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ABSTRACT 

This paper examines properties of compact fluorescent lamp (CFL) adoption in the 
Pacific Northwest and early adoption characteristics of light emitting diode lamps (LED) to 
glean similarities and differences.  CFLs were the emerging technology in the 90’s competing 
against the dominant incandescent bulb.  With the phase-out of incandescent bulbs due to 
Federal legislation (see EISA 2007), within the next few years, CFLs will initially be the 
dominant bulb and LEDs will be the emerging technology. There is much discussion as to 
whether LEDs can reach a price point that will make them cost-effective enough to displace the 
competition.  Although there is limited LED data due to its infancy in the market, information 
may be inferred from the more mature CFL market.  With 17 years of CFL data, diffusion of 
innovation parameters via Bass model estimation are calculated.  Additionally, own-price and 
income elasticities are calculated with more simple logarithmic functions.   

We find that CFLs are highly income elastic with a range of 6.10 to 7.80, implying that 
CFLs are a luxury good.  Own-price elasticity ranges from -0.94 to -2.99 supports strong price 
sensitivity.  Further, after 17 years, households in the Pacific Northwest have a CFL socket 
saturation of 24% while obtaining a peak market share of approximately 33% of all medium 
screw-based bulbs in 2008, suggesting that many consumers were never reached in this market.  
First cost and quality of CFLs were barriers that were never fully removed to attract these latter 
consumer groups, resulting in lost energy savings potential.  LEDs provide the most energy 
saving in the residential lighting market, so from a conservation perspective are highly desirable.  
LEDs are on the right track as their price forecasts show precipitous declines, but may remain 2 
to 3 times higher than CFLs.  Therefore, given the evidence of strong consumer sensitivity to 
CFL price, LEDs may not reach their highest possible saturation rate unless prices can drop more 
than expected or non-financial benefits outweigh consumer cost concerns. 

Introduction 

The Energy Independence and Security Act (EISA 2007), phasing out most traditional 
medium screw-based incandescent bulbs over the next two years, has created a new playing field 
for LEDs, CFLs, and Halogen bulbs.  LEDs and CFLs will get an additional market boost by a 
‘second’ phase of EISA which will prohibit the manufacture of general service lamps unable to 
meet an efficacy standard of 45 lumens per watt by year 2020 thus eliminating most Halogens 
from the market (LightBulbChoice.com 2014).  Navigant Consulting, Inc. and SAIC (2012) 
imply that the halogen market share is already in decline in light of the 2020 standard saying that 
the industry is foregoing investment of incandescent [infrared halogen] technology and instead 
focusing on LED technology.  The LED market has already experienced modest gains over the 
last 8 years.  In the DOE’s 2002 Lighting Market Characterization, zero residential LED bulbs 
registered in the survey, whereas the DOE’s 2010 Lighting Market Characterization reported 
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over 9 million residential LED lamps, although still a fraction of 1% of the total residential lamp 
market.  At least one regional residential stock assessment was consistent with the DOE.  
According to Ecotope’s 2012 Residential Building Stock Assessment for the Pacific Northwest, 
LEDs filled 0.7% of sockets, while Incandescents, CFLs, and Halogens filled 57%, 25%, and 
6.5%, respectively.   

Although it is likely that incandescent bulbs still fill the majority of housing sockets, they 
will need to be replaced with EISA compliant halogen bulbs, CFLs, or LEDs fairly soon.  The 
opinion about future consumer bulb choice is conflicting.  A recent survey by Sylvania, when 
asking about switching to more efficient lighting as a result of EISA, found that 46% of 
respondents planned to switch to CFLs, 24% will choose LEDs, while 13% plan to switch to 
halogen.  However, DNV KEMA Energy and Sustainability (herein referred to as DNV KEMA), 
in a 2013 lighting marketing study prepared for the Northwest Energy Efficiency Alliance, thinks 
that CFLs will be the least likely to succeed as a result of the EISA transition primarily due to 
quality issues surrounding the CFL.  Some of the quality issues, such as light rendering and 
on/off cycling time have improved (Eartheasy.com 2014), but dimming ability, low-temperature 
applications, spot lighting, and cycling time still remain a challenge (Earth Easy 2014).  After 
extensive searching, this author was unable to find any evidence that lighting manufacturers will 
further research and development to improve CFL quality.   

At least one major retailer seems to be less reticent in siding with LEDs.  In October 
2013, Walmart was offering a special promotion of 60 watt equivalent LEDs for $9 stating that 
consumers on average could save up to $134 over the lifetime of the bulb versus an incandescent 
bulb (The Verge 2013).  These activities are more consistent with the DOE’s LED 
prognostication, where they forecast LED lighting to represent 36% of the US market by 2020 
and 74% by 2030 (Lighting.Com 2014).  LEDs are the most cost-effective long-run option 
(Table 2).  The long-run savings of both the CFLs and LEDs are significantly higher than the 
halogen bulb.  And, with a longer-run savings of LEDs over CFLs of nearly $7.00 per bulb, 
filling several sockets could potentially create considerable cost and time savings.   

 

Table 2.  Cost comparison between LEDs, CFLs, Halogens, and Incandescent light bulbs. Data Source: Calem, R.E., 
December 2013, for lifespan, watts, and cost per bulb 

   LED CFL Halogen Incandescent 
Light bulb projected 
lifespan 

25,000 hours 8,000 hours 4,000 hours 1,200 hours 

Watts per bulb 
(equiv. 60 watts) 

10 14 43 60 

Cost per bulb $11 - $22  $1.50 - $7.00  $1.00 - $2.75 $0.41 - $1.00  

KWh of electricity 
used over 25,000 hrs 

250 350 1075 1500 

Cost of electricity (@ 
0.10per KWh) 

$25 $35 $107.5 $150 

Bulbs needed for 
25k hours of use 

1 3.125 6.25 20.83 

Equivalent 25k 
hours bulb expense 

$16.5  $13.28  $11.72 $14.68  

Total cost for 25k 
hours 

$41.5  $48.28  $119.22 $164.68  
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Substantial long-run savings would seem impetus enough for consumer decision-making, 

however first cost, as opposed to longer-run savings, is often times seen as a barrier to adoption 
(Kim et al. 2012) and was in particular for CFLs (Bonn 2012).  Recently, Greg LaBlanc, keynote 
speaker at the 2014 Efficiency Exchange, provided rationale for seemingly irrational decisions to 
forego the benefits of energy efficient alternatives.  He attributes consumers’ ability to ignore the 
relative financial benefit of a product over their initial expenditures to ‘hyperbolic’ discounting 
or the consumer application of differing discount rates depending upon the immediacy of the 
benefits (greater detail can be found at LaBlanc’s Efficiency Exchange transcript 2014).  Given 
the importance of first cost and the potential for irrational consumer behavior, bulb price is an 
underlying focus of this study.  
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Figure 1.  U.S. average monthly weighted LED prices based on 40 watt and 60 watt equivalent LEDs with trend line 
added.  Source:  LEDInside, CLEAResult, 2012 and 2013. 
 

LED prices have dropped precipitously since 2010 (Figure 1).  The prices in the graph 
below represent average selling prices of LED sales weighted averages of 40 watt and 60 watt 
equivalent medium screw-based bulbs.  From March 2010 and January 2014, approximately the 
first four years of commercialization for which market prices were reported; average LED price 
has fallen nearly 60%.  Comparatively, in the first four years of CFL commercialization, CFL 
prices fell by only 37.5% (Figure 2).  The next figure illustrates the larger drop in LED prices 
relative to CFL price (Figure 3).  This graph shows price indices for both CFLs and LEDs since 
their time of tracking inception.  For example CFLs were normalized by their 1997 price and 
LEDs were normalized by their 2010 price.   This relative drop in price illustrates that LEDs may 
‘take-off’ more quickly than CFLs.  Golder and Tellis (2004) explain take-off as the first 
dramatic increase in sales that often leads to a sustained growth in a new product’s sales.  They 
found that a 1% decrease in price leads to a 4.2% increase in the probability of take-off.  In 
addition to LED price declines that are supportive of increased sales, utilities are beginning to 
provide promotions for LEDs.  DNV KEMA (2013) showed that of the 18 utilities surveyed in 
the Pacific Northwest with 2012 outreach efforts that 4 utilities provided incentives for LED 
lamps, up from zero utilities the year before.   
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Figure 2. Average general purpose CFL bulb price and trend. Source: DNV KEMA, 
CLEAResult 2012 and 2013. 

 

 
Figure 3.  Price indices for CFLs and LEDs normalized by their respective first year prices. 
Source: Holland 2014. 

 
Nearly as important as price, income is also examined due to its relevance in the adoption 

process.  Meade and Islam note that ‘heterogeneity of income distribution has been cited by 
several authors as the driver of the S shape’ famously associated with Roger’s diffusion of 
innovation theory.  In brief, Roger’s theory espouses that the adoption process is successively 
made up of groups of adopters (Figure 4).  The adoption groups typically have similar socio- 
economic characteristics and behavioral/risk characteristics within group, but are heterogeneous 
between groups.  The earlier groups of adopters, such as the Innovators, typically have higher 
disposable incomes, higher education, and higher risk tolerance than later groups of adopters.  As 
a result, it is possible for an innovation to never reach full market saturation if the benefits do not 
outweigh the risks for the later groups.  The most commonly cited reason for failure of market 
adoption progress is inadequate price decline (Golder and Tellis 2004).   

1879-©2014 ACEEE Summer Study on Energy Efficiency in Buildings



 
Additionally, CFL diffusion parameters associated with the adoption of innovation and 

the S curve shape may provide some insights into LED adoption.  Golder and Tellis (2004) and 
Lund (2009) estimate take-off periods for several products ranging from consumer durables to 
electronics.  Peres et al. contends that take-off is a result of price reductions, which in turn 
reduces consumer risk.  This explains why take-off is much longer for durable goods, 35 – 45 
years, as opposed to less expensive White Goods (appliances and housewares), whose take-off 
ranges from 6 – 23 years.  Brown Goods (leisure goods and electronics) had the lowest take-off 
time period ranging from 2 – 17 years.  Lighting is not considered part of the Brown Good or 
‘status enhancing’ goods.  Instead, lighting is considered more of a houseware, and could expect 
similar take-off time periods.   

 
Figure 4. Adopter groups according to Roger’s Diffusion of Innovation 
theory. Source: Roger’s 1995. 

Another aspect of diffusion research which may provide analytical insights into new 
lighting products are the coefficient of imitation and the coefficient of innovation, two 
parameters of the Bass model (Bass 1969).  The coefficient of imitation accounts for internal 
influences or ‘word of mouth’ effects, while the coefficient of innovation is widely viewed as the 
effect of external or advertising effects.  These coefficients influence the shape of the curve.  The 
coefficient of innovation has a greater impact on the front end of the curve.  A purely innovative 
diffusion curve creates a more aggressive exponential shape.  Alternatively, a more imitative 
process creates the S curve shape.  The coefficient of imitation is always higher than the 
coefficient of innovation, hence the pervasiveness of the S shape.  Review articles on diffusion 
on innovation by Kohli, Lehmann, and Pae (1999) and Chandrasekaran and Tellis (2007) provide 
the following ranges for the diffusion parameters: 
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Table 3. Value ranges for coefficient of innovation and imitation from review of 
more than 200 products. Source:  Kohli, Lehmann, and Pae 1999 and 
Chandrasekaran and Tellis 2007 

Coefficient of Imitation 
0.38 – 0.53 Chandrasekaran and Tellis 
0.23 – 0.34 Kohli et al. 

Coefficient of Innovation 
0.0007 – 0.03 Chandrasekaran and Tellis 
0.0052 – 0.0115 Kohli et al. 

 
One could expect the diffusion parameters for LEDs to be somewhat similar to CFLs.  

Relative values of the CFL parameters within the suite of goods listed above may provide 
intuition into how a new lighting innovation may adopt.  With regard to price/adoption 
relationships, Kohli et al. echo the sentiment of Peres et al.  They explain that cheaper, less risk 
products, such as housewares have relatively higher coefficients of innovation.  Since, lighting 
falls within the housewares category, it may also be subject to the relative price sensitivity noted 
above. 

Other measurements of price sensitivity are income elasticity of demand and own-price 
elasticity of demand.  Income and price elasticities refer to the responsiveness of demand 
associated with income change and changes in price, respectively.  Elastic goods are price 
sensitive and will have an elasticity greater than 1.  Inelastic goods have elasticities between 0 
and 1.  A normal good means an increase in income causes an increase in demand.  A normal 
good can be income elastic or inelastic.  A luxury good means that an increase in income causes 
a bigger percentage increase in demand and would therefore have an elasticity greater than one.  
Allcott and Taubinsky (2013) found own-price elasticity of demand for CFLs to be very elastic.  
Using a test group and incentives equal to 20% of the bulb cost, they estimated CFL price 
elasticity to be approximately -1.5.   

This paper also examines income and price elasticities of CFLs to use as reference points 
for LED adoption1.  Next, we examine the CFL market adoption characteristics and some 
economic characteristics.  Examining these adoption, or diffusion characteristics will help 
explain how many years it took for the market to ‘take-off’, when it hit its maximum penetration 
rate, and provide estimates of its total penetration, or cumulative sales volume.  It is well known 
that the cumulative sales of many new innovations follow an adoption path that is sigmoidal or S 
shaped based on Roger’s theory of diffusion.  One of the most prolifically used models which 
captures this shape is the Bass (1969) model.  Therefore, this paper uses the Bass model to 
estimate the coefficients of imitation and innovation for CFLs to see what may be in store for 
LEDs.  Lastly, this paper estimates a future price trajectory of LEDs based on the existing price 
trend to draw some inferences about LEDs ability to saturate the market.   

Methodology 

As mentioned in the introduction, the focus of this paper is on the adoption characteristics 
of CFLs as a means to glean insights into possible adoption paths for LEDs.  Although both sales 
and price data are available for CFLs, sales data was unobtainable for LEDs.  An LED price 
series was created through actual and interpolated data.  LED prices were sporadically available 
                                                 
1 Due to declining investment in halogen R&D, along with increasing efficacy standards of EISA’s phase 2, 
halogens are not part of the analysis. 
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from LEDinside (2010 – 2014).  More specifically, monthly prices for sales weighted averages 
of 40w and 60w LEDs in the US market were taken from LEDinside’s online articles.  Also, 
approximately, 30% of the monthly values were missing, in which case prices were estimated via 
logarithmic interpolation.  Further, if monthly shelf survey data was available by CLEAResult 
(2012 and 2013), this data was used for any missing values.  There were some minor 
discrepancies between U.S. average prices and regional prices in the Pacific Northwest, however, 
the overall data trend looked reasonable (Figure 1).  LED forecasted prices are estimated based 
on the logarithmic trend produced in Figure 1 and expressed in Equation 1.   
 

Pt = -7.777ln(t) + 49.024     (1) 
 
where P is price at time t.  It is the first cost comparison of the LED price forecast with CFLs that 
will provide insights into the potential success of LEDs.  Annual general purpose CFL prices 
were taken from annual shelf surveys conducted by KEMA DNV as part of NEEA’s CFL 
initiative. 

In addition to price analysis, we examine some CFL adoption characteristics using the 
following Bass estimation: 

 
Ү(t) = m[(1-e-(p+q)t)/(1 + (q/p)e-(p+q)t)]   (2) 

 
where, Y(t) denotes cumulative adoptions at time t, m is the market size, p is the coefficient of 
innovation, q is the coefficient of imitation, and e is the exponential function.  For a full 
derivation of equation 1 refer to Bass (1969).  Adoptions are gross sales of CFLs in the Pacific 
Northwest, including sales that are used for replacements.  A nonlinear estimation technique is 
used to derive the parameters. 

We also want to examine income and own-price elasticity.  Ideally, one would want to 
control for underlying sales dynamics resulting from diffusion (Tellis 1988; Parker 1992) with 
functional forms suggested by Jain and Rao (1990).  However, the limited number of 
observations does not allow for the inclusion of the explanatory variables, income and CFL 
price, in Eq 2.  Another consideration is that autocorrelation is common in time series, so a 
simple autoregressive model (AR1) corrected for first order autocorrelated errors is used to 
estimate elasticities with the following function 

 
Ү(t) = ln(Хt) β + μt ,     (3) 

 
μt = ρμt-1 + ԑ      (4) 

 
where β’s and ρ are coefficients, and Хt = x1, x2 represent logged price and logged income.  
Prices reflect general purpose, medium screw-based CFLs (DNV KEMA 2013).  Income reflects 
population weighted average state income for Washington, Oregon, Idaho, and Montana.  All 
models were estimated using the software package, Regression of Time Series Analysis by 
Estima 2010. 
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Results 

As expected, there were not enough observations to get the Bass model to converge while 
including the independent variables, income and price.  However, the simplified Bass model 
provided a reasonable fit of the data.  Graphs of the annual and cumulative actual data, and their 
Bass prediction curves (Figures A1 and A2), followed by the estimation results are provided in 
the appendix (Table A1).  The coefficient of innovation for CFLs is 0.001, falls within the 
coefficient range supplied by Chandrasekaran and Tellis, but below the range of surveyed good 
analyzed by Kohli et al. in Table 2.  This may be due to the relatively high price of CFLs 
compared to incandescent bulbs, as well as the degree of their ‘innovativeness’, ie. the bulbs look 
quite different from incandescent bulbs and are perceived to not perform as well (DNV KEMA 
2013).  Conversely, the coefficient of imitation is relatively high at 0.48 suggesting most of the 
growth in sales occurred in the latter stages of the CFL life cycle.  Correspondingly, the period of 
most rapid growth occurred in 2006, nine years after marketing efforts began.  Additionally, 
CFLs reached a maximum market saturation rate of 33% in 2008.  Although it is expected that 
bulb sales will decline as sockets are filled with more efficient bulbs, the fact remains that CFL 
socket saturation only reached 24% suggesting that the latter adoptive groups were never 
reached.   

In addition to the diffusion parameters, income and own-price elasticities were also 
calculated.  The first equation estimated was a simple log linear model, however, the errors 
presented autocorrelation, as predicted. The estimation was then run using an AR(1) model, as 
defined by Equations (3) and (4) in the methodology, of logged price and income on logged sales 
(Table A2).  This estimation was challenged given a usable observations limit of 16.  However, 
the results of this model gives reasonable results, i.e. realistic coefficient values, correct signs, 
and reasonable significance given the limited data.  It is most likely that collinearity exists.  Due 
to limited data the model is unable to distinguish between price and income effects as evidenced 
by a high R2 of 0.89 when logged income is regressed on logged price (not shown in the 
Appendix).  As a result, individual AR(1) regressions of price and income against sales were 
used to provide elasticity relationships (Tables A3 and A4).   Elasticity results from all three 
regressions provide a range of elasticities.  The own-price elasticity ranges from -0.94 to -2.99 
indicating strong price sensitivity.  Income elasticity ranges from 6.10 to 7.80 strongly indicating 
that CFLs are a luxury good.   

Lastly, estimated LED prices using the existing price trend, indicates that average annual 
price per bulb may drop to $11.50 by the year 2020 (Figure 5).  Assuming that the CFL price 
trajectory will also follow its historic path, future CFL price will hover around $4.00, making 
LEDs 2 to 3 times more expensive by the year 2020.  This LED estimate may be high.  IHS 
forecasts an average of $12.70 per bulb in 2014, much lower than the extrapolated average of 
$18.24.  Further, Huston contends that a LED “price war” will erupt in 2014 possibly driving 
prices downward at a rate exceeding the forecasted trend.   

Conclusions 

For long-run adoption success, the question is ‘can the benefits of long-run savings 
outweigh the barrier of first cost?’  To examine this question, the adoption characteristics of 
CFLs are examined.  The Bass model estimation suggests that CFLs are in a decline phase 
despite the advent of EISA.  Often cited reasons for the decline are quality concerns and the 
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availability of cheap substitutes such as halogens bulbs.  Although to a much lesser extent, LEDs 
seem to have some of similar quality issues that have nagged CFLs (Green American 2010; 
AZCentral.com 2014).  However, Philips, Osram, GE and other major manufacturers seem 
highly motivated given price their price incentives.  Additionally, utilities will start to provide 
significant rebates which will reduce the price even further.  Some believe that LEDs will 
eventually replace all incandescent bulbs with CFLs only a temporary solution.  Nonetheless, the 
results of this research suggest that in the lighting market, CFL bulbs are highly income and 
price elastic. It is the belief of this researcher that LEDs may be subject to similar price 
sensitivity.  Time will tell consumers how consumers will weigh the non-financial benefits of the 
LEDs over LED first cost.   

 

 
Figure 5.  Actual and projected LED average prices for 40 watt and 60 watt equivalents.   
Source: Holland, 2014. 
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CFL Actual vs Predicted Sales
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Figure A1.  Annual CFL sales versus estimated annual sales produced by a simple Bass model.   
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CFL Actual vs Predicted Cumulative Sales
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Figure A2.  Cumulative CFL sales versus estimated cumulative sales produced by a simple Bass model.   
 
 

Table A1.  Results from bass model estimation 

Nonlinear Least Squares - Estimation by Gauss-Newton 
Dependent Variable SALES   ; Annual Data From 1997:01 To 2012:01 
Centered R^2             0.90112;   ;  Uncentered R^2       0.96117 
Mean of Dependent Variable    8044928.375   ;  Std Error of Dependent Variable      6680220.6536 
Standard Error of Estimate       2256368.578   ;  Sum of Squared Residuals             6.6185e+013 
Log Likelihood                          -255.1102       ;  Durbin-Watson Statistic                    1.5864 

 
    Variable                    Coeff           Std Error        T-Stat       Signif 
1.  P                           0.489063         0.054508       8.97233    0.00000062 
2.  Q                          0.001334         0.000685      1.94630    0.07355930 
3.  M                        144658398.318  11822539.005      12.235    0.00000002 

 
Table A2.  Results from autoregressive model of logged price and income on logged sales.   

Regression with AR1 - Estimation by Beach-MacKinnon 
Dependent Variable LNSALES   ;  Annual Data From 1997:01 To 2012:01 
Centered R^2    0.94813  ;  Uncentered R^2     0.99941 
Mean of Dependent Variable       15.15182    ;  Std Error of Dependent Variable    1.67517 
Standard Error of Estimate      0.44551                ;  Sum of Squared Residuals         2.18331 
Log Likelihood                          -7.1040                ;  Durbin-Watson Statistic             1.19950 
 
    Variable                        Coeff        Std Error       T-Stat        Signif 
1.  Constant                     -47.05411576   26.25260737     -1.79236    0.10058941 
2.  LNINCOME                 6.10350494    2.41790436      2.52430    0.02825876 
3.  LNPRICE                       -0.94540904    0.77473377     -1.22030    0.24786567 
4.  DUM2001                        1.16199221    0.37149532      3.12788    0.00961396 
5.  RHO                            0.69875280     0.31200375      2.23957    0.04673684 
 

Table A3.  Results from autoregressive model of logged income on logged sales 

Regression with AR1 - Estimation by Beach-MacKinnon 
Dependent Variable LNSALES   ;  Annual Data From 1997:01 To 2012:01 
Centered R^2        0.94303        ;  Uncentered R^2      0.9993546 
Mean of Dependent Variable       15.15182     ;  Std Error of Dependent Variable   1.67517 
Standard Error of Estimate          0.44700    ;  Sum of Squared Residuals          2.39772 
Log Likelihood                            -8.0044         ;  Durbin-Watson Statistic                1.0210 
 
    Variable                        Coeff        Std Error       T-Stat       Signif 
1.  Constant                     -66.48776223   18.43731957      -3.60615   0.00360499 
2.  LNINCOME                7.80585242     1.76956319       4.41117    0.00084861 
3.  DUM2001                   1.23892110     0.35127181      3.52696    0.00416969 
4.  RHO                            0.78845864     0.18958101       4.15895    0.00132526 
 

1959-©2014 ACEEE Summer Study on Energy Efficiency in Buildings



 
Table A4.  Results from autoregressive model of logged price on logged sales 

Regression with AR1 - Estimation by Beach-MacKinnon 
Dependent Variable LNSALES   ;Annual Data From 1997:01 To 2012:01 
Centered R^2     0.91700 ;  R-Bar^2       0.89625    ;  Uncentered R^2     0.99905 
Mean of Dependent Variable        15.15182           ;  Std Error of Dependent Variable   1.67517 
Standard Error of Estimate         0.53957               ;  Sum of Squared Residuals         3.49365 
Log Likelihood                         -10.6238              ;  Durbin-Watson Statistic                1.7471 
 
 
    Variable                        Coeff        Std Error       T-Stat       Signif 
1.  Constant                      20.19694647    0.75746749      26.66378   0.00000000 
2.  LNPRICE                    -2.99927162    0.41945411      -7.15042   0.00001164 
3.  DUM2001                   1.13952822     0.50292272       2.26581   0.04276009 
4.  RHO                            0.41385777     0.31759338       1.30311    0.21698845 

1969-©2014 ACEEE Summer Study on Energy Efficiency in Buildings


