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ABSTRACT 

Energy efficiency program sponsors in many jurisdictions have launched efforts to 
capture energy savings arising from strategic energy management (SEM) programs. SEM is an 
approach that aims to change the mindset of management and strategically manage energy costs 
as a controllable expense. Through a combination of training, technical support, and 
development of peer networks, these programs encourage the owners and operators of industrial 
plants to adopt continuous improvement techniques in energy management. Though SEM 
programs focus on changing operational practices, they may also encourage participants to 
undertake retrofit and capital improvements supported by other programs. 

One of the principal challenges in evaluating SEM-type programs is to disaggregate 
energy savings attributable to behavioral and management changes directly supported by the 
program from savings associated with installation of retrofit and capital measures. This task is 
complicated by changes in production volumes or types of products processed in the facility, 
both of which have a large effect on energy consumption. Therefore, methods to account for 
capital improvements and changes in production activity are critical to assessing savings 
attributable to SEM programs.  

This paper shows how to use regression techniques to separate the effects of more 
efficient operations from those of equipment changes, allowing evaluators to model how plant 
production, environmental effects, and detailed knowledge of how efficiency measures interact 
(or do not interact) with production result in energy savings. The method accounts for seasonal 
variation in product type and raw material inputs as well as  allowing evaluators to 
simultaneously estimate realization rates to energy measures and capture savings due to 
behavioral changes. The paper presents the results of using this method for the evaluation of 
SEM at food-processing plants for the Northwest Energy Efficiency Alliance (NEEA). 

Introduction 

NEEA has been implementing an Industrial Initiative that aims to transform the market 
for industrial energy management and to promote SEM practices since 2005. The initiative is 
currently focused on the food-processing industry and encourages facilities to incorporate 
continuous energy improvement through SEM practices in their operations. Estimation of SEM 
energy savings provides NEEA with direct feedback of the program impact to better inform 
policy makers. DNV GL estimated energy savings for this program for 2012 and 2013. 

SEM programs promote two types of activities: (1) behavioral and operational 
optimization measures or actions (BEM) and (2) capital, retrofit, and maintenance improvements 
(EEM). In practice, energy savings due to BEM and EEM occur simultaneously and contribute to 
the overall SEM energy savings in a “tangled” fashion. While most EEM savings can be 
evaluated by bottom-up field measurement of key performance parameters using Option A of the 
International Performance Measurement and Verification Protocol (NREL 2002; DOE 2008), 
BEM savings are challenging to quantify directly by measurement. It is either costly or 
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impractical to establish effective control groups for behavioral changes for industrial sites with 
ongoing production targets to meet (LBNL 2012; DOE 2014). 

To address this challenge, DNV GL (formerly DNV KEMA) developed a regression-
based method for the evaluation of the 2013 NEEA Industrial Initiative energy savings. This 
method adopts a top-down modeling approach, quantifies the overall SEM energy savings, and 
disaggregates them into those attributed to BEM and EEM. This involves recovering two 
hypothetical scenarios using bottom-up, field-validated EEM savings: (1) that only EEM is 
implemented and (2) neither EEM or BEM are implemented. By modeling energy consumption 
of these two scenarios and examining their differences, we isolate BEM savings from overall 
SEM savings. 

We estimated BEM and EEM savings for 10 food-processing facilities that are actively 
engaged in a SEM program throughout 2013. These facilities are from multiple firms and located 
across three states under various climate zones. A total of 25 EEM measures were verified and 
validated. The top-down models demonstrated excellent goodness-of-fit (GOF) in all but one 
instance, and appear to capture the underlying system dynamics of nine out of 10 involved 
facilities. Furthermore, the estimated savings are consistent with the end-use energy efficiency 
records of the facilities. Consequently, the estimated savings obtained by the regression method 
demonstrate both statistical and practical significance. 

The next section presents the modeling approach and data pre-processing, followed by 
results and conclusions. 

Modeling Approach 

Data Source 

The 10 facilities participating in NEEA’s food processing initiative are located in three 
states in the Pacific Northwest: Oregon, Idaho, and Washington. Through their contractor, NEEA 
collected the monthly energy consumption (electricity and gas) and net production data for each 
facility for the entire length of time it participated in SEM programs. The contractor also 
collected data on specific EEMs and associated bottom-up savings for each facility since its 
involvement in the program.  

For the weather data, we used meteorological readings from the nearest possible National 
Oceanic and Atmospheric Administration (NOAA) weather station for each facility. The original 
NOAA weather data included dry bulb, wet bulb, and dew point temperatures and relative 
humidity on an hourly interval. We verified the original weather data by checking temperature 
range and seasonal patterns. The temperature range is consistent with climate in the Pacific 
Northwest region where there are typically few readings above 100°F or below freezing. 

To resolve the difference between hourly weather data and monthly energy consumption 
data, we calculated monthly heating degree days (HDD) and cooling degree days (CDD) for each 
facility. Degree days measure the amount of time during the month a facility is below or above a 
reference or basis temperature. This reference temperature is usually 65°F (Ristinen and 
Kraushaar 2006). When the outside temperature is above (below) 65°F, buildings spend energy 
cooling (heating). Cooling and heating degree days are the cumulative time over the month that 
the building is above and below, respectively, the reference temperature. In this analysis, we 
computed HDD and CDD for an average reference temperature, 65°F. 

Historical datasets of energy consumption, production, bottom-up EEM savings, and 
weather data serve as the data source for our top-down analysis.  
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Top-Down Model 

The top-down model uses linear regression techniques to predict changes in electric and 
gas consumption as functions of non-program factors such as weather and production volume. 
According to previous studies on the same facilities, energy consumption of different production 
activities demonstrates different degrees of dependency on weather-related factors (DNV KEMA 
2014; ERS 2012; Cadmus 2011). We tested two top-down model specifications to address this 
fact. 

The first model, referred to as the P model, includes only production as the independent 
variable. The second model, called the PHC model, adds HDD and CDD as two extra 
independent variables. We evaluated and selected the most relevant model for each facility to 
produce more rigorous savings estimates. 

Disaggregation Strategy 

The biggest challenge of the top-down analysis is to disaggregate energy savings in terms 
of BEM and EEM actions. Savings estimates from energy consumption (billing) data reflect only 
the overall effect of both BEM and EEM activities. An analogy would be measuring a car’s total 
reduced fuel consumption after both improving driving behavior (BEM measure) and upgrading 
with an energy-efficient component, such as a diesel engine (EEM measure), and then trying to 
estimate how much fuel savings were attributable to each measure. It would not be possible to 
determine without consumption data for when (a) only driving behavior is improved or (b) only 
the energy-efficient component is upgraded. 

However, in this scenario, if the diesel engine manufacturer provides annual estimated 
savings for replacement (EEM measure) and these savings are subtracted from the total end-use 
consumption savings, it is possible to determine approximate savings based on driving behavior 
alone (BEM measure). 

In our analysis, we applied a similar strategy to recover the energy consumption trend for 
only the BEM activities by using energy consumption data in both the reference period and 2013 
to estimate savings that occurred in 2013. 

 

 
Figure 1. Facility energy consumption trends under different scenarios. 
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Figure 1 illustrates energy consumption trends for an example facility. It engaged in 
NEEA’s industrial initiative for SEM (including both BEM and EEM) starting in 2009. Between 
2009 and 2013, the facility implemented EEMs. We grouped projects by when they were 
completed in three phases: 2009-2011 (EEM1), 2012 (EEM2), and 2013 (EEM3). The solid line 
in black represents the energy consumption (billing) data that are directly available. The dashed 
lines in green, blue, and red represent recovered trends under three reference scenarios. For 
example, the blue dashed line recovers what energy consumption would be if only the BEM 
actions had been implemented. The red dashed line recovers what consumption would be if only 
the BEM actions and EEM1 had been implemented. 

 

 

Figure 2.  Recovered consumption trend of the scenario when only BEM was implemented 
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Next, the question is how to recover the green and blue dash lines based on the 

consumption data and the bottom-up estimated savings. 
Figure 2 illustrates the procedures for recovering the blue dashed line (only BEM 

activity) by allocating bottom-up savings. In the top subplot, end-use consumption data (gray 
solid lines) are used as the baseline. During 2012, we add the bottom-up EEM2 saving on top of 
the baseline. This recovers the energy consumption trend (blue dashed line in the middle subplot) 
if only the BEM and EEM1 actions are implemented. To distinguish the effect by the EEM1 
program, we add the estimated EEM1 savings to each year from 2009 to 2013, because measures 
implemented in 2009 are expected to persist into 2013. Eventually, we obtain the needed trend 
(blue dashed line) in the bottom subplot that represents the trend when only the BEM actions are 
implemented. 

With the recovered energy consumption trend, and production and weather data during 
the same period time, we conduct a regression to obtain the coefficients of the top-down model. 
Eventually, we use the resultant model to predict energy consumption in 2013. 

Thus far, we have demonstrated how to recover BEM savings. In the following 
paragraphs we will describe how to recover the green dashed line, which is the scenario that no 
BEM and EEM actions had been implemented at all. We start with the facility energy 
consumption one year prior to SEM activity. SEM was considered to be effective when the 
facility achieved the sustaining level as defined by NEEA. This energy consumption serves as 
the reference for evaluating the consumption change in 2013. Take the facility in Figure 3 as an 
example. The SEM activity became fully effective in 2009. Energy consumption in 2008 (green 
solid line in the top subplot) becomes the reference. 
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Figure 3.  Recovered consumption trend of the scenario without any programs. 
 

To compensate for the production difference between the reference year and evaluation 
year, we adjust the reference year’s energy consumption ( ) by the production ratio between 
the evaluation ( ) and reference ( ) year. This adjusted consumption (the green dashed 
line in the bottom subplot) becomes the final baseline in the evaluation year ( ) for 
calculating the savings. Mathematically, 

. 

To this end, we have recovered all consumption trends needed for estimating the energy 
savings due to BEM activities. 

Model Specification 

By examining the original time series of production and energy consumption, we 
identified a strong linear relationship between them. Figure 4 demonstrates such observations 
between total energy consumption and production for all 10 facilities. 
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Figure 4.  Scatter plots of normalized production and total energy consumption for each of 
the 10 involved facilities. 

 
In previous evaluation of similar facilities located in the same region, local temperatures 

were found to influence energy consumption to a limited, but measureable, extent. Therefore, we 
tested two top-down models with different sets of independent variables: (1) the production ( ) 
only model (P model) and (2) the production, HDD, and CDD model (PHC model). For both 
models, the dependent variable, energy consumption ( ), is represented as linear combinations 
of independent variables. Mathematically, P model:  

 
PHC model: 

 
 

where , , , and  are regression coefficients, ,  are intercepts,  is the residual, and  is the 
time index. 

Modeling Results 

Production Model with and without Weather Effects 

Both the P and  PHC models demonstrated excellent accuracy in tracking energy 
consumption for all involved facilities. The average correlation coefficient between fitted values 
and observed measurements is above 0.90. Given the uncertainties of data collection, and the 
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relatively low data resolution, this is a relatively high GOF result. Figure 5 shows gas-modeling 
results from both models for one example facility. Other facilities and electricity modeling 
demonstrated similarly good results. 

 

 
Figure 5.  Comparison of gas modeling produced by P model and PHC model. 

 
While both models tracked peak energy consumption (typically June to November) fairly 

well, the PHC model outperformed the P model in capturing the base loads circled in red in 
Figure 5. This is especially true when the production is zero. The extra HDD and CDD 
information enhance the top-down model’s ability to recover the fact that minimal energy 
consumption exists, even when there is no production. 

The Disaggregation Strategy 

Modeling results show that the disaggregation strategy to allocate bottom-up savings is a 
success. Modeling GOF of all facilities demonstrated an increase in the Pearson correlation 
coefficient (r) and a decrease in mean squared error ( ) with the strategy implemented. 
Consider the example of electricity modeling in Facility K as shown in  Figure 6, which 
compares the results when the disaggregation strategy is (and is not) implemented. The 
correlation coefficient increased significantly from 0.75 to 0.94 when bottom-up savings are 
included in the model. Similar results have been observed for gas modeling. 
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Figure 6.  Modeling of electricity consumption with (left) and without (right) the 
disaggregation strategy. 

 
The correlation coefficient improvements for all facilities are shown in Figure 7. For both 

electricity modeling and gas modeling, the correlation coefficient increased by 5.23%. On the 
other hand, Table 1 takes the PHC model as an example and shows that at the same time the 
mean squared error decreased by 63.24%. 
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Figure 7.  Correlation coefficient comparison with and without the disaggregation strategy. 
 
The mean squared error measures the overall fit (Schunn and Wallach 2005). In our 

modeling, this measure represents the exact deviation of modeling from the actual energy 
consumption, and hence it relates directly to the estimated energy savings. Consequently, a 63% 
reduction in the mean squared error significantly increases the accuracy of our estimated energy 
savings. 

Overall GOF 

With HDD and CDD as additional independent variables and the disaggregation strategy, 
the top-down model demonstrated excellent GOF results for both gas and electricity modeling. 
Table 1 lists the complete results of correlation coefficients for all facilities involved. The 
average correlation coefficients for electricity and gas modeling are 0.93 and 0.95 respectively, 
excluding Facility C. These excellent GOF results empirically suggest that the top-down model 
is able to capture system dynamics of energy consumption accurately. 

Therefore, the estimated savings produced by the top-down model are of statistical 
significance. 

 
Table 1. Goodness-of-fits of the top-down models. 

  
Without 

Disaggregation 
With 

Disaggregation 
Site Source r r 
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Without 

Disaggregation 
With 

Disaggregation 
Site Source r r 

electricity 0.846 0.8792 
A gas 0.9184 0.9365 

average 0.8822 0.9079 
electricity 0.4816 0.6909 

C gas 0.9184 0.9216 
average 0.7 0.8063 

electricity 0.8146 0.8146 
D gas 0.9391 0.9419 

average 0.8769 0.8783 
electricity 0.9641 0.9767 

E gas 0.9817 0.9817 
average 0.9729 0.9792 

electricity 0.9843 0.9859 
F gas 0.9144 0.9144 

average 0.9494 0.9502 
electricity 0.9633 0.9649 

G gas 0.9508 0.9508 
average 0.9571 0.9579 

electricity 0.9363 0.9427 
H gas 0.9819 0.9898 

average 0.9591 0.9663 
electricity 0.969 0.974 

I gas 0.9714 0.9723 
average 0.9702 0.9732 

electricity 0.7592 0.9464 
K gas 0.6285 0.8993 

average 0.6939 0.9229 
electricity 0.7914 0.9573 

M gas 0.8344 0.965 
average 0.8129 0.9612 

electricity 0.851 0.9133 
Overall gas 0.9039 0.9473 

average 0.8774 0.9303 

electricity 0.892 0.938 
Excluding C gas 0.9023 0.9502 

average 0.8972 0.9441 
 

It should be noted that the GOF results of facility C were poor with an average 
correlation coefficient being below 0.75, thus we were not able to fit a statistically significant 
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model to its data. The poor fit of the electric model likely reflects that factors other than 
production and weather drive energy consumption. The regression used data between 2010 and 
2012 to fit the model. During interviews, plant staff noted operational and raw material problems 
that resulted in higher energy consumption. The gas consumption results for 2013 reflect fuel 
switching from natural gas to wood. Because the modeling process does not account for fuel 
switching and the electric model had poor fit, we excluded facility C in the final summaries. 

Conclusions 

We developed a top-down modeling strategy to quantify and deconstruct changes in 
energy consumption for 10 NEEA facilities involved in NEEA’s Industrial Initiative. In our 
approach, monthly production and weather data were used as independent variables and a 
regression-based strategy that uses bottom-up savings to deconstruct total savings into BEM and 
EEM activities was applied. This method captured the underlying system dynamics accurately 
and demonstrated excellent GOF results with an average correlation coefficient above 0.94. 
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