outdoor temperature alone, as compared to commercial buildings which are 
more strongly influences by HVAC type and control strategy (ASHRAE 2013). Residential 
buildings are also generally light-frame construction, making their thermal mass less significant 
than that of commercial buildings. .  

Equations 1a-c describe the thermodynamics-based relationship utilized for this model. 
The amount of heating/cooling energy use required, ܧ௠,ு௏஺஼, over a month, m (Eq. 1a), is 
determined by integrating the net heat transferred over the month time period, where the double 
vertical lines indicate that only the positive values are included in the integral. The integral term 
is called the degree-time value,  ܦ ௠ܶ, for month m, as shown in Eq. 1b, and is approximated 
using Eq. 1c.  In these equations, E is the energy use per month m due to heating and/or cooling, ሺܷܣ)௘௙௙ is the effective heat transfer value for the building, ݐ௭ is the zero-load indoor 
temperature at which the heat gains in the building are assumed to equal to the heat losses, and ݐ௢ 
is the outdoor temperature values over the period of time studied (1 month). ݐ௕௜௡ is the average 
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temperature for each bin of temperatures, ௕ܰ௜௡ is total the number of bins of temperature, and ௜ܰ௡௧ 
is total the count of the temperature values from the weather data input over the month, m, being 
evaluated.  

 
For the approximation of the integral value in Eq. 1a, the degree-time value indicated by 

Eq. 1c is used, where outdoor temperatures occurring over the time interval of interest are 
divided into bins of 5-degree F increments of temperature, ranging from the lowest to highest 
temperature data value available in each of the months considered.  For example the number of 
time intervals in which the outdoor temperature falls between 49.9ᵒF and 54.9ᵒF would be 
included in the 50/55ᵒF bin, with a mean value of ݐ௕௜௡= 52.5ᵒF. This equation includes the heating 
degree-time value:  − ቈൣ∑ ฮݐ௭,௛௘௔௧௜௡௚ − ௕௜௡ฮ#௕௜௡௦ݐ ௕ܰ௜௡൧ ଵ ே೔೙೟቉௛௘௔௧௜௡௚and the cooling degree-time value: 

ቈൣ∑ ฮݐ௕௜௡ − ௭,௖௢௢௟௜௡௚ฮ#௕௜௡௦ݐ ௕ܰ௜௡൧ ଵே೔೙೟቉௖௢௢௟௜௡௚, which are summed together to achieve a total degree-time value. If 

the total degree-time value is less than zero, this indicates that the month is a majority heating 
month, and if it is greater than zero, this indicates the month is a majority cooling month. The 
closer to zero the degree-time value, the less heating and/or cooling should occur during that 
time period.    

 

 
 

Eq. 1a

 
 

Eq. 1b

 

 

Eq. 1c

 
The zero-load temperatures for heating, ݐ௭,௛௘௔௧௜௡௚,  and cooling, ݐ௭,௖௢௢௟௜௡௚, in Eq. 1c are assumed 

to be equal to 23.8ᵒC (75ᵒF) for cooling, and 12.8ᵒC (55ᵒF) for heating based on analysis of the 
ELCAP dataset, as discussed in Pratt et al (1993), of residential building energy end uses which 
breaks down heating and cooling energy into separate end-use loads. As shown in Figure 3a, the 
cooling and heating degree-time values simultaneously occur within the monthly average 
temperatures of approximately 23.8ᵒC (75ᵒF) to 12.8ᵒC (55ᵒF). The buildings from which data was 
utilized to test this model did not have connected thermostats in which the value of the setpoints 
could be verified, however this is a subject of ongoing research that would enable the use of a 
range of setpoint values to be entered into this model.  

To implement this model, the information needed to determine the binned temperature 
values ܦ ௠ܶ is calculated, and monthly energy use values, ܧ௠, are provided as inputs. Thus the 
next step is to determine the relationship between these two values to determine the model 
relationship that represents HVAC energy use, and how this contributes to the total energy use 
relative to the variable loads and baseloads (disaggregation).  

 

௠,ு௏஺஼ܧ = ሺܷܣ)௘௙௙ න‖ݐ௭ − ‖௢ݐ ݀߬ 

ܦ ௠ܶ = − ቎൥ ෍ ฮݐ௭,௛௘௔௧௜௡௚ − ௕௜௡ฮ#௕௜௡௦ݐ ௕ܰ௜௡൩ 1ܰ௜௡௧቏௛௘௔௧௜௡௚ + ቎൥ ෍ ฮݐ௕௜௡ − ௭,௖௢௢௟௜௡௚ฮ#௕௜௡௦ݐ ௕ܰ௜௡൩ 1ܰ௜௡௧቏௖௢௢௟௜௡௚ 

 

௠,ு௏஺஼ܧ = ሺܷܣ)௘௙௙ ܦ ௠ܶ 
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Figure 3: The (a) heating (orange) and cooling (blue) degree-time values and (b) the total degree-time values (black) 
compared to the average monthly temperatures using the ECLAP dataset, referred to in Pratt et al (1993).  

 (3a) Disaggregation of HVAC, Variable and Baseload Loads 

To disaggregate the monthly energy use into HVAC loads, variable loads and baseloads, 
the procedure outlined in Figure 4 is followed. This methodology was developed based on the 
results of analysis of several large datasets of residential energy use data as described below. The 
steps are summarized as follows:  

 
• Inputs: The degree-time value calculated from the previous step and the previous months’ 

electricity billing data.   
• Step i: Determine the month with the degree-time value closest to zero: ሾ݉݅݊ ሼ|ܦ ௠ܶ|ሽሿ.  

Of all of the months considered, the month with the degree-time value closets to zero 
should have the lowest percentage of total energy use attributed to the HVAC system.  

• Step ii: Determine the HVAC, and variable and base loads for this low degree-time 

month ቀܧ௠, ு௏஺஼ቁ௠௜௡ሼ|஽ ೘்|ሽ and ൫ܧ௠,௏௔௥ା஻௔௦௘൯௠௜௡ሼ|஽ ೘்|ሽ, respectively, based on the 

percentage of energy use in the lowest energy use month from the HVAC, ுܲ௏஺஼, a value 
determined based on the residential energy use dataset analysis conducted.  

• Step iii: Determine the HVAC, variable and base loads for each of the months of billing 

data available, ቀܧ௠, ு௏஺஼ቁ and ൫ܧ௠,௏௔௥ା஻௔௦௘൯ respectively. This final step assumes the 

baseload varies over time based on the coefficient of variation of the variable and 
baseloads, ܱܥ ௏ܸ௔௥ା஻௔௦௘, determined from the analysis of several large datasets of 
residential energy use data. R is a uniformly distributed random variable from 0 to 1.  

• Outputs: Monthly energy use from the HVAC, variable and baseloads for each month. 
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Figure 4: Methodology for disaggregation of energy use into HVAC, variable and baseloads.  

For this methodology, the values of ுܲ௏஺஼, and ܱܥ ௏ܸ௔௥ା஻௔௦௘ are determined based on 
analysis conducted on a total of 645 homes of disaggregated energy use data, including 161 
single family residential buildings in Texas, and 484 residential buildings in the Pacific 
Northwest. Details on the collection of the data in these datasets and their accuracy are discussed 
in Cetin and Novoselac (2015) and Pratt et al (1993), respectively. For each dataset analyzed, the 
whole-home energy use and HVAC energy use (including both the indoor air handling unit and 
the outdoor compressor/condenser) were recorded and binned into monthly periods by the 
calendar month. HVAC energy use was subtracted from whole-home energy use to determine the 
total non-HVAC loads.The non-HVAC energy use values, which include both variable loads and 
baseloads, were found to be fairly constant in total throughout a year-long period for both 
datasets. Figure 5 shows the normalized monthly energy use over a year-long period for both 
datasets analyzed, created using the methodology discussed in Cetin et al (2014).  The average 
normalized monthly energy use is shown in red, and the normalized monthly energy use for each 
house in the dataset (Figure 5a) and each climate zone (Figure 5b) are indicated using solid lines. 
In both cases this average normalized monthly energy use value ranges from slightly less to 
slightly more than 1 (0.85-1.15).   

 

 
Figure 5: Normalized monthly energy use of non-HVAC loads in single family residential buildings in (a) Texas 
(n=161) where each line represents a home in the dataset, and the red line represents the average, and (b) the Pacific 
Northwest (n=484), where each line represents the average of the homes in a particular climate zone defined by the 
number of heating degree days (HDD) and the red line represents the average.  
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The coefficient of variation (COV) of the non-HVAC use was approximately 0.12 overall 
in both residential building datasets.  This fairly constant non-HVAC load throughout a year-
long period which includes all seasons and transition months is also consistent with assumptions 
made for residential energy modeling software based on the Building America House Simulation 
Protocol and Building America Analysis Spreadsheets (Wilson et al 2014). Based on this 
information, it is assumed that the sum of the variable and baseloads are fairly consistent on a 
monthly basis with a variation in values of approximately 0.12 (ܱܥ ௏ܸ௔௥ା஻௔௦௘= 0.12) from month 
to month, and multiplied by the average value of the variable and baseloads ൫ܧ௠,௏௔௥ା஻௔௦௘൯௠௜௡ሼ|஽ ೘்|ሽ.  

To determine the split of HVAC and variable/baseload values ( ுܲ௏஺஼), the degree-time 
value determine in Step (2) was used, where, as discussed previously, the months with the lowest 
heating and cooling loads are those in which the degree-time value is closest to zero.  Thus for 
this methodology, the month with the lowest energy use was used to determine this split. From 
analysis of the two previously discussed datasets, the split of HVAC/non-HVAC loads during the 
transition months in which the lowest HVAC use occurs, is on average, approximately 80% non-
HVAC and the remainder being HVAC ( ுܲ௏஺஼ = 0.2).  This is demonstrated in Figure 6 for both 
datasets, which shows a histogram of the percentage non-HVAC use in the lowest degree-time 
months.  
 

 
Figure 6: Percent of monthly energy use from non-HVAC end uses during the month with the lowest degree-time 
values in single family residential buildings in (a) Texas (n=161), and (b) the Pacific Northwest (n=484). 

A test of the accuracy of this methodology for disaggregation of monthly energy use by 
end use found that on average, the prediction of the disaggregated HVAC load was less than 
18% error (Figure 7). The red lines in Figure 7 indicate a +/- 20% error.  For homes with larger 
numbers of months of previous weather data, the error in general was found to be lower.  
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Figure 7: Comparison of the actual HVAC use and the predicted HVAC use each month using the proposed 
modeling methodology.  

(3b) Future Monthly Energy Use Prediction 

To predict the future whole-home monthly energy use of each residential building 
considered, the procedure outlined in Figure 8 was utilized. Based on previous literature of 
change-point models for prediction of energy use of buildings, the relationship between the 
outdoor temperature-based degree-time value and the monthly HVAC energy use, as described 
in Eq. 1b, is assumed to be linear (ASHRAE 2013). The steps are summarized as follows: 

 
• Inputs: The degree-time values for each previous month, the disaggregated energy use 

data from Step 3a, and the forecasted future weather data. 
• Step i: Divide the months of disaggregated energy use data and degree-time values into 

heating months and cooling months. 
• Step ii: Determine the degree-time value of the future month (Eq. 1c).  
• Step iii: Determine if the future month will be a heating or cooling month. If the degree-

time value for the future month is greater than 0, the month will be a cooling month; if 
the degree-time value is less than 0, the future month will be a heating month.  

• Step iv: Using the previous months’ HVAC energy use and degree-time values for 
cooling (if the future month is a cooling month), or heating (if the future month is a 
heating month) months, use linear regression analysis to determine the slope, and 
intercept of the relationship between the degree-time (independent variable) and HVAC 
energy use (dependent variable). 

• Step iv: Calculate the future month’s energy use: Use the linear relationship to determine 
the future month’s HVAC use based on the future month’s degree-time value; Sum the 
future month’s energy use and the variable loads and baseloads from the previous month.  

• Output: Whole-home energy use for the future month. 
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Figure 8: Methodology for determining future whole-home energy use.  

This methodology was implemented for 3050 residential buildings for three different 
future forecasted months, including November, December and January. The accuracy of the 
future energy use forecast is dependent on both the accuracy of the model and the future weather 
forecast.  For the three months tested, the average error of the whole-home energy use was -
2.7%.  A parity plot of the actual versus predicted use and a histogram of the future month 
energy use forecast error are shown in Figure 9a and 9b respectively. The standard deviation is 
28.9%.  67% of all homes’ future month’s forecasted energy use was within 20% error. As the 
future monthly energy use was measured only on the whole-home level, the accuracy of the 
individual disaggregated end uses is not compared.  

 
Figure 9: (a) Comparison of the actual future month’s energy use compared to the model predicted future month’s 

energy use and (b) a histogram of the future energy use forecast error 

Final Product 

The results of the disaggregation and future month’s energy use are utilized in a 
scorecard format which is emailed to the residential customer. This scorecard contains the 
whole-home energy use of the residential building studied, as compared to an average home and 
an energy efficient home of similar size in the same NOAA climate region (NOAA 2016).  It 
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also contains the disaggregated monthly energy use data and a value of the predicted increase or 
decrease in energy use for the future month, derived from the future month’s energy use 
prediction. The scorecard also provides energy savings tips relative to the season and residential 
customer’s energy use patterns.  An example of a scorecard is shown in Figure 10.  

 

   
Figure 10: Example Scorecard provided to residential customers, including whole-home energy use, disaggregated 
energy use, and future predicted energy use 

Discussion and Conclusions  

In order to provide additional insights regarding the monthly electricity use of residential 
building consumers, a methodology was developed to both disaggregate monthly energy use into 
three different end uses including HVAC, variable and baseloads, and to predict the electricity 
use of the future month. Given the limited energy use information available to develop the model 
to determine disaggregation and future energy use, the results of this research indicate that the 
disaggregation and future energy use prediction algorithms provide reasonable results and level 
of accuracy, including an average of less than 18% error for disaggregation, and an average of 
2.7% error for future energy use prediction. Further testing of the proposed model using 
residential sub-metered data would be beneficial for further refinement of these models.  

The outputs of this model, along with peer comparison of neighboring homes and energy 
savings tips, are used in a scorecard format provided to the residential energy consumer.  The 
scorecard output provides additional insights for residential customers beyond the typical whole-
home monthly energy use information typically provided on a utility bill, along with peer 
comparison of neighboring homes and energy savings tips, with the ultimate goal of encouraging 
energy efficient behaviors for the residential building occupants.  
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