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ABSTRACT 

Remote residential audits are intended to identify significant retrofit opportunities without 
home visits. Among such opportunities, the potential for improvement of building envelope 
thermal properties and/or installation of a high-efficiency HVAC system have some of the largest 
energy savings potentials for homes located in cooler climates. The state-of-the-art methods for 
remote auditing are still in their infancy in terms of limited validation and need for home 
characteristics that are unavailable to utilities (e.g., the building’s square footage, volume, 
orientation, wall materials, HVAC model and age) and/or numerous similar homes in a 
neighborhood. In this paper, we discuss a new remote audit method that has the potential to 
estimate key building thermal parameters (overall U-value, ACH, HVAC efficiency) using only 
interval electricity and/or gas consumption data. Unlike PRISM and other approaches that assume 
steady-state conditions, our approach capitalizes on physics-based modeling of transient thermal 
response. In particular, we consider a lumped capacitance/mass heat transfer model for a building. 
Under some reasonable assumptions, a solution to the underlying equations can be used to relate 
HVAC run-time and weather data to key building physical parameters. We implement this 
approach using hour-resolution gas consumption data on eighty single-family households in the 
Northeast.  

1. Introduction 

Space-heating and cooling loads in residential buildings consume a significant share of primary 
energy in many developed countries. For example, in the US, these loads account for more than 
9% of total primary energy consumption [DOE, 2011]. Studies suggest that these loads can be 
significantly reduced by the following three major categories [EEAC 2012, 2013]:  

 
- building insulation, 
- air sealing, and  
- HVAC systems.  

 
As the retrofit opportunities vary from home to home, the conventional way to identify home 

energy improvement opportunities and estimate prospective savings is to perform an on-site home 
energy audit. These are known to be inconvenient to homeowners, expensive, of inconsistent 
accuracy (usually only qualitative), and thus fail to scale [EEAC 2012, 2013]. 

A remote audit that would characterize energy saving opportunities and estimate potential 
savings with no on-site visit can dramatically improve the conventional practice. From utilities’ 
point of view [Klint, 2016], such remote audits should: 
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- utilize data available to the utilities to approach customers with retrofit offers that are 
specifically tailored to their homes, and 

- provide accurate estimates of the expected energy savings and costs.  
 
Not only would such remote audits not inconvenience home owners, but also their results will 

be quantitative rather than qualitative.  
A conventional approach, the Princeton Scorekeeping Method (PRISM), to identification of 

candidate homes for energy retrofits [Fels, 1986] is based on the analysis of energy bills and 
outdoor temperatures. Under certain limiting assumptions (e.g., constant indoor household 
temperature in either heating or cooling season, no supplemental HVAC sources, constant intrinsic 
heat gains, negligible building thermal mass), the monthly household HVAC energy consumption 
should be linearly proportional to the monthly-averaged outside temperature. The slope of this 
linear dependence is directly related to the PRISM’s ultimate measure of household energy 
efficiency, the normalized annual consumption (NAC). However, since NAC (and the slope for 
this matter) integrates several different physical building parameters (e.g., R-values of exposed 
surfaces along with their areas, air change per hour, HVAC efficiency), it cannot be directly used 
to pinpoint a specific energy retrofit opportunity, e.g., replacement of an old HVAC system with 
a high-efficiency one or attic/wall insulation. Moreover, the PRISM model does not produce 
reliable estimates when the underlying assumptions are violated [Minehart and Meier, 1992]. The 
widespread of smart and/or wirelessly controlled thermostats that result in essentially non-constant 
indoor temperature is one of the reasons why the PRISM model is becoming less effective 
nowadays. On the other hand, the availability of interval energy consumption data opens up new 
opportunities for remote auditing. 

In the commercial/industrial building sector, such organizations as First Fuel, Seldera and 
Retroficiency offer remote audits using interval electricity consumption data together with some 
additional building data and weather data. In the residential sector, the current offerings largely 
concentrate on using interval data from communicating thermostats (CTs) [Ecofactor, 2011], [GE, 
2012], [Google, 2015], with few offerings by energy disaggregation companies that use smart-
meter data. However, the offerings in the residential sector are usually geared towards relatively 
small energy efficiency improvements and HVAC fault detection (e.g., filter replacement) rather 
than the identification and characterization of the above-mentioned three major retrofit categories. 
Also, the accuracy of residential offerings usually cannot be verified in terms of error probabilities 
in detection or in terms of the prospective savings. 

The algorithmic technologies underlying these approaches are not clearly defined. For example, 
a patent by Ecofactor [Ecofactor, 2011] states that it involves a “system for calculating a value for 
the operational efficiency of an HVAC system,” but it does not clearly explain what particular 
algorithms are used by this “calculating system.” Similarly vague descriptions appear in other 
patents [Google 2015], [GE, 2012]. 

What is apparently common in the remote-audit approaches is that a predictive model, 
connecting the data inputs with the retrofit-characterization outputs, is required for the underlying 
algorithms to work. Indeed, Gaasch et al. of Retroficiency clearly state that an accurate yet 
computationally efficient predictive model of a building thermal response is required for early-
stage retrofit analysis [Gaasch et al. 2014]. Such a model should be complemented with a simple 
and reliable way to estimate the retrofit potential from the data using the model. 

We have recently reviewed modeling approaches that can be used for development of 
algorithmic technology for utility-grade remote audits of single-family residences [Zeifman et al., 
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2016]. Briefly, the predictive models for building thermal response can be loosely divided into 
white-box, gray-box, and black-box categories [Afram and Janabi-Sharifi, 2015; Berthou et al., 
2014].  

White-box models are very detailed and accurate physics-based simulation tools, e.g., 
EnergyPlus. Since they typically require hundreds of parameters to describe a single building, both 
setting up the model and estimation of its parameters from experimental data to characterize the 
retrofit opportunities are time-consuming and, sometimes, ill-posed tasks, making the white-box 
models difficult to scale.  

Black-box models rely on large training data sets and machine learning techniques to estimate 
building physical parameters and/or classify buildings by their retrofit opportunities. Because these 
models do not have a physical basis, their predictive ability is limited and restricted to homes 
whose characteristics are represented by those in the training data set. Because of their simplicity, 
these models can scale fairly easily, but only if appropriate and large training data sets exist. 

Gray-box models use relatively coarse-grained physical models (typically, lumped models) 
with just a few parameters. Although these models seem to combine the advantages of the other 
two model categories (i.e., physics-based predictive ability of the white-box models and the 
scalability of the black-box models), they are inherently coarse so that the estimated building 
parameters may not precisely match the actual physical building parameters. 

In this paper, we develop a simple gray-box model of a single-family home with a thermostat-
controlled HVAC unit. We show that under certain limiting conditions, the model can be applied 
to interval electricity- or gas-consumption household data to relate HVAC runtime to the outside 
temperature and estimate the lumped yet physics-based model parameters that can quantitatively 
characterize retrofit opportunities and savings. 

The paper is organized as follows. In the next section, we present the lumped model along with 
its underlying mathematical equations and derive a closed-form solution for the state variable, 
indoor temperature. In section three, we show how this solution can be applied to correlating 
runtime HVAC data with the lumped building parameters (e.g., overall R-value or HVAC 
efficiency) under certain limiting assumptions. In principle, the feasibility of the proposed method 
for remote audits can be tested using interval data from a broad range of homes that were energy-
audited, so that the qualitative audit-based “ground truth” on the retrofit opportunities could be 
used for verification. In this initial paper, however, we apply the method to estimate overall U-
value from interval gas data of a limited sample of 84 homes, all of which were characterized as 
“typical” in terms of their wall insulation. Section 4 explains implementation of our method to this 
sample including an approach to estimate HVAC runtime from hourly gas data. Although the 
estimated U-values generally lie within the “typical” range for the US homes, we also estimate the 
home U-values using PRISM for additional verification. The overall results are summarized in 
section 5. 

2. Lumped Model of Home Thermal Response 

Among various “physics-based” models of building thermal response, a model of 
Constantopoulos et al [1991] is arguably very popular.  It is given by the following recursive 
equation: 
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where Ti is the temperature in the residence at time ti, ε is the system inertia depending upon the 
insulation B, the thermal mass mc, and the time span τ between the two time points ti and ti+1, qi 
and η are the energy consumption and efficiency of the HVAC system, and Ta is ambient 
temperature.  

Although Eq. (1) seems to be “physically reasonable,” its actual origin is in the electrical circuit 
analogy. It can be shown, however, that this equation is equivalent to the following “thermal 
conductance” equation 
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A steady-state version of Eq. (1a) underlies the well-known PRISM model [Fels, 1986]. On the 

other hand, this model (of Constantopoulos et al. [1991]) misses such essential physical element 
as the thermal capacity of walls1. 

Since the model needs to be tailored to a major retrofit opportunity, it needs to incorporate 
characteristics of building insulation and air tightness. Accordingly, we devised a minimal lumped 
model that comprises two capacitances (indoor air and lumped wall) and two resistances (lumped 
wall and convection infiltration), i.e., it is an R2C2 gray box model [Berthou et al, 2014]. 
Following Tashtoush et al [2005], we use balance differential equations to model this system 
mathematically 
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In Eqs. (2)-(3), Cr is overall thermal capacitance of the indoor air, Uw and Aw are overall heat 

transfer coefficient and area of the walls (i.e., building envelope), Cw is overall thermal capacitance 
of the walls, q* is HVAC’s energy consumption rate (positive for heating, negative for cooling 
and zero for off-state), η – thermal efficiency of the heating/cooling system, qint – internal 
household heat gains/losses (e.g., solar gains, non-HVAC appliances, window openings), qext – 
external wall heat gains/losses (mostly, solar gains), L – the convective heat resistance that models 
air infiltration, and Tr, Tw and Ta are the temperatures of residence air, wall and ambient outdoor 
air.  Note that these equations differ from those used in Tashtoush et al [2005].  

This model, Eqs. (2)-(3) is mostly applicable to forced-air heating and cooling (in dry climates) 
systems. Unlike the forced-air systems that supply heated or cooled air and accordingly can be 
modeled as a source term (q*) in Eq. (2), boiler-based HVAC systems need special modeling, as 
the heat generated by fuel is applied to water that heats up metal radiators that, in turn, heat the 
indoor space. At a first approximation, a gray-box model of a boiler-based heater can be a 
combination of an ideal heater and a lumped capacitance [Peeters et al, 2008]. Development of 
boiler model is beyond the scope of this paper. 

A closed-form solution to Eqs. (2)-(3) has the following form: 
 

                                                            
1 As indoor air is not actually subjected to the thermal difference between the outdoor and indoor temperatures, it 
exchanges energy with the internal surfaces of walls and partitions [Molina et al, 2003]. 
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where parameters a, b, c, s1 and s2 are functionally related to the parameters of Eqs. (2)-(3) and to 
the initial conditions (i.e., initial room temperature and initial wall temperature). 

In principle, the five parameters of Eq. (4) can be estimated by fitting this equation to 
experimental indoor temperature curves, and the physical parameters related to the retrofit 
opportunities, i.e., Uw, L, and η, can be calculated by using the functional relation between them 
(not shown in this paper, see Ref. [Zeifman and Roth, 2016]). However, because of the lack of 
indoor temperature information, whole-home energy consumption interval data cannot be directly 
used with Eq. (4). Moreover, even though the fitting to Eq. (4) seems to be straightforward for CT 
data that usually include interval indoor temperature data [Goldman et al, 2014], there are several 
challenges that complicate parameter estimation.  

Among these challenges are  
 
• Large estimation uncertainty A straightforward way to fit Eq. (4) to an experimentally 

recorded time-dependent (i.e., interval) indoor temperature is by selecting periods of time 
during which the HVAC status did not change (so that q* was either approximately 
constant or zero) and the outdoor conditions were quasi-constant (so that the wall 
temperature was not subject to changing outdoor conditions). Accordingly, a single “on” 
or “off” portion of a HVAC cycle should be used. Since during a usually prolonged setback 
the outdoor conditions typically change significantly, the setback periods of time cannot 
be straightforwardly used for estimation. For the portion of a regular cycle at a fixed 
temperature setpoint, the indoor temperature is likely to change just within the thermostat 
deadband (typically, 1°F), whereas the recommended range of temperature for the 
parameter estimation of equations of type (3) in literature is tens of degrees [Bouache at al, 
2015]. Accordingly, the numerical fitting procedure may not converge at all or produce 
unreliable parameter estimates.  

• Internal/external heat gains unknown The exact value of internal/ external heat gains 
qint/qext are not known. Moreover, these gains are likely to change with time along with 
occupant activities and weather. 

• Direct separation of insulation and infiltration is not possible Although not obvious in 
Eq. (1), the parameters Uw and L cannot be readily separated since the initial wall 
temperature Tw(0) is linearly proportional to the ambient temperature. 

 
One way to alleviate these challenges and make Eq. (4) amenable to energy interval data is by 
• Using a Taylor expansion of the solution, Eq. (4). This yields two important gains: 

o Eq. (4) becomes algebraic with easily estimable parameters 
o By considering consecutive periods of on and off, the internal gains can be cancelled. 

Moreover, instead of the interval temperature data, durations of time on and off can be 
used for parameter estimation. 

• Restricting data to periods of time with minimal internal heat gains/losses Typically, 
during night time peoples’ activities are minimal, and no solar gains exist (at least in the 
continental US) so that experimental data collected during the night time would have 
minimal or negligible values of qint/qext. 
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• Considering correlation between wind data and the infiltration Unlike the insulation, 
air leakage is known to depend upon wind speed and direction [Gowri et al, 2009]. Using 
a mathematical model for such dependence along with the wind data, we can separate the 
insulation and infiltration.  

 
In the next Section, we consider application of Eq. (4) to interval energy consumption data. 

3. HVAC Runtime – Outside Temperature Correlation 

Following the reasoning detailed in the previous Section, in what follows we restrict 
consideration to nighttime data only. Since the variable q*, characterizing in Eq. (2) energy 
consumption rate of a thermostat-controlled HVAC system, is zero when the system is off and 
often approximately constant when the system is on, it is convenient to consider the basic equations 
(2)-(3) separately for the separate HVAC states, i.e., on or off. Assuming the duration of time on/ 
off to be relatively short2, we can take a two-term Taylor expansion of the solution, Eq. (4). 
Assuming also constant ambient conditions during such short periods of time, we get the following 
linear approximation for time on (or off) duration: 
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where ΔT is the thermostat deadband. 

Eq. (5) along with the functional dependences of the parameters b, c, and s1,2 on the parameters 
of Eqs. (2)-(3) (not shown in this paper, see Ref. [Zeifman and Roth, 2016]) suggest that the inverse 
of the time on (or time off) duration, Eq. (5), is linearly proportional to the ambient temperature. 
Assuming that the initial wall temperature for such short on-off cycles is close to the steady state 
temperature3, we get for the slope of this linear dependence:  
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For the intercept of the tangent line, Eq. (5), with the temperature axis (corresponding to ton/off 
→∞), we get 
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2 Our estimates suggest that time on/off need to be shorter than 30-50 minutes for most wood or masonry walls for 
the two-term Taylor expansion to be accurate within 20%. If the actual times are larger, a higher-order Taylor 
expansion can be used. 
3 In reality, the initial temperature of the lumped wall deviates from the steady state temperature, which is one of the 
reasons for significant scatter in inverse time on/off – outdoor temperature correlation; see Figure 2. 
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where Ta,inter is the intercept point on the ambient temperature axis. Eq. (8) allows estimation of 
the setpoint temperature4 from the time-off plot (q* = 0) and then, the efficiency η from the time-
on plot, if the energy consumption rate is known. 

As we discussed earlier (see Section 2), the air leakage expressed by variables L and β can be 
separated from the insulation resistance (α) using a functional dependence of the air infiltration on 
wind speed. Accordingly, without loss of generality, we can neglect β in Eqs. (6) and (8). In this 
way, we can estimate the retrofit-related parameters from the correlation between the inverse time 
on (off) and the ambient temperature.  

For example, for the overall U-value we get  
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where V is the building volume. Note that although Eq. (9) requires both overall wall area (Aw) and 
building volume (V), their ratio can be considered as a less fluctuating form factor. 

For initial testing of the predicted correlation, Eqs. (5)-(9), we used experimental data on three 
test huts, wooden shed-like structures (footprint ~8’x12’, ~8’ high) that had three different levels 
of insulation but were otherwise identical. The huts were equipped with portable air conditioning 
units controlled by a regular thermostat, and electric power and outdoor temperature were 
measured at 1-minute intervals during summer in Albuquerque, NM. We calculated the durations 
of time on/off using these data and estimated the overall U-values for the three huts using Eq. (9). 
The estimated U-values ranged from 1.25 [Btu/ h·ft2·°F] for the original hut to 0.18 for the most 
insulated hut, whereas U-values calculated for walls with EnergyPlus ranged from 1.43 to 0.15 for 
the same huts, which indicated applicability of the proposed method to estimation of overall U-
value in controlled test conditions.  

In this work, we apply this correlation to interval data of single-family detached homes located 
in Holyoke, Massachusetts. The methodology and results are presented in next Section. 

4. Case Study: Real Homes in Heating Season 

The proposed method estimates lumped physical parameters corresponding to the three major 
retrofit opportunities. Conventional on-site audits, however, do not usually yield quantitative 
parametric values. Instead, the retrofit opportunities are typically characterized qualitatively or 
categorically in onsite audits. Accordingly, to demonstrate feasibility of our method, it is desirable 
to have a sample of on-site audited homes that were determined to have various degrees of retrofit 
opportunities.  

Fraunhofer CSE has an agreement with Holyoke Gas & Electric (HG&E) to analyze interval 
data from approximately 15,000 homes of HG&E’s customers located in Holyoke, Massachusetts. 
All of these homes are equipped with electric meters that provide 15-minute electricity interval 
data, while some (~5,000) are also equipped with advanced gas meters that provide 1-hour gas  

                                                            
4 More accurately, it is the so-called balance point, as even at nighttime, there are additional to HVAC heat gains. 
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interval data. For this preliminary analysis, we received data from 84 coupled accounts for which 
some partial “ground truth” in terms of home insulation level5 and HVAC heating type was 
available. 

Fig. 1 shows electricity and gas consumptions over a cold and a mild  nights for home #1 from 
this data set. For the cold night, the electricity consumption indicates presence of a cycling electric 
appliance with about 300 W power draw. Although this appliance could potentially be a fan of the 
gas furnace, no such appliance is observable for the mild night. Therefore, the cycling electric 
appliance cannot be the gas furnace fan; it could be, e.g., an auxiliary heating device. The gas 
consumption at both nights indicates presence of a large cycling gas appliance that could only be 
a space heating device with no forced air, i.e., a boiler6.  

Figure 1. Electric and gas consumption recorded during night hours for home #1 from HG&E data set. Left:  
cold night of 20-21 February, 2015 (minimum temperature -18°F). Right: mild night of 24-25 December  
2014 (minimum temperature 41°F). 

 
The patterns of electricity and gas consumption shown in Fig. 1 are typical for the HG&E data 

set. The ground truth data on this data set also suggests that out of the 84 homes, only four used 
electricity and three used oil for space heating, with all the remaining homes using gas boilers, not 
furnaces. The main challenge of application of the proposed method to the data set is determination 
of HVAC runtime. Indeed, determination of time on/off of a 50-70 W device (i.e., boiler water 
pump) from 15-minunte resolution data is beyond the capability of the state-of-the-art 
disaggregation methods. The strongly non-constant gas consumption, however, indicates a 
possibility of using gas consumption data to determine characteristic runtime overnight. 

4.A HVAC runtime estimation 

A detailed description of the runtime estimation procedure is given elsewhere [Zeifman and 
Roth, 2016]. Briefly, the main idea is that the large fluctuations of gas consumption during 
nighttime as seen in Fig. 1, are caused by imposition of the hourly time window (recording time) 
on the cycling pattern of HVAC gas consumption (i.e., approximately constant gas consumption 
rate during time on and zero gas consumption during time off). By varying the potential durations 
of time on, time off and the time lag between the start of first cycle and the start of the recording 

                                                            
5 HG&E assigns three insulation grades to homes according to audit results: good, typical and fair. All 84 homes 
were graded as typical. 
6 Electric water pumps of residential gas boilers usually draw about 50-70 W of power. 
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hour, and imposing some heuristic constraints to prevent meaningless results, it is possible to 
create estimated gas consumption profiles and select the one that best fits the actual gas 
consumption profile recorded over a particular night. Since there are only eight data points for 
overnight gas consumption, we assume constant durations of times on/off during a night, so that 
only three variables will need to be determined. In this case, we will only have a single pair of data 
points for the correlation, Eq. (5), per night. 

Although this assumption is coarse, at the first approximation, it would result in increasing the 
dispersion in the inverse time on/off – outdoor temperature correlation, Eq. (5), and 
correspondingly increase the uncertainty in U-value estimation, Eq. (9), but should not lead to a 
bias in the estimated U-value.  

A bias can be induced if a household implements thermostat setbacks during the nighttime. 
However, the gas consumption data plotted on Fig. 1 (or for randomly selected other homes in this 
data set) do not indicate a systematic reduction in gas consumption that would follow such a 
setback. On the other hand, a thermostat setback at night would either imply a different thermostat 
setpoint during most of the nighttime in case the actual room temperature, as sensed by the 
thermostat, quickly reached the new setpoint, or a larger thermostat deadband ΔT otherwise. Both 
possibilities can be mathematically modeled. 

4.B Inverse runtime – outdoor temperature correlations and U-value estimations 

Using the method explained in the previous Section, we estimated durations of time on and off 
for each night over the heating season 2014-2015, for each home in our data set. For the outside 
temperature, we used the Weather Underground hour-resolution historical data for Holyoke, 
Massachusetts, and calculated a median temperature for each night to be matched with the inverse 
runtime, Eq. (5). Since the gas-heated homes consume much more gas during the heating season, 
the seven homes that use electric- or oil heating were clearly identifiable on the overall gas 
consumption plots (not shown in this paper), and the data from these homes were excluded from 
further consideration. 

Fig. 2 shows the experimental correlations for a randomly selected home. The predicted 
correlations, Eq. (5) are clearly seen for relatively small times on and off. For larger times 
(approximately those exceeding 30 minutes), the correlation is much weaker, most likely because 
the two-term Taylor expansion becomes a too coarse an approximation (see Section 3). 

Figure 2. HVAC runtime vs outdoor temperature estimated for nighttime over heating season for home #56  
from HG&E data set. For each night, a single value for outdoor temperature and estimated time on and time  
off was used. 
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To estimate the overall lumped U-value by Eq. (9), in this initial work, we simply selected data 
pairs with the temperature exceeding 20°F for the time on correlations, estimated the linear 
regression slope, and assumed the ratio V/Aw = 2.5 m and thermostat deadband ΔT = 1 °F for all 
the homes. Also, to convert the U-value calculated from the lumped differential equations, Eqs. 
(2)-(3) to the conventional U-value, we need to use a correction factor of 2 [Zeifman and Roth, 
2016]. 

Fig. 3a presents the U-value estimation results. Since we do not have a ground truth for the U-
value, we arbitrary translate the “typical” grade of the home insulations obtained by HG&E into 
0.08 [BTU/ft2·°F·h] 7 as the recommended R-value for walls in US climate zone 5 [Insulation 
Chart, 2016] is 13 [ft2·°F·h/BTU]. It is seen in the Figure that the estimated U-values range from 
~50% to ~ 200% of this “typical” value, which we believe is still within the “typical” category.  

 
a b

Figure 3. Overall U-values of HG&E homes estimated by the proposed method (a) and by the proposed  
method and PRISM (b).  

 
To get a better sense of the feasibility of the proposed method, we used the advantage of 

availability of interval gas data. Accordingly, we converted the measured gas consumption flow 
rate into the rate of energy consumption using the combustion heat of the methane, and applied 
the PRISM method [Fels, 1986] to nighttime data to estimate the overall U-value, assuming 100% 
HVAC efficiency and the total external area of a home being 400 m2. The PRISM-based estimates 
of U-values are plotted against the U-values estimated by the proposed method in Fig. 3b. It is 
seen in the Figure that the PRISM-based range of U-values is similar to that of the proposed 
method, which partially validates the latter. On the other hand, there is no correlation between the 
U-values calculated by either method. We attribute this lack of correlation to different sources of 
uncertainty underlying the two methods. 

In the proposed method, the sources of uncertainty include model-based factors (general 
coarseness of lumped second-order gray-box models, limitation of two-term Taylor expansion and 
assumed in this work steady-state initial wall temperature), time estimation factors (indirect 
estimation of time on/off from hourly resolution data, arbitrary usage of 20°F as the boundary for 
correlations) and geometric factor (V/Aw). For the PRISM as applied to nighttime hourly data, the 
sources of uncertainty are also model-based (essentially coarseness of first-order lumped model 
coupled with the steady state and constant indoor temperate assumptions), the HVAC efficiency 
                                                            
7 Since we neglected air leakage (modeled by β in Eqs. 7-9), the U-value is overestimated in this study even if the 
assumed form factor is correct. 
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that cannot be decoupled from U-value, and the geometric factor (Aw). Since these uncertainties 
are different and because the overall uncertainty apparently is larger than the actual variability of 
U-value among the homes, the estimated U-values are not correlated either. 

5. Summary 

In this paper, we developed a coarse yet physics-based lumped gray-box model. The proposed 
model was further simplified to work with HVAC runtime data that, under certain assumptions 
can be correlated with the outdoor weather conditions (temperature and wind speed) to yield three 
physical home characteristics that correspond to three major retrofit opportunities – building 
envelope insulation, air sealing improvements and HVAC efficiency upgrade. The model was 
applied to experimental data from about eighty homes and partially validated using the categorical 
“ground truth” on the home insulation levels and a conventional method for home insulation 
estimation. 

Unlike the PRISM method, the proposed method does not require fuel consumption data for 
characterization of building insulation and air tightness. The proposed approach also does not 
require a steady state and can decouple the HVAC efficiency and building insulation level. 
Moreover, it operates with the building shape factor (volume to surface ratio), which is 
advantageous for estimation purposes over the surface area used in PRISM. 

That the model designed for a “directly-controlled” HVAC system (like a gas furnace) worked 
well for the indirectly-controlled HVAC systems in the HG&E data set (with boilers, the room 
thermostat controls a water pump, but the boiler supply water temperature is controlled by an 
aquastat) indicates both robustness of the method and potential for further improvement. Such an 
improvement would involve a two-stage model for the boilers.  

Other directions of improvement include development of more accurate methods for HVAC 
runtime estimation from interval electricity and/or gas data, estimation of building geometry using 
publicly-available data, and development of more accurate methods for computationally-efficient 
parameter estimation from the experimental data. The authors have also applied this method 
directly to interval data from communicating thermostats.  
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