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ABSTRACT 

A utility program considers four key variables when assessing the cost-effectiveness of 
an energy efficiency measure: energy savings, peak demand savings, measure costs and effective 
useful life (EUL).  Of these four variables, programs typically place the least emphasis on setting 
and updating measure costs.  For this analysis, we explore measure costs by mining program 
participant data across multiple regions over a four year period. Our analysis focuses on a select 
group of top retrofit measures in commercial programs, where the incremental cost is equal to 
the full measure cost. We examine how costs change year-to-year and across different 
geographic regions. Our analysis found that: 

 Regional differences can have a very significant impact on average measure cost ranging 
from 7% to 51%, with an average of 22%. 

 Temporal differences can also have a significant impact ranging from 1% to 24%, with 
an average of 9%.    

 Variables such as project size and changing market conditions can have significant 
impacts on costs over time.   

 
These observations support our best practice recommendations to base measure cost estimates on 
the region where the program is located and to update those cost estimates at least every two to 
three years.  

Introduction  

Energy efficiency programs are continually being refined and improved.  Each program 
cycle brings new ideas, measures and plans for reaching more customers and achieving deeper 
energy savings than the previous year.  While this process emphasizes accurately updating 
reported energy savings, many utilities and program implementers pay less attention to other 
measure characteristics, namely measure cost.  This metric is a major contributor to determining 
cost-effectiveness and it influences how optimal measure incentive rates are set.  In the 
whirlwind of continuous program improvements, it is not uncommon for programs to use 
measure costs developed in other regions from past years, even for high-impact measures for 
which local and more recent data sources may exist. This paper presents the analytical approach 
to and results from examining data sets from six commercial, prescriptive energy efficiency 
programs.  Our goal was to understand measure cost impacts and trends over time and across 
regions for several high-impact measures.  

There is a very wide range in the level of breadth, detail, and frequency for collecting and 
updating measure costs. Some regions in the US are more rigorous than others. On one end of 
the spectrum is California, home of the Database for Energy Efficiency Resources (DEER). 
DEER houses all of the pertinent information on over 100 measures, with cost and other details 
on multiple permutations of each measure. There have been four comprehensive measure cost 
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studies in California since 2001, as well as several intermediary updates and revisions. The latest 
DEER draft measure cost study (Itron, 2014) builds on the work of DEER 2005 and 2008 
(Summit Blue, 2005) (Keneipp and Yim, 2009), and uses a variety of data collection and analysis 
techniques listed below. The Pacific Northwest, through the Regional Technical Forum (RTF), 
has developed similarly robust techniques for collecting and reporting measure costs (Navigant, 
2012).  The Northeast completed a two-phase study over several years reporting measure costs 
for seventeen high-impact measures (Navigant, 2011) (Navigant, 2013).  Efficiency Vermont 
performs periodic queries of its databases when updating certain measure cost estimates reported 
in Vermont Technical Reference User Manual (Efficiency Vermont, 2013). The Illinois 
Technical Reference Manual (VEIC, 2013) similarly includes cost data for some high impact 
measures obtained from a regression analysis of program data collected from 2008-2010 (DNV 
GL, 2010).  

By examining and presenting cost data for select measures across various regions over 
time, we hope to add perspective on when it may or may not be advantageous to borrow cost 
data from a neighboring region. We also will show the process and results of using large 
quantities of actual program data for cost inquiries, as opposed to using other techniques. 

Methodology 

General  

The data sources and analysis options commonly cited by rigorous measure cost studies 
are listed below (Summit Blue 2008)1. The bulk of the data presented and discussed in this paper 
originates from utility program projects. The exceptions are the examples where we compare our 
results to the results of secondary sources, like DEER.  The tables and figures focus on using the 
arithmetic mean, the median, and the second and third quartiles to show trends over time and 
across regions.     

 
Cost Data Sources: 
 

 Website data collection 
 Point of sales data 

 On-site data collection at retail 
 sources 

 Manufacturers / distributors  Utility program databases 
 Contractors / design professionals  Secondary sources (RS Means, 

TRMs) 
Data Analysis Approaches: 
 

 Arithmetic mean  Weighted average 
 Regression modeling  Custom cost estimates 

 

                                                 
1 A through explanation of these sources and analysis options, as well as discussion on the pros and cons for each  
can be found within the referenced material.   
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Data Acquisition, Standardization and Cleanup  

In the first phase of this project, we collected, standardized and cleaned the data for six 
commercial prescriptive programs. Table 1 shows the regions, time frames and number of 
prescriptive projects in the original data set. We removed any combination projects, such as 
prescriptive and custom or electric and gas. The names of the programs are withheld to preserve 
confidentiality. The east region includes one program, which reduces the significance of the 
temporal and regional comparisons.      

Table 1. Approximate number of prescriptive-only projects paid per year 
within original data set 

 

Region States Program 2010 2011 2012 2013 

West 
Within and west 
of Rocky Mtns 

Program A 400 2,800 4,000 2,900 
Program B 800 700 900 700 

Central 

In between Rocky 
Mtns and 

Applachians 

Program C 2,900 5,900 9,600 5,600 
Program D 3,600 4,200 5,700 4,600 
Program E 2,600 4,800 5,600 4,800 

East 
Within and east of 
the Appalachians 

Program F 3,900 3,500 1,600 700 

 
Next, we standardized the data by grouping measure categories, subcategories and names 

using a common taxonomy and system of units. For example, a “2-lamp 4’ T12 to 2-lamp 4’ T8” 
retrofit measure and a “1-lamp 4’ T12 to a 1-lamp 4’T8” are both classified as a 4-ft T8 lamp and 
ballast retrofit, with the first having a unit multiplier of 0.5. In our analysis, we looked at a 
sample of measures that were relatively easy to compare.  

After we mapped the measures to a common set of names and units, we further trimmed 
the data to remove projects with multiple measure types. This resulted in projects that covered 
about 30% of the total number of projects and 40% of the total kWh savings. It is common for 
programs to record a variety of measures for a single project, but most only capture one project 
cost value for all of these measures. We tested whether dropping multiple-measure projects 
introduces sampling error since single-measure projects could, on average, be smaller than 
multiple-measure projects, and therefore cost more per unit.  We found that the bias in measure 
cost when focusing on single-measure projects for the “New T5/T8 Fixture” measure was about 
half a percent, and estimated the cost bias for the “4-ft T8 Lamp and Ballast Retrofit” measure to 
be about 2.6%. These biases are small compared to the differences we found when looking at 
regional and temporal impacts, so we felt that dropping multiple measure projects to be an 
acceptable and simplifying analytical approach.    

After removing multiple measure projects and calculating the cost/unit for each record by 
dividing the listed project cost by the number of units, we removed the projects with cost/units 
that were extreme outliers. We used a common statistical approach, where extreme outliers are 
defined as any data point beyond three times the distance between the end of the first quartile, 
and the beginning of the fourth quartile from the median.    

It is a common practice for the programs sampled in this analysis to collect and record 
total cost data for the purpose of project capping. Project capping limits the incentive to be no 
greater than some percentage, usually 50% of the total cost, and 100% of the incremental cost.  
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These sampled programs typically allow external labor to be included in the total project cost 
(e.g. labor costs that appear on an invoice).  The cost/unit values we present in the next section 
come from projects which include external labor and those that do not, and thus represent an 
average cost/unit of those two groups.   

  
Primary Analysis, Results, and Discussion 
 
Measure Group 1: New T5/T8 Fixtures and 4-ft T8 Lamp & Ballast Retrofits 

 
Figure 1 shows how the price varies over time and region for two of the most common 

lighting measures, “New T5/T8 Fixtures” (most often found in high-bay applications, replacing 
high-intensity discharge fixtures), and “4-ft T8 Lamp and Ballast Retrofits” (commonly found in 
troffer fixtures in nearly all commercial building types). The grey area represents the middle 
50% of observations, the white line represents the sample median, and the data points represent 
the mean values. The bars around the sample mean are 95% confidence intervals, meaning that 
there is 95% confidence that the true population mean for that year and region lies within that 
range.    

 
Figure 1. Mean (with 95% confidence bars), median, 2nd and 3rd quartile of cost per unit of two of the most 
common lighting measures from 2010 to 2013 across different regions of the U.S.    

 
The central region has lower measure costs than the east and west regions. There is also 

some fluctuation in cost over time, trending slightly upward for both measures, but this temporal 
signal does not appear to be as strong as the geographic signal. After reviewing this data, the 
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next logical question we asked was, “How significant are the differences between the means 
from the various regions and years?” Figure 2 shows the range of the differences, depending on 
whether the data sets (cost data points from a single region within a single year) compared came 
from different regions only, different years only or from different regions and years. For 
normalization purposes, the differences are shown in terms of percentage of the overall average 
cost of $1.10 per Watt reduced for the “New T5/T8 Measure” and $16.08 per lamp for the “4-ft 
T8 Lamp and Ballast Measure.”   

 

 
Figure 2. Differences between sample means of the “4-ft T8 Lamp and Ballast” measure and the 
“New T5/T8 Fixture” measure, where differences are between data sets with 40 or more cost 
observations, and between cost data from a specific region in a specific year.   The n is the number 
of unique comparisons between samples (made up of unique regions and years), not the number of 
observations within each sample. 
 
Figure 2 further emphasizes that “New T5/T8 Fixture” and “4-ft T8 Lamp and Ballast” 

measure costs are influenced more heavily by region than by year. If a program were to 
extrapolate the results from this analysis to estimate what the loss of accuracy might be from 
using measure cost data for the “New T5/T8 Fixture” from a different region, that loss of 
accuracy would be between 7 and 25%, or 18% on average. Similarly, the estimate could be off 
by 1% to 18%, or 8% on average, if using data from a different year within the same region.    

  We performed standard hypotheses tests on all of the comparisons between samples, 
and found that nearly half of the comparisons between the means depicted in Figure 1 were 
significantly different. If we looked at only the comparisons that are significantly different, the 
average difference is about 6% above the values depicted in Figure 2.    
  Another observation, less specific to these two linear fluorescent measures, but still clear 
from Figure 1, is that the sample distribution (i.e. the grey area showing the middle two 
quartiles) is much wider than the confidence intervals around the mean. This means that a 
program can have a very accurate estimate on the average cost for any particular measure (useful 
for program level cost-effectiveness calculations), but a very poor estimate on the cost for an 
individual project (useful for project level cost-effectiveness calculations). Programs should 
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factor in these ranges because too narrow of a focus on a single average cost can rule out very 
good projects that people will do if they can find a cost effective way to do it.  
 
Impact of Project Size on Measure Cost 

 
In addition to geography and time, several other factors drive measure cost, such as who 

installed the measure, whistles and bells on the particular equipment, the saturation of the 
technology, and project size. Figures 5a, 5b, and 5c explore how project size affects cost of the 
“New T5/T8 Fixture” measure.    

Figure 3a shows the cost per Watt reduced of the “New T5/T8 Fixture” measure based on 
the size of the project in terms of total quantity of Watts reduced per project. The x-axis depicts 
the size of the project in one of four bins (less than 5,000; 5,000-10,000; 10,000 – 30,000; and 
over 30,000 Watts reduced per project), and the y-axis depicts the cost per Watt reduced. The 
grey, shaded region represents the middle two quartiles, the white line represents the median, and 
the circles with the bars represent the mean at 95% confidence intervals.  There is a distinct 
downward trend in terms of cost, and the mean of each bin was significantly different from the 
mean value of each other bin, with the differences ranging from 7% to 34%. Figure 3b shows the 
regional variations in project size. Even more interesting is Figure 3c, which shows the variation 
in project size over time and clearly demonstrates that smaller projects become more prevalent 
during later years. This confirms that customers, contractors and program implementers aptly 
focused on completing larger projects earlier, and moved towards completing smaller projects 
later. These figures demonstrate that the specific characteristics of the market being served by 
the program (as well as program age) influence average project size, which influences measure 
cost.      

 
Figure 3a. Cost per Watt reduced for “New T5/T8 Fixture” measure as a function of project size in terms of 
thousands of Watts reduced per project.  Figure 3b. Percentage of New T5/T8 projects that fall into one of four 
different project size bins (<5,000 Watts reduced per projects to 30,000 or more Watts reduced per project), by 
region.  Figure 3c. Same as Figure 3b, but over time instead of by region.  

Variable Speed Drives 
 
Figure 4 depicts the measure cost of variable speed drives (VSDs) installed on HVAC 

fans determined from the analysis of the six sample programs, compared to third party sources, 
including Efficiency Vermont, California’s Database for Energy Efficiency Resources and 
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NEEP/Navigant’s 2013 measure cost study.  The costs are shown for common fan motor 
horsepower sizes of 100 HP and less. The median is represented by the white line, which tracks 
more closely with the other data sources than the mean.    

 

Figure 4. Mean, median, second, and third quartile costs per HP of VSD on 
HVAC fan by motor size, compared to DEER 2011, Efficiency Vermont 
(EVT) 2013, and NEEP/Navigant 2013. 

LEDs, Occupancy Sensors, EMS, and Refrigerated Case Lighting 

This paper would not be complete without reporting observations from several common 
measures, least of which being light emitting diodes (LED). There is a lot of recent literature on 
past and projected LED costs (PNNL, 2014), (Tuenge, 2014), (US DOE, 2013). Figure 5 shows 
costs for screw-based LED lamps over time in one program in the central US. Each point 
represents six months of data.  Not surprisingly, the costs are decreasing as expected, and in a 
relatively consistent manner to the recent CALiPER report (PNNL, 2014).   
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Figure 5. Cost per LED lamp over time in Program D. 

 
Figure 6 reports observations on several other common measures: Lighting Occupancy 

Sensors, LED Refrigerated Case Lighting and Energy Management Systems (EMS). This figure 
reports data from all three regions. In Figures 6 and 7, the grey areas represent the middle two 
quartiles, the white line represents the median, and the circles represent the means with 95% 
confidence intervals.      
 

 
 

Figure 6. Measure costs of three common measures from 2010 to 2013. 
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In examining Lighting Occupancy Sensors, our first observation is that the median drops 
considerably between 2011 and 2012, but the mean and inner quartiles remain the same. For the 
other measures investigated, the median and mean move in relative unison, but this example 
reveals that overreliance on any one particular measurement statistic may lead to an incomplete 
assessment of measure cost. This initial analysis also reveals that Lighting Occupancy Sensors 
appear to lack any discernible trends.  We surmise that this measure is more strongly influenced 
by project size and the nature of the fixtures where the sensor is being installed. It is possible that 
lighting occupancy sensors are getting more expensive because lighting control systems are 
becoming more sophisticated and are being installed on smaller projects.    

The LED Refrigerated Case Lighting measure also does not show a consistent trend in 
measure cost over all four years. Taking a closer look at our data, it appears that the lower unit 
costs in 2010 are attributable to a large number of projects (51 of the 149 observations) 
conducted across many locations for one large retail outlet.  In future analysis, we would 
consider grouping projects associated with one large chain together so their reduced costs exert 
less bias.   

For the EMS measure, there is a gradual decrease in measure cost over time, but the trend 
is less uniform than other measures. Again, we suspect that this measure is less reliant on cost 
changing over time, but on additional variables such as the scope and complexity of the building 
and of the new control system. We have also been seeing more chain accounts install this 
measure over time, which may account for the declining price trend.  

Conclusion 

Our analysis shows that measure costs vary significantly by region and over time. It also 
shows that certain key measures are coming down in costs, while others are increasing. The 
depth, breadth and frequency for developing costs vary widely across utility programs. By 
analyzing several years’ of data from utility programs in different regions we hope to bolster 
practices for effectively characterizing measure costs. The first step is to use cost data from the 
program’s region, or make the necessary region-to-region adjustments. The next step is to update 
this cost data at least every two to three years. These recommendations are based on our 
observations of six programs that showed considerable regional and temporal factors that 
influenced measure costs.  For two common lighting measures, we saw that costs vary from 
region to region by as much as 51%, and by as much as 24% within the same region but over a 
four year time frame.   

This analysis demonstrates that incremental measure cost is a dynamic variable that 
should receive routine and adequate scrutiny during successive program planning cycles. This 
information and methodology will equip program planners to maintain cost-effective 
measure/program offerings at the properly-tailored incentive levels and delivery channels.   
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