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ABSTRACT 

In order to meet ambitious emission reduction goals in California, greenhouse gas 
emissions from direct combustion of fossil fuels for residential space and water heating will need 
to be largely eliminated. If those emission reductions come from fuel switching (natural gas to 
electricity) then the electricity grid needs to be prepared for the additional load. This paper 
presents a new method for estimating hourly residential space heating demand using hourly 
electricity consumption data (smart meter data) and daily natural gas data from 30,000 customer 
accounts in Northern California. I apply linear regression to hourly, zip-code-averaged whole-
home electricity consumption, zip-code-averaged whole-home gas consumption, and outdoor air 
temperature data to determine both the hours when heating is more active and the outdoor 
temperature dependence of that consumption. Using piecewise regression, I find that natural gas 
space heating begins, on average, when the daily outdoor temperature average drops below 59°F, 
with a mean temperature responsiveness of 0.13 therms per heating degree day (HDD). 
Therefore, when converting an 80% efficient natural gas furnace to an air source heat pump with 
a coefficient of performance (COP) of 3, we could expect an additional electric load of 1kWh of 
energy use per HDD below 59 F. Using a fixed effects model, I estimate the hourly pattern of 
this new heating load for each zip code analyzed. 

Introduction 

About 6% of total US greenhouse gas emissions, or 329.9 million metric tons of CO2-
equivalent come from direct combustion of fossil fuels in the residential sector, with 
approximately two thirds of this coming from space heating (EPA 2016). California has 
ambitious carbon emission reduction goals, and in order to meet those goals all aspects of the 
energy system will require significant changes. Impressive progress is already being made, with 
a rapidly expanding share of renewable electricity generation, exciting advancements on electric 
vehicles and lower carbon fuels, and almost 40 years of pioneering energy efficiency policy. 

But to achieve deep carbon reductions in California, natural gas demand will also need to 
decrease. In 2009, about 7.2 million of the 12.2 million housing units in California used natural 
gas for space heating, and on average each of those households used 226 therms of natural gas 
for heating (EIA 2009). While this study is focused on California, such numbers point to a far 
greater opportunity for emission reductions in colder climates. 

The electrification of heating systems has multiple benefits for the energy system. First, it 
potentially decarbonizes heating, depending on the fuel sources for electricity generation. 
Second, in some climates electrified heating with high COP heat pumps can have lower 
emissions than efficient gas furnaces, even if the electricity is coming entirely from natural gas. 
While the common perception is that natural gas furnaces have a higher system efficiency than 
electric heating, if we assume a 40% efficient natural gas power plant and heat pump with a COP 
of 3, then the electric heat pump will have lower emissions than the gas furnace. Third, since 
California is a summer-peaking system, electricity infrastructure can be better utilized with 
additional winter loads. Fourth, with proper control, electrified space and water heating can be 
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useful for integrating large fractions of renewable energy on the grid. As the fraction of variable 
and uncertain renewable generation increases, more flexibility from electricity loads to maintain 
balance will be needed. Buildings naturally store energy in their indoor air, thermal mass, and 
hot water supply which makes these loads flexible in when they consume electricity (Mathieu et 
al. 2012; Dyson and Mandel 2015).  

If fuel switching from natural gas to electricity occurs at a large scale, the grid needs to 
be prepared for the additional load. Studies such as this are important to characterize what that 
future load might look like. Furthermore, the building stock is large and slow to change, so if 
electrification is a serious goal, then smart policies must be put in place to encourage adoption as 
well as prepare transmission and distribution systems for these new loads. If electrified heating is 
to be used as flexible load, it will be beneficial to include control technologies in electrified 
heating from their onset to prevent costly retrofits. Presently, substantial barriers stand in the way 
of electrification. The Time Dependent Valuations (TDV) that are used to meet Title 24 building 
codes tend to favor gas space and water heating. Furthermore, the California Public Utilities 
Commission currently prohibits energy efficiency programs that encourage fuel switching unless 
the programs pass a three-part test that includes cost effectiveness, emissions, and source energy 
(California Public Utilities Commission 2013). Given the relative prices of natural gas and 
electricity, the cost effectiveness test would be challenging to pass. 

There is a body of literature that looks at future scenarios of renewables penetration, 
optimization of renewables and transmission portfolios, and potential studies of what is possible 
to drastically reduce carbon emissions. Heating electrification is a lever consistently used across 
studies to meet California’s deep decarbonization goal of 80% below 1990 levels by 2050 (Wei 
et al. 2013; Williams et al. 2012). However, this prior work has not taken an empirical approach 
in estimating what the new electrical heating loads would be. Existing studies rather rely on a 
small set of representative building energy models to create hourly load profiles, or use very 
coarse load profiles. The empirical approach offered here has the potential to not only account 
for the thermal properties of buildings but also human behavior.  

While prior work has been very important to show what is possible in terms of deeply 
reducing carbon emissions, a large gap remains in how we might actually arrive at a 
decarbonized future. This paper presents a simple, novel method to estimate new electrified 
heating loads empirically, using real natural gas and electricity data from a large number of 
California households. While there is no guarantee that this empirical approach will provide a 
more accurate estimate of how future electrified loads will perform, it is grounded in current 
patterns of energy use from many customers and offers an alternative way to model a future with 
electrified heating. 

Methodology 

The narrow goal of this study is to estimate the new hourly electricity demand if gas 
space heating were converted to electric heating. In order to do this, I use hourly whole-home 
electricity consumption data (smart meter data) and daily natural gas data from 30,000 customer 
accounts in the service territory of Pacific Gas and Electric. This data was provided by the 
Wharton Business School’s Customer Analytics Initiative. The data set consists of 10,000 
customers randomly sampled from three geographic zones (Coastal, Inland Hills, and Central 
Valley) between 2008 and 2012. I currently include only those residences that have both gas and 
electric service. I estimate when gas is currently used for space heating and estimate future 
heating electricity demands. If hourly residential gas usage were available, this would be a trivial 
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task. However, only daily residential natural gas consumption data is available in approximately 
1 therm resolution which makes this problem more challenging. To estimate the hourly natural 
gas use for heating, I make use of information that exists in the hourly electricity data. 

Three key assumptions are made in this model. First, from a planning perspective, we do 
not necessarily care about the electrified heating load of an individual house, but rather what the 
total new load would be for a region. With this relaxed goal, we are able to average over a zip 
code–though in the future I intend on performing the same analysis over an entire climate zone. 
The zip code was chosen for the scale of analysis to speed computation and because weather data 
(gathered from the Weather Underground API) was gathered per zip code. Zip code averaging 
smooths out the 1-therm resolution issue in natural gas data. Second, I make the assumption that 
it is not the hourly outdoor temperature that directly drives space heating loads, but rather the 
time of day together with the average outdoor daily temperature. This assumption is a coarse way 
of taking into account higher-order thermal dynamics in buildings, and the effects of human 
behavior such as set-point changes or occupant driven heat gains. Third, while I only include 
houses that have both natural gas and electricity service, I also assume that consumers either use 
natural gas for heating or that their pattern of electric heating is the same as their pattern of gas 
heating. Future work will aim to further classify residences as electrically or gas heated. 

The first step in the model is to determine the change point—the daily average 
temperature at which heating turns on—for the zip-code-average building. I do this by 
performing a piecewise regression; where daily gas use is regressed onto outdoor temperature, 
fitting separate coefficients for when outdoor temperature is above or below a change point 
temperature, ܶ. The change point selected is that which reduces the sum of squared errors of 
predictions (Muggeo 2008).  

Using the change point that is identified in this regression using the gas data, I apply it to 
electricity data. Heating Degree Days are calculated for each day of data using this change point. 
The regression formulation is below, where y is the hourly electricity use, αh is an hourly fixed 
effect for each of the 24 hours of the day (h), and βh is an hourly temperature responsiveness 
coefficient, also for each of the 24 hours. 

ݕ  = ߙ + ܦܦܪߚ +  ߝ	
 
I perform this regression twice for each zip code: first using all days with a daily average 

temperature below the change point (HDD is always positive) and second using all days with a 
daily average temperature below the change point plus 5 degrees. Including some days with an 
average temperature warmer than the change point leads to an HDD regressor of zero for some 
days. I selected a 5-degree threshold to avoid days when cooling might also be occurring. If 
simply all data were used, then the cooling energy use would enter into the hourly fixed effects 
estimates (αh) and doing so would impact βh. The βh estimates are the output of interest, which 
show, on days with heating, which hours are more temperature responsive in their electricity use. 

Because I know the daily therms used per HDD from the piecewise regression – call this 
βgas – and the temperature responsiveness of electricity for each hour, I can estimate the hourly 
gas use for space heating. βgas is calculated using the difference in slopes above and below the 
changepoint in the natural gas data. After normalizing the βh estimates to sum to 1, they will 
represent the proportion of heating occurring in each hour of the day. In this way, the product of 
βgas, HDD, and each normalized βh should represent the hourly gas use. I can use this estimate of 
hourly gas use, together with assumptions about gas and heat pump efficiencies, to estimate what 
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the new hourly electricity load would be. By adding this new estimate to the prior estimate of 
electricity use, I arrive at the new total hourly electricity demand. Existing temperature 
responsive electricity demands (such as resistance heating or furnace fans) are included in the 
baseline.  

Results 

I tend to see a clear change point in the 285 zip codes that I analyzed, as shown for an 
illustrative zip code in Figure 1. The amount of natural gas used at and above the change point 
can be thought of as the baseline gas use, which is the portion of gas that is less responsive to 
outdoor temperature. This is likely the gas used for water heating or for cooking. I do see some 
temperature response—this is perhaps due to changes in cold water supply temperatures, or to 
lower heat losses at warmer outdoor temperatures. Water heaters and stoves need to be 
electrified to reduce emissions from this portion of household gas use.  

 
Figure 1. This shows an illustrative example of piecewise regression to identify the change point (60°F) and 
temperature responsiveness for the zip code average house in Stockton, CA. Over 70 houses were averaged 
in this analysis. 

We can use the information embedded in the hourly resolution electricity data to estimate 
when heating is occurring. Past efforts have used smart meter data to identify when cooling is 
occurring, but here I am trying to make use of the much smaller signal that comes from the 
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furnace fan within the electricity data (Dyson et al. 2014). Figure 2 shows hourly zip-code-
averaged electricity use versus outdoor hourly temperature. The negative slope at low outdoor 
temperatures, and the variability of this slope between hours, is what this model aims to capture. 

 
Figure 2. For the same zip code as Figure 1, the hourly average power vs the hourly outdoor temperature is 
plotted here. Shading indicates density of points. The positive slope shows electricity used for cooling, and 
the negative slope shows electricity used for heating. Three years of data are included in this plot. 

We can see the results of the regression of this zip code in Figure 3. Note that the hourly 
fixed effects are largely unaffected when days above the change point are added (although days 
that would be warm enough for cooling are still most likely omitted). The temperature 
responsiveness coefficients also remain largely unchanged in this illustrative example. There are 
a couple of notable features in these plots. First, the fixed effects show a sharp rise during the 
hour ending at 8am, as people wake up, with non-heating electricity peaking around the hour 
ending at 9pm. The shape of the lower plot shows that, in this zip code, most heating occurs in 
the evening, peaking around the hour ending at 7pm. For 75% of the zip codes analyzed, the 
adjusted R2 of the regression, using only hour of day and heating degree days on the right hand 
side, was 0.58 or better. 
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Figure 3. The upper plot shows the estimates of the fixed effects, αh, for each hour of the day using only 
days with an average temperature below the change point or days with an average temperature below 5 
degrees higher than the change point. The lower plot shows the estimates for βh, the hourly temperature 
responsiveness. 

By normalizing the hourly temperature coefficients to sum to 1 and using the slope from 
the piecewise regression in Figure 1, I can estimate what a new electrified heating load would be 
with a few assumptions. Figure 4 shows those results with HDD=5, COP=3, and ηfurnace=80%.  
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Figure 4. Baseline and electrified heating load shapes assuming a day with an average daily temperature of 
around 55 degrees, an 80% efficient gas furnace in the baseline and a COP 3 heat pump in the electrified 
case. 

This analysis was performed on many other zipcodes other than this illustrative one in 
Stockton, CA. Results from two of these, from two other climate zones, are shown below in 
Figure 5. 
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Figure 5. Estimation of new electrified heating loads from two other zip codes in two different climate 
zones. These results also show an earlier peak and steeper ramp with electrified space heating. 

 

Conclusion 

A consistent feature across zip codes is an earlier peak in the temperature responsiveness 
coefficients than in the fixed effects. This means that as heating systems are electrified, the 
evening peak will likely shift to earlier in the day. We also see a steep evening ramp up in the 
temperature responsiveness coefficients, which suggests that the evening ramp will be steeper 
with electrification, particularly on cold days. This evening ramp is especially concerning; it 
occurs around the same time that solar power resources are ramping down. Because buildings 
contain energy storage in their thermal mass, we could likely shift some of this demand to earlier 
in the day through the intelligent control of electric heating. 

Future work will estimate, in aggregate, new electrified heading loads in each climate 
zone in California. Further work is also necessary to classify residences that might currently have 
electric heating systems to verify that their schedule is similar to homes with gas heating systems 
or to exclude them from this analysis. I also aim to control for seasonal and weekday/weekend 
effects in future iterations of this work. 

Electrification is only one option for decarbonizing the space and water heating sector in 
California. It is perhaps the most promising alternative. However, creating this massive change 
in the building stock will require technology that consumers find satisfying, policy that speeds 
their adoption, and system planning that is ready for these new loads. 
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