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ABSTRACT 

Linkages between climate change and energy demand are not well understood, yet energy 
forecasting requires their specification. This paper estimates two parameters that link energy use 
for space cooling to cooling degree days (CDDs). The first parameter is the set point 
temperatures for calculating CDDs; the second is the exponent for representing the relationship 
between changes in CDDs to changes in electricity consumption for space cooling. We find that 
the best-fitting CDDs have a set point of 67°F, for both residential and commercial buildings 
rather than the conventional 65°F. (Set points also vary by region, with warmer regions tending 
to have higher set points.) When CDDs are based on 65°F, the best fitting exponent is 1.5 for 
both residential and commercial buildings. The higher exponent indicates that space cooling is 
more climate-sensitive than is specified in the National Energy Modeling System (NEMS), 
which uses an exponent of 1.1 for commercial buildings. 

Introduction 

When climate variables are incorporated in energy demand modeling, many key 
questions emerge. Should models use temperature data or heating and cooling degree days 
(HDDs/CDDs), and if degree days are used, what is the preferred reference temperature 
assumption? Should wind and humidity be included, or are their impacts too insignificant after 
aggregation (Apadula, Bassini, Elli, and Scapin, 2012; Sailor, 2001)? What other factors need to 
be controlled to isolate the impact of climate change? This paper examines two methodological 
questions: what is the value of optimizing cooling degree day (CDD) estimates by allowing the 
set point for space cooling in buildings to deviate from 65°F and what is the best-fitting 
mathematical relationship between CDDs and electricity demand for space cooling in buildings? 
Based on these findings, we tackle one substantive question: how might an increase in CDDs 
impact electricity use for cooling over the next quarter century? 

Conclusions from the Literature 

Climate as a Determinant of Energy Demand in Buildings 

The link between weather and energy use has been widely used to explain and forecast 
energy consumption and to assist energy suppliers with short-term planning including power 
purchase contracts. Extending this logic, climate change impacts need to be incorporated into 
regional energy system planning to ensure an adequate supply of energy throughout the year and 
to meet peak demand. 

There is general agreement that a warmer climate will increase the demand for electricity, 
which is the dominant source of energy for air conditioning, and will decrease the end-use 
demand for natural gas and fuel oil, the dominant fuels used for space heating (DOE, 2013). In 
addition, it is generally agreed that fossil fuel consumption in buildings is more temperature 
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sensitive (perhaps 62%) than is electricity (at perhaps 16%), because electricity is used for so 
many end-uses other than space heating and cooling (EIA, 2005). 

In southern states the increase in cooling will generally exceed the decrease in space 
heating while in northern states (those with more than 4000 HDDs per year, specifically), the 
opposite would likely be the case (DOE, 2013 p.13; USGCRP, 2009). Primary energy 
consumption may increase with equivalent switching from delivered heating to delivered 
cooling, because of the energy-related losses associated with electricity generation, transmission, 
and distribution (ORNL, 2012a). In addition, regional differences in the fuels used for space 
heating will influence the impact of climate change on overall energy consumption. Amato, 
Ruth, Kirshen, and Horwitz (2005) investigate the implications of climate change for energy 
demand as a function of region-specific climatic variables, infrastructure, socioeconomic, and 
energy use profiles. Using data from Massachusetts, they find that when controlling for 
socioeconomic factors, degree-day variables have significant explanatory power in describing 
historic changes in residential and commercial energy demands. 

One early regional analysis (for four West Central U.S. states) concluded that “the 
hypothesized warming trend will translate into only small net increases in energy demand. Only 
25% of that region’s energy consumption is climate sensitive, with 20% dominated by heating 
and cooling in various sectors.” Darmstadter (1993) further concludes that technological 
possibilities and policy measures are available to mute any serious climatic effects on the energy 
sector. To illustrate the power of technology transitions and energy policies, it is noted that the 
U.S. decreased its energy use and yet grew its GDP in the years following the Arab oil 
embargo’s energy price shock. 

More recent publications have estimated larger increases in energy demand with global 
warming. In the climate change “side case” completed by the Energy Information Administration 
(EIA, 2005) for the Annual Energy Outlook 2005, warmer winters reduced projected total fossil 
fuel use by 2.4%, but space cooling requirements increased electricity use by 0.5%. The 
estimates for the climate change side case in 2008 duplicated the 2.4% decrease for space 
heating, but resulted in a larger increase for electricity (0.7%). Hadley, Erickson, Hernandez, 
Broniak, and Blasing (2006) estimate that a 1.2C increase in temperatures in the U.S. would 
cause primary energy use to increase by 2% in 2025 over what it would have been without any 
global warming. By the end of the century Mansur, Mendelsohn, & Morrison (2008) estimate 
much larger effects. 

Evidence to date suggests geographic variation in energy consumption sensitivities. D. J. 
Sailor (2001), for instance, found that a 2C temperature increase would result in an 11.6% 
increase in residential per capita electricity used in Florida, but a 7.2% decrease in Washington. 
Similarly, research by Scott, Wrench, & Hadley (1994) found that climate change had highly 
variable impact on commercial building energy demand across four U.S. cities. 

There is general consensus that climate change will cause a much greater change in peak 
demand than in total demand (EIA, 2005). Sathaye et al. (2013) estimate that the peak demand 
for electricity in California could increase by 10-25% by the end of the century.  The U.S. 
Environmental Protection Agency (EPA, 1989) concluded that climate change could require a 
14-23% increase in electricity capacity additions between 2010 and 2055, relative to a future 
with no climate change. An analysis of the Western Electricity Coordinating Council region by 
Argonne National Laboratory (ANL, 2008) estimated that 34 GW of additional electricity 
capacity would be needed by 2050 to meet increasing peak load requirements resulting from 
climate change. Such impacts pose particular stress on the electric grid, which is already 
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vulnerable to climate-related outages. The Executive Office of the President (2013) estimates 
that between 2003 and 2012 severe weather caused power outages that cost the U.S. economy an 
inflation-adjusted annual average of $18 billion to $33 billion. These costs include lost output 
and wages, spoiled inventory and delayed production, as well as inconvenience and damage to 
the electric grid. While there is evidence now of climate-related stress on the grid, increasing 
demand for electricity is not yet precipitating system failures (DOE, 2013). 

There is also a general recognition that residential energy consumption is more climate 
sensitive than commercial energy consumption. This difference is because homes have a higher 
ratio of building envelope surface area to interior square footage, increasing the importance of 
outdoor weather conditions. In contrast, energy use in commercial buildings is dominated by 
internal loads and is also highly affected by the time schedule of use of the premises (e.g., 
whether or not a school facility is also used in the evenings and on weekends). In a study of 12 
U.S. cities, Sailor & Pavlova (2003) found that residential electricity consumption increased 2% 
to 4% for each degree Celsius increase in ambient temperatures. However, D. J. Sailor (2001) 
concludes that it is difficult to generalize without first taking into account the many other non-
climatic factors that impact energy demand. 

The Mathematical Relationship between Temperature and Energy Consumption 

The relationship between energy consumption and temperature is modeled in different 
ways. There are four principal classes of approaches: linear symmetric models, linear 
asymmetric models, nonlinear models, and semi- or non-parametric models. Each model is 
unique in some key aspects and has certain advantages. 

A typical simplifying assumption in linear symmetric models is that energy demand for 
heating and cooling use the same balance point temperature and that energy demand responds the 
same to a marginal change in temperature (either warmer or cooler) which results in a V-shaped 
relationship between temperature and energy use. This model has historically been used in lieu 
of more sophisticated building model simulations in building sciences (Day, 2006) and in utility 
demand forecasting models (Engle, Granger, Rice, and Weiss, 1986).  

A base temperature of 65F is used most often in analyzing the space-conditioning 
temperature relationship. However, the actual balance point temperature depends on place-
specific characteristics of the building stock, non-temperature weather conditions (e.g., humidity, 
precipitation, and wind), and cultural preferences. The selection of the balance point temperature 
is critical with this approach, as it directly changes the degree day calculations. This selection 
can be optimized for the specific region and sector of the economy; for example, Amato et al. 
(2005) report that the balance point temperature for the commercial sector in Massachusetts was 
55F, below the 60F balance point temperature for the residential sector. Different types of 
models use different values, which are determined in different ways (see Brown, Cox, & Baer, 
2014). 

An example of an application of this model is the National Energy Modeling System 
(NEMS) utilized by the Department of Energy for national energy forecasts. It models the impact 
of temperature changes on final energy use by fuel type (f), building type (b), Census division 
(r), and year (y). This is done through a degree day adjustment in the commercial and residential 
sectors for space cooling consumption, as shown in the equation 1. 
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(Eq. 1) 

 
NEMS uses NOAA-supplied data on historical trends to project degree day values into 

the future, weighted by population for each census division. This projection takes the past decade 
average and adjusts it by projected shifts in population. Cooling receives an exponential 
weighting to model a non-linear relationship between energy consumption for space cooling and 
temperature; heating is not similarly treated. However, because the exponent is only 1.1, the 
result is imperceptibly non-linear. Therefore, we characterize the NEMS approach as a linear 
symmetric model. Other parts of NEMS estimation of heating and cooling service demand are 
nonlinear, such as, for instance, the inclusion of U-values to incorporate thermal resistance of 
building envelopes.  

An alternative to the V-shaped linear symmetric relationship is a non-linear asymmetric 
model, as shown in Figure 1. The literature suggests a difference between heating and cooling, in 
the relationship between weather-related energy consumption and temperature. It is often 
observed that a range of outdoor temperatures separates the balance points for heating and 
cooling, in which no indoor comfort equipment is utilized by occupants (ORNL, 2012a). Shorr, 
Najjar, Amato, and Graham (2009), Miller, Hayhoem, Jin, and Auffhammer (2008), and 
Hekkenberg, Moll, and Uiterkamp (2009) have incorporated dead zones into their models, but 
linear models using a single balance point temperature cannot accommodate this. Figure 1b 
portrays a nonlinear asymmetric relationship when a common 65°F set point is used and the 
exponent shown in Eq. 1 is significantly greater than 1. 

 
a. Linear Symmetric  b. Non-linear Asymmetric 

 

 

 

Figure 1. Alternative relationships between temperature and energy use. 

HVAC Equipment Penetration 

The impact of climate change on energy demand is strongly influenced by the penetration 
of HVAC equipment. This leads to regional differences in responsiveness. Warming climates 
will result in the increased use of existing air conditioning equipment (e.g., greater cooling loads  
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to compensate for bigger indoor/outdoor temperature differentials, more hours per day of 
cooling, and longer cooling seasons). Warming climates will also increase the penetration of air 
conditioning equipment.  

An extensive study of residential air conditioning (AC) penetration by Sailor and Pavlova 
(2003) used census-based data from 1994-1996 for 39 cities to estimate a relationship between 
climate and residential AC market penetration. More detailed studies of 12 cities showed the 
wide variation even between cities in the same states. Based on an assumed 20% uniform 
increase in CDD in those cities, they showed that in some cities increased market penetration 
accounted for two to three times as much of the increase in AC load and total residential energy 
as the short-term temperature response. Unfortunately city level data are not available in the 
residential energy consumption survey (EIA, 2009), so the changes since then are not readily 
known. 

Thermostat Management 

Evaluations of the benefits of new cooling and heating technologies often assume specific 
thermostat behaviors, or set points. California's Title 24 Standards, for example, assume a certain 
range of settings and frequency of daily changes in those settings. Until recently, data have not 
been available to test such assumptions. In 2001-02, the California Energy Commission 
conducted a demand response experiment that produced unique, high frequency observations of 
residential thermostat settings and internal temperature measurements, which allow testing of 
assumptions about thermostat behaviors. Comparing the thermostat settings observed in the 
California experiment with those commonly assumed in policy modeling indicates that people 
change cooling and heating set points much more frequently than has been assumed. Frequent set 
point changes, and the extreme diversity of set point behavior across the population, have 
significant energy implications. Woods (2006) uses Shannon Entropy to assess the consistency 
of thermostat settings, which can produce both higher and lower levels of energy consumption 
than is conventionally assumed. Based on these findings, the authors call into question the 
benefits of energy efficiency programs that focus on equipment replacement and choice.  

An hypothesis that thermostat settings have risen over time is tested using a repeated 
cross-sectional social survey of owners of centrally heated English houses. No statistical 
evidence for changes in reported thermostat settings between 1984 and 2007 is found 
(Shipworth, 2011). Contrary to assumptions, the use of programmable thermostat controls did 
not reduce average maximum living room temperatures or the duration of operation. Regulations, 
policies, and programs may need to revise their assumptions that adding controls will reduce 
energy use (Shipworth et al., 2010). Occupant behavior related to choices about how often and 
where air conditioning is used is important to understanding the impact of global warming on 
domestic cooling energy consumption. This is broadly confirmed by path analysis, where climate 
is seen to be the single most significant parameter, followed by behavioral issues, key physical 
parameters (e.g. air conditioning type), and finally socio-economic aspects (e.g., household 
income) (Yun and Steemers, 2011). 

It is important to take into account regional differences since global climate models 
predict variable impacts across regions of the U.S., and because energy resources and 
infrastructures vary across regions. Analysis of survey data shows that there is a substantial 
difference in reported thermostat settings between states and regions (EIA, 2009), with 
differences greater than 4F between the highest and lowest Census divisions. For example, the  
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average heating thermostat settings range from 65.9F (Pacific) to 70.2F (New England, and 
average cooling thermostat settings range from 71.3 (New England) to 75.5F (Mountain) 
(Table 1). 

       Table 1. Residential thermostat management of space cooling in the U.S., 2009 (in F) 

Census Division 

Daytime 
Temperature 
When 
Someone is 
Home 

Daytime 
Temperature 
When No 
One is Home 

Temperature 
at Night Mean* 

East South Central (ESC) 72.4 74.1 72.4 72.9 
West South Central (WSC) 73.4 75.9 73.2 74.2 
South Atlantic (SA) 73.9 75.4 73.6 74.3 
Mid Atlantic (MA) 72.2 74.3 72.4 73.0 
New England (NE) 71.3 71.3 71.3 71.3 
East North Central (ENC) 72.1 73.3 72.0 72.5 
West North Central (WNC) 73.1 74.8 73.2 73.7 
Mountain (M) 74.8 76.9 74.8 75.5 
Pacific (P) 73.6 77.1 73.7 74.8 
U.S. Mean: 73.0 74.8 73.0 73.6 

*The “mean” for each Census Division is calculated by the authors by an equal weighting of the three 
temperature time-of-day conditions averaged across the columns. The U.S. mean is weighted by electricity 
consumption for space cooling across the nine divisions. Source: EIA, 2009 

 
A review of 15 studies highlighted the variety of ways that balance points are estimated, 

and their range for different sectors and regions (Brown, Cox, and Baer, 2014). Five of the 15 
studies made exogenous assumptions about balance points, and 18C (64F) was the most 
common choice. Among the studies that estimated balance points endogenously, they ranged 
widely from 12C (54F), for California in 2004-2005 (Franco and Sanstad, 2008) to 24C 
(75F) for UK households in 1989-1990 (Henley and Peirson, 1997). 

Methodology 

A three-step methodology was used to estimate the best-fitting space cooling set points 
for calculating CDDs, and the best-fitting exponent to link increases in CDDs to increases in 
electricity consumption for space cooling.  

Step 1: Data Collection 

Electricity sales data come from EIA-826, a database of monthly state electricity sales by 
sector and utility, which enables aggregation to the nine census divisions, matching one of the 
principal scales of analysis used by NEMS. Data were collected for the 2003-2012 time period. 
Residential and commercial electricity sales data by state and month are compiled for the 50 
states plus DC. This enables a sectoral analysis of the relationship between outdoor temperatures 
and electricity consumption. The consumption data were de-trended for technological changes, 
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population, and square footage, using the method developed by D. J. Sailor & Muñoz (1997) that 
is similar to the approach used in NEMS. Detrending involves the following adjustments to raw 
electricity consumption data: 

 
 E(y) = Average yearly energy consumption over entire period 
 Fadj(y) = E(y)-1 SUM(E(m,y)) 
 Eadj(m,y) = E(m,y)/Fadj (y) 

 
We then estimate the electricity consumed for space cooling by identifying the “cooling” 

months typical of each state, and by estimating space cooling based on the increment of 
electricity consumption occurring during those months compared with the average for non-
cooling months. The cooling months range from 2 (in ME and VT) to 6 months across most 
southern states. Hourly temperature data comes from NOAA.1 Based on Thornton et al. (2013) 
and following ASHRAE practices, we use “emblematic” cities to represent the climate of the 
nine U.S. census divisions: 

 
 ESC – Memphis & Baltimore  ENC – Chicago & Burlington 
 WSC – Memphis & Houston  WNC – Baltimore, Chicago, & Burlington 
 SA – Houston, Memphis, & Baltimore  M – Boise, Helena, Phoenix, Albuquerque, &  
 MA – Baltimore & Chicago       El Paso 
 NE – Chicago & Burlington  P – El Paso, San Francisco, & Salem 

 
CDDs are calculated for each of the approximately 10-15 weather stations located in each 

emblematic city. The monthly values are summed and divided by the number of weather stations 
to produce average monthly CDDs for each emblematic city, which is then used to represent the 
states and DC in our study. 

After calculating the mean daily temperature for each weather station (Tmean=0.5 (Tmax + 
Tmin), CDDs are calculated for whole degrees between 55 and 80°F, using the following four-
step approach:2 

 
Temperature Day value (above threshold) 

Tmax ≤ Tthreshold 0 

Tmin ≥ Tthreshold Tmean − Tthreshold 

Tmean ≥ Tthreshold & Tmin < Tthreshold 0.5 (Tmax − Tthreshold) − 0.25 (Tthreshold − Tmin) 
Tmean < Tthreshold & Tmax > Tthreshold 0.25 (Tmax − Tthreshold) 

 
These data are used to estimate “best fit” set points, and associated CDDs, weighted by 

population and aggregated to the census division level. They are also used to evaluate the best-
fitting exponent, based on Equation 1. 

 

                                                 
1 NOAA’s National Climatic Data Center (NCDC) http://www.ncdc.noaa.gov/  
2 http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/faq.html#faq1.8 
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Step 2: Analysis Approach 

The set point with the best fit to each state’s consumption of electricity in residential and 
commercial buildings was determined using least squares regression analysis. The best fitting set 
point was the one with the highest coefficient of determination (e.g., adjusted R2). The first 
analysis holds the set point temperature at 65°F, following current convention. The second 
analysis matches the CDD data to the electricity consumption data compiled in Step 1, using this 
data to empirically estimate the best fitting balance point for each state in the sample. Regression 
analysis is the tool used to estimate the best fit. Using the best-fitting set points, CDDs are 
calculated, weighted by population, and aggregated to the census division level. 

Using both the 65°F set point and the optimized set point, we then evaluate the best 
fitting exponent to insert into Equation 1. NEMS assumes an exponent of 1.1; in our analysis, we 
evaluate the best fitting exponent again using regression analysis. 

Step 3: Comparison of Impact of Change 

The best-fitting version of equation 1 is used as a preliminary estimation of the impact of 
a 10% increase in CDDs. Based on USGCRP (2009), a 10% increase is illustrative of changing 
summers in NH (which would resemble NJ in a low emissions scenario by mid-century) and in 
IL (which would resemble AL in a low emissions scenario by mid century). Both of these shifts 
would be several times larger than a 10% increase in CDDs. 

Findings 

The optimized cooling set points range from 59-76°F across the 25 states plus DC in both 
of the sectors. On average, the best fitting set point temperatures generally resulted in improved 
the adjusted R2s by, on average, 3.3%, when compared with the adjusted R2s when a 65°F set 
point is used.  

In the residential and commercial sectors, the lowest best-fitting set points were in the P, 
NE, and ENC Census divisions, and the highest were in the WSC and SA divisions. Thus, there 
is a tendency for warmer states to have higher set points, perhaps reflecting cultural preferences, 
building stock differences, the penetration of cooling equipment, income, and electricity prices.  

This pattern is somewhat corroborated by the more aggregated data shown in Table 1, 
indicating that residential consumers in New England maintained the lowest thermostat settings 
across the nine Census divisions. The results of our estimates of “best fit” set points aggregated 
by Census division (Table 2), also shows that the two northern divisions (MA and NE) have 
lower best-fitting set points than the three southern divisions (ESC, SSC and SA).  
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Table 2. Best fitting set points and exponents 

Census 
Divisions 

Best Fitting Set Points 
Best Fitting Exponents with 65°F Set 
Point 

Residential Commercial Mean Residential Commercial Mean* 
ESC 68 67 68 0.98 -0.02 0.73 
WSC 73 74 73 1.53 2.14 1.71 
SA 72 72 72 1.41 1.87 1.54 
MA 63 63 63 1.12 1.09 1.11 
NE 61 56 59 1.76 1.56 1.69 
ENC 60 59 60 1.43 0.83 1.28 
WNC 69 65 68 0.78 0.71 0.76 
M 62 62 62 4.18 4.03 4.14 
P 52 56 54 0.62 0.63 0.63 
Mean* 67.4 66.8 67.3 1.49 1.50 1.41 

* The mean values are weighted by electricity consumption for space cooling across the two building sectors. When 
the set points are weighted by population, the means are 64.4 (residential), 64.3 (commercial), and 64.4 (both 
sectors). 

 
When weighting the five division means by average electricity consumption for space 

cooling, the grand mean set point for both residential and commercial buildings is 67°F–two 
degrees higher than the standard used in most energy-engineering models, including NEMS. 

Our analysis also suggests that the best-fitting exponent is higher than the 1.1 value used 
by NEMS. The weighted mean of the residential exponents is 1.49, and for the commercial 
exponents, it is 1.50 (Table 3). In other words, the buildings sector’s electricity consumption is 
more climate sensitive than is modeled in NEMS. There is no consistent North-South bias to the 
estimated exponents. But because they are significantly greater than 1.0, we conclude that the 
form of the relationship between temperature and energy use is nonlinear asymmetric. 
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Table 3. Difference in average annual electricity use for space cooling (2003 - 2012) 

 
Census 
Division 

Residential Commercial 

Exponent
Difference in Average 
Annual Electricity Use for 
Space Cooling (GWh)* 

Exponent
Difference in Average 
Annual Electricity Use for 
Space Cooling (GWh) 

ESC 0.98 3,191 (16%) -0.02 2,129 (30%) 
MA 1.12 -112 (-1%) 1.09 31 (0%) 
NE 1.76 -410 (-9%) 1.56 -146 (-6%) 
SA 1.41 -4,364 (-8%) 1.87 -2,698 (-12%) 
WSC 1.53 -1,346 (-3%) 2.14 -1,303 (-7%) 
ENC 1.43 -2,422 (-9%) 0.83 671 (8%) 
WNC 0.78 746 (6%) 0.71 353 (7%) 
P 0.62 -700 (-9%) 0.63 -516 (-9%) 
M 4.18 2,397 (20%) 4.03 2,397 (20%) 
Mean** 1.49 -336 (-1%) 1.50 -74 (-1%) 

*The difference is between the average annual electricity use for space cooling in each Census Division using 
the best fitting exponent minus the estimate using an exponent of 1.1 (as in Equation 1). 
**The mean values are an average across the nine Census divisions weighted by electricity consumption for 
space cooling (in 2007). 

 
On average, ceteris paribus, a 10% increase in CDDs evaluated with a 1.1 exponent 

linking it to electricity consumption would suggest an increase in residential and commercial 
electricity use for space cooling of approximately 11%. The same projections using an exponent 
of 1.5 would suggest a 16% increase in electricity demand for space cooling. With an exponent 
of 1.5 and a 50% increase in CDDs, the expected change in electricity consumption for space 
cooling would be 87%, which is 31% higher than with an exponent of 1.1. Such an increase in 
demand would require a significant build-out of new supply capacity and would put upward 
pressure on rates. 

Conclusions and Remaining Research Gaps 

Three conclusions can be drawn from this research. First, the best-fitting set point for 
calculating CDDs nationwide is 67°F, two degrees higher than the standard of 65°F. Second, set 
points vary by region, with warmer regions tending to have higher set points. Finally, when 
CDDs are based on set points of 65°F, the exponent linking CDD to energy use should be higher 
than the value of 1.1 currently used in NEMS – it should be 1.5 for both residential and 
commercial buildings. The higher exponent indicates that space cooling is more climate sensitive 
than is portrayed in NEMS; as a result NEMS underestimates energy use for space cooling, and 
it would be a significant underestimation if NEMS were to model a climate future that was much 
warmer than today.  

Much still remains to be done to more fully understand climate-driven changes in U.S. 
energy demand. The first major gap is the influence of climate change on the performance of 
HVAC equipment. Little research has examined the impact of climate change on the efficiency 
of heating and cooling equipment, although it is noted as an issue in Oak Ridge National 
Laboratory (2012a). In theory, HVAC systems should run better if they have variable capacities 
and are able to modulate effectively. 
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Second, to what extent will a warming climate cause upward pressure on electricity rates 
and to what extent will that increase electricity expenditures? Consistent with an increase in 
space cooling demand that requires new capacity to meet the peak-heavy new load, and without a 
commensurate increase in generation, the cost of meeting the new load is likely to increase. EIA 
(2005) estimates that global warming would bring about a much greater change in peak demand 
than total demand, resulting in higher average electricity prices, but the extent of this upward 
pressure on rates would benefit from further analysis.  

A third major gap pertains to public policies. Few studies have examined how alternative 
policies have influenced climate-driven impacts on energy consumption or how policies might be 
influential in the future. For example, how much influence could prospective building codes 
have, if they were updated to account for likely future climates, so that the building stock can be 
better prepared for changing climate conditions? Regulations and incentives that encourage 
planting urban shade trees, using high albedo roofs, and investing in more efficient air 
conditioning equipment could reduce energy requirements for space conditioning, but the 
possible range of such impacts on the temperature sensitivity of energy demand are not well 
characterized. In general, more analysis is needed to better understand policy actions and 
strategies to achieve such transitions. 
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