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ABSTRACT 

Access to smart meter data in the United States presents an opportunity to better 
understand residential energy consumption and energy-related behaviors. Air-conditioning (A/C) 
use, in particular, is a highly variable and significant contributor to residential energy demand. 
Most current building simulation software tools require intricate detail and training to accurately 
model A/C use within an actual house. However, integrating existing modeling software and 
empirical data has the potential to create highly portable and accurate models. Reduced-order 
models (ROM) are low-dimensional approximations of more complex models that use only the 
most impactful variables. In this paper, we report on the development of ROMs for 41 physical 
houses in Austin, Texas, using smart meter data. These models require outdoor dry bulb 
temperature, thermostat set points and A/C energy use data to regress model coefficients. A non-
intrusive load monitoring technique is used to disaggregate A/C electricity consumption from 
whole-house electricity data reported by smart meters. Thermostat set points are provided by 
smart thermostats. Once trained, the models can use thermostat set points and dry bulb 
temperatures to predict A/C loads. The ROMs are used to evaluate the potential of automated 
thermostat control to reduce the aggregate peak demand. A centralized model predictive 
controller reduces the aggregate peak load by adjusting the thermostat set points to pre-cool 
houses and staggers the time A/C units turn on. 

Introduction 

Residential energy use is a significant contributor to energy demand during peak hours. 
In particular, A/C use is highly variable and an important contributor to fluctuations in demand. 
In ERCOT (the Electric Reliability Council of Texas), residential loads account for nearly 50% 
of the summer peak demand, driven primarily by A/C use (Wattles 2011). The magnitude of this 
demand is heavily influenced by ambient conditions, such as outdoor temperature, solar radiation 
and human behavior. Shaping the residential A/C load provides an opportunity to diminish 
reliance on inefficient peaking power plants. One method of leveling peak loads is to use energy 
models to identify the human activity and weather factors that impact energy consumption, 
predict energy use, and finally, optimize energy use through shifting cooling loads via an 
appropriate operating schedule for the A/C. 

Residential energy modeling has been in practice in the United States for a number of 
years. Modeling software, such as eQuest and EnergyPlus work in a semi-empirical framework 
that utilizes first-principles equations to describe heat flow as well as empirical efficiencies of 
equipment in buildings (U.S. DOE 2014). The accuracy of the models has been evaluated using 
real energy data, particularly in commercial buildings, and results have varied (Lomas et al. 
1997; Christensen et al. 2010). While commercial software products are able to represent a 
thermodynamic model of a house, they require many details to accurately describe the effect of 
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behaviors and materials inherent in an actual house, such as insulation thickness and type, 
occupancy schedules and duct leakage. Also, the required training and time to calibrate the 
model is intensive and a deterrent to potential users in the residential sector where building types 
vary widely. While it may be reasonable to model a single house accurately, it would not be 
practical to accurately represent a group of houses or neighborhood. A recent observation on A/C 
behavior and energy consumption between houses revealed that the variance in consumption 
behaviors increases linearly with outdoor temperature (Perez et al. 2014). In other words, at high 
temperatures, when peak energy would be important, the discrepancy in energy use among 
houses is largest.  

In place of complex house models, we propose to use smart meter data to create simple, 
accurate and data-driven models of the A/C energy consumption. Smart meter data inherently 
contain information on the physical characteristics of houses and on human behavior. This 
research seeks to develop a method to regress parameters of reduced order models (ROMs) using 
these newly available smart meter data. ROMs are low-dimensional approximations of more 
complex models that reduce the number of variables to those that have the most impact. A ROM 
is effective in modeling individual houses because the dynamics, time constants and thermal 
capacity of houses, can still be captured. Several model-reduction techniques have been applied 
to building models, such as the lumped capacitance, resistance-capacitance (RC), autoregressive 
with exogenous inputs (ARX) and other simplified models (see Gouda, Danaher, and 
Underwood 2002; Karmacharya et al. 2012; Malisani et al. 2010; Anthony 2011). Reduced 
models are used in controls and optimization to reduce computational complexity when real-time 
solutions are needed. Cole et al. (2013) developed a ROM from an EnergyPlus model that 
determined air conditioning electricity consumption based on dry bulb temperature (DBT), 
thermostat set point temperature (Tsp), and time of day.  

In this paper, we report on the development of ROMs for individual houses using smart 
meter data. These models require ambient temperature, thermostat set points and A/C energy use 
(provided by smart meter data) to regress model coefficients. A non-intrusive load monitoring 
technique is used in order to separate A/C energy consumption from whole-house energy data 
reported by smart meters (Perez et al. 2014). From the regressed coefficients, the model is then 
able to use thermostat set points and dry bulb temperatures to predict A/C loads. Using these 
ROMs, automated thermostat control is investigated to determine electricity peak reduction. 

Methodology 

Method Outline 
 

An overview of the model creation process is shown in Figure 1. Whole-house electricity 
consumption data, thermostat set points, and dry bulb temperatures for 41 physical houses in 
Austin, Texas, were provided by the Pecan Street Smart Grid Demonstration Project in 1-minute 
time intervals from to June 1st through July 20th, 2013 (details about the data are provided in the 
“Data” section). The ROM used in this investigation requires A/C energy usage, so A/C energy 
use was disaggregated from the overall energy profile using a technique previously developed in 
our research group and described in (Perez et al. 2014). In this technique, the magnitude of 
change in load that signals the A/C turning on or off is found, which is then used to identify on 
and off events of A/C use. The specific form and parameters of the ROM model are discussed in 
detail in the “Model Form” section. Generally, the ROM uses previous values of A/C energy, dry 
bulb temperature and indoor set point temperature to predict A/C energy use at the next hour. 

27311-©2014 ACEEE Summer Study on Energy Efficiency in Buildings



The smart meter data were separated into a training dataset and a validation dataset. The training 
dataset contained approximately 75% of the smart meter data and was used to regress model 
coefficients. The validation dataset contained the remaining 25% of the data and were used for 
validation purposes. 

 

 
 

Figure 1. Diagram of individual house model creation process. 

Data  
 

Overall energy use and thermostat set points for 41 individual houses in the Mueller 
district, Austin TX were provided by Pecan Street Inc. in 1-minute time intervals. This 
granularity of data was chosen to provide accurate estimations of A/C load. However, previous 
work has shown that 5-minutes interval data is sufficient to separate A/C energy use from whole 
house energy data (Perez et al. 2014). Each house was metered with an eGauge power monitor 
that reported whole-house power consumption in watts (Rhodes et al. 2014). The homes were 
equipped with smart thermostats as well as that recorded the thermostat set point. The time 
period for data collection was limited to June 1st through July 20th, 2013 because smart 
thermostats that report set points have only been installed recently and further data were not 
available. In the ROM proposed by Cole et al. 2013, the model estimated A/C usage in hourly 
intervals using hourly inputs. The ROM hourly model was chosen because the model is linear, 
which simplifies the control and optimization problem later discussed. The on/off behavior of the 
A/C unit makes it difficult to fit an empirical model at finer time intervals and further research is 
required to develop an accurate model. Thus, the average A/C usage and temperature set points 
were averaged in one-hour time intervals. Outdoor air temperature was taken from a local 
weather station. 

The Mueller neighborhood consists mostly of newer (since 2007), green-built houses and 
has a large amount of new technology penetration, such as rooftop photovoltaic panels and plug-
in vehicles (Rhodes et al. 2014). The houses are equipped with electric A/C cooling units and 
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natural gas heating systems. A/C energy will refer to electricity use that is used to cool the 
houses. Table 1 gives results from an energy audit performed by the Pecan Street Research 
Institute and includes information on general housing characteristics. The statistics (average and 
standard deviation) refer to the neighborhood containing the 41 evaluated houses.  

 
Table 1. Mueller houses' basic characteristics. (Rhodes et al. 2014) 

Audit Field Average Median St. Dev. 
Year Built 2008 2008 0.7 
Number of Levels 1.7 2 0.5 

Conditioned Area (m2) 192.5 192.1 50.0 
A/C Capacity (kW) 10.6 10.6 2.8 
A/C Efficiency (EER) 10.6 11 1.4 
A/C Age 2008 2008 0.7 
HVAC Duct R-value 6.8 6 1 
Duct Leakage (%) 15.5 15 3.8 

 
Model Form 
 

The reduced-order model is an autoregressive with exogenous inputs (ARX) model, 
which means that it uses information from previous time steps to make estimates for the next 
time step. The formulation for the ROM derived by Cole et al. is given by 
 2
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where yi,j is the A/C electricity consumption for house i at time j, DBTj is the outdoor dry bulb 
temperature at time j, Ti,j is the thermostat set point for house i at time j, and parameters a-h are 
house-specific model coefficients (Cole, Powell, et al. 2013). The parameter hj allows for a 
different constant term for each time period of the day, which accounts for other disturbances 
such as occupancy and solar irradiation. It was determined in the previous study that the ROM is 
accurate when it includes the last two time step values of the dry bulb temperature and 
thermostat set point. Accuracy was only marginally increased when the number of time steps 
was increased. Similar findings were found when the ROM was applied to this data set. This 
model was chosen because the inputs to the model (the house thermostat set points) and the 
outputs (the hourly air conditioning electricity consumption) make it useful for developing an 
A/C house energy management system through thermostat control. 
 
 
 
 
 
 
 

27511-©2014 ACEEE Summer Study on Energy Efficiency in Buildings



Assumptions/Limitations 
 

It should be noted that the model given in equation (1) is only valid during cooling 
periods. Also, because this is a data-driven model, care must be taken to not over-extrapolate 
beyond the temperatures and set points observed in the training dataset. Because of the form of 
the ROM, the physical characteristics of the houses do not need to be specified. However, the 
inputs into the model give an inherent assumption that A/C energy use is primarily driven by the 
thermostat set point and outdoor air temperature. In practice, the accuracy of this ROM had an 
adjusted R2 value of 0.998 when compared with a detailed EnergyPlus model (Cole, Powell, et 
al. 2013). 

Results 

Reduced-Order Model Parameter Estimation Results 
 

For each house, the disaggregated A/C energy and temperature data for the first 75% (38 
days) of the data were used to regress the model coefficients in the ROM. Then, the remainder of 
the data was used to evaluate the accuracy of the derived model coefficients. A sample plot of 
the estimated energy values for the validation period is given for a sample house in Figure 2 on 
an hourly basis. For both the evaluated and training data, the estimated values closely align with 
the actual values. However, sharp increases in A/C use are dampened in the estimated energy 
values, and such changes in energy consumption are not always captured by the model. In 
addition, occasionally in the measured energy values there were zero energy hours during which 
the A/C was visibly off. Such events are not captured by the model estimations. There may be 
other unaccounted for events that resulted in a lower coefficient of determination. Although the 
R2 value for this home was 0.752, the estimated values still strongly align with the measured 
values. There were two houses included in the data set which had stationary thermostat set 
points. These two houses were removed from this analysis because it is impossible to estimate 
the c and f coefficients in equation (1) if the thermostat set point remains constant. The mean R2 

value house for the remaining 41 houses during the evaluated period was 0.769 with a standard 
deviation of 0.080. The min and max R2 values for the houses were 0.636 and 0.991. The mean 
difference between estimated and actual A/C electricity loads was 0.052 ± 0.026 kW hourly. 
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Figure 2. The top figure shows the hourly measured and estimated energy consumption from the A/C 
system for a single house. The middle plot shows the thermostat temperature set point, and the bottom plot 
shows the outdoor dry bulb temperature. The R2 value for the top plot is 0.752, which is near the average 
R2 for the 41 homes.  

 
While there may be frequent deviations from actual values on an hourly basis, daily 

overall energy strongly aligns with the estimated values.                Figure 3 shows the true and 
estimated total daily A/C energy consumption for the same house as above using the validation 
data set. The plot shows a high level of accuracy at the total daily level as seen in the comparable 
values. The reason for this may be that while the hourly estimates may not fluctuate as strongly 
as the actual measured A/C energy use, the general trends in correlation with the set points and 
outdoor air temperature are reasonably captured. The mean R2 value for all the houses during the 
evaluated period was 0.967 for daily basis with a standard deviation of 0.044. The mean 
difference between estimated and actual loads was 0.272 ± 0.201 kWh for a day. 
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               Figure 3. Daily total estimated vs. true energy for validation time periods for  

one house. 

Model Predictive Controller 

The ROMs were then used in a model predictive control (MPC) framework to determine 
the optimal thermostat set points that minimize peak electricity demand of the entire community 
through centralized control over the prediction horizon M of 11 hours (Cole, Rhodes, et al. 
2013). MPC solves a limited-horizon optimal control problem that minimizes some objective 
function subject to a set of constraints. Only the first solution is implemented, then the time is 
advanced by one time step and the problem is re-solved. The formulation for the MPC to 
minimize peak energy is given by 
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where J is the objective function value, z is the maximum energy use of the community of houses 
over the time horizon of j = t to j = t + M, i is the index for the houses, j is the index for the time, N 
is the total number of houses, yi,j is the A/C energy usage for house i at time j,  f is the linear 
reduced-order model given by equation (1), maxLoadi is the maximum electricity consumption 
of the air conditioning unit of house i for one time step, and lbi,j and ubi,j are the lower and upper 
bounds, respectively, of the thermostat set point for house i at time j (Cole, Rhodes, et al. 2013). 
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In this control scheme, the thermostat set point (T) is the manipulated variable and the air 
conditioning electricity consumption (y) is the controlled variable. The outdoor dry bulb 
temperature (DBT) is the disturbance variable. Weather predictions for the dry bulb temperature 
(T) are assumed to be perfect in this paper. However, it has been shown that predictive 
controllers for building HVAC systems using a simple weather model can get within 1-2% of an 
optimal, perfect-prediction solution (Henze et al. 2004). It is assumed that occupants cannot 
override the set points chosen by the controller. Solving equations Error! Reference source not 
found.-Error! Reference source not found. leads to optimal thermostat set points (Ti,j) over the 
12 hour time period for each house i. At 12 hours, the optimization problem can “see” the future 
peak and make early decisions to lower the peak through control actions. Then the time increases 
by one step and the next solution is found. This happens sequentially until the end of the 
evaluated time period of one day.  
 The upper and lower bounds of each house were found by using the thermostat set point 
data. The lower bound for each individual house was found by identifying the minimum set point 
throughout the entire data set for that house. This value was assumed to be the lower bound for 
the users in terms of thermal comfort. The upper bound was given two values depending on the 
time of day. During typical workday hours (8:00-17:00) the houses were assumed to be 
unoccupied. From the data set itself, it was unclear how to reveal which homes were occupied 
during work hours so the same assumption was applied to all homes. Accuracy could be 
increased if a house survey or an appropriate sensor reported the typical occupancy hours. The 
maximum set point throughout the entire data set for each individual house was set to be the 
maximum set point during unoccupied hours. During occupied hours, the maximum set point 
was assumed to be the minimum set point plus 2.22 °C (4 °F). For houses that had a narrower 
minimum and maximum set point band than 2.22 °C (4 °F), the maximum set point value was 
used for all hours during the day. In this way, the range of allowable set points for each house 
never extrapolated beyond the region where the ROM was trained. An example of the upper and 
lower thermostat set point bounds for a single house is given in Figure 4. 

 
Figure 4. The upper and lower bounds for one house. The house is  
unoccupied from 8:00-17:00. The desired set point for this house  
would optimally be at 22.7°C (73°F). These bounds constitute lb  
and ub in (6). 
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Lastly, it was noticed in the previous study that occasionally houses have undersized air 
conditioning units or thin building envelopes. Therefore, at low thermostat set points and high 
outdoor temperatures, the air conditioner could not meet the load required to keep the indoor 
temperature below the upper bound without violating (6). Therefore, the upper bound for (6) was 
given as a soft constraint with a high penalty for violation. 
 The 41 houses were used in this centralized controller. Recall that the controller acted to 
minimize the total peak value of the neighborhood for each day. An example of the controller 
actions taken to minimize the peak consumption for one house is shown in Figure 5. For this 
house, the thermostat set point is lowered during typically unoccupied hours prior to the late 
afternoon when temperature is highest. The lower set point helps to pre-cool the house and store 
the thermal energy so that during peak hours the set point can be held at the upper bound. 
 

 
Figure 5. Sample optimal control of one house for one day. The change 
in the set point temperature pre-cools the house to stagger when the A/C  
unit turns on so that the peak energy for the neighborhood is minimized.  

The overall benefit of utilizing the inherent thermal mass of each building is seen in 
Figure 6, which displays the energy consumed by the A/C for all 41 houses during one day. The 
load is substantially leveled during peak A/C consumption times. The centralized controller is 
able to take advantage of passive thermal energy storage by pre-cooling the thermal mass of the 
houses. Therefore houses that have thinner thermal envelopes or tight thermostat constraints can 
still run during peak times while those with large thermal envelopes can slowly heat up. In both 
cases the thermal comfort bounds of each house are not violated.  
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Figure 6. The upper plot shows the total A/C energy consumption of the 41 houses for June 2. The  
lower plot shows the outdoor dry bulb temperature for the day. The “Base Case” refers to how the 
sum of the A/C units actually operated. The “Min Peak” refers to the centralized control strategy 
implemented to level the peak load. 

There were 11 consecutive days that all houses had complete data that could be used for 
comparison. Table 2 shows the comparison of the measured energy consumption (the base case) 
compared with the simulated minimum peak control scheme (the minimum peak case). In 
general, the minimum peak simulation consumes less energy than the base case. The average set-
point temperature for the base case is about 0.4°C (~1°F) higher than the set points in the 
controller case, which indicates that some of the houses are on average cooler than in the base 
case. It is expected that the minimum peak control scheme should use more energy to pre-cool 
the house because some of that energy is lost to the environment while the house warms up. 
However, the total energy values are closer together because the minimum peak controller works 
at the thermal comfort bounds estimated for the consumers and thus saves energy by operating 
near or at the boundaries. If the bounds were tightened during occupied hours the results might 
change. Another possible reason there is lower energy consumption when the average set point 
temp is lower is because the A/C efficiency is a function of outdoor dry bulb temperature. Thus 
shifting more of the cooling load to the morning may improve the efficiency. In this comparison 
the trade-off between total A/C energy use and peak power reduction is not strong, but in general 
the total energy use should increase in exchange for the ability to lower the peak load. 

The greatest benefit of the controller was in reducing the peak load. In all cases the peak 
load was significantly reduced by the controller action, with an average reduction of 27% 
compared to the base case. Table 2 displays the overall results of the control optimization. The 
centralized controller leverages the thermal mass of each house, which resulted in a significant 
cut to the peak A/C power. Through balancing the total load of the houses using pre-cooling, the 
controller staggers when units turn on. The central controller is thus able to shift the peaks of 
each individual house and successfully level the overall load. This operational scheme was not 
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explicitly stated in the controller formulation. Rather, it is the result of the optimization and one 
of the benefits of centralized control. 

Table 2. Total A/C energy, peak power, and average set point temperature for the base case and 
the peak minimization case (“Min Peak”) using centralized control. The “Max Temp” column 
shows the maximum daily outdoor temperature. On average, the A/C peak power was reduced 
by 27% 

    Total A/C Energy (kWh)   A/C Peak Power (kW) 
Average Set Point 

Temp (°C) 
Day Max 

Temp 
Base 
Case 

Min 
Peak  

Savings
Base 
Case 

Min 
Peak  

Savings Base Case 
Min 
Peak  

1 37.02 768.81 689.91 10.3% 58.38 39.98 31.5% 25.02 24.67 
2 33.00 721.13 744.34 -3.2% 54.55 40.21 26.3% 25.02 24.74 
3 37.20 685.33 692.10 -1.0% 54.62 39.77 27.2% 25.02 24.72 
4 35.72 691.77 689.61 0.3% 50.98 39.67 22.2% 25.02 24.72 
5 35.67 690.11 683.30 1.0% 54.37 38.90 28.5% 25.00 24.73 
6 39.12 746.48 687.18 7.9% 58.55 39.89 31.9% 24.91 24.72 
7 33.28 683.97 730.64 -6.8% 54.22 40.34 25.6% 24.92 24.66 
8 35.05 685.21 702.33 -2.5% 53.33 40.23 24.6% 25.19 24.69 
9 34.27 725.39 685.02 5.6% 58.55 39.36 32.8% 25.34 24.73 

10 37.27 729.98 702.97 3.7% 56.09 40.31 28.1% 25.36 24.72 

11 35.03 702.43 697.64 0.7% 53.47 39.82 25.5% 25.35 24.71 

Conclusions and Future Work 

In this work a ROM that was developed for EnergyPlus models was applied to 41 real 
houses using smart meter and smart thermostat data. The ROM form was able to accurately 
predict energy usage on the real houses. The ROM predicted total daily energy with a mean R2 

value of 0.967 for all 41 houses with a mean difference between estimated and actual loads of 
0.272 ± 0.201 kWh. On the hourly level, the ROM predicted energy consumption with an R2 of 
0.724. The mean difference between estimated and actual loads was 0.052 ± 0.026 kWh on an 
hourly basis. The availability of data limited the study to just two months. 

It has been verified that through an aggregation of houses, load forecasting and peak 
energy reduction techniques can be evaluated at the community level. A community-level model 
predictive control (MPC) scheme was implemented using the ROMs of the 41 homes (2 homes 
were removed due to insufficient data). In the control demonstration, it was shown that a 
centralized MPC controller could be used to reduce the peak load by pre-cooling homes and 
staggering the time A/C units turned on. On average the MPC was able to reduce the peak load 
by 27% (15 kW) for the group of 41 houses without significantly increasing electricity 
consumption.  

Future work includes increasing the accuracy of the ROM. An expansion of the available 
data set will create the opportunity for more detailed investigation of the robustness of the ROM. 
Furthermore, while a ROM removes a significant amount of physical insights by lumping into 
regressed coefficients, there might be a limited physical interpretation of some of the parameters. 
Because the ROM, which was developed from an EnergyPlus model, was successfully 
implemented on an actual home, it may be possible to perform a parametric analysis to attach 
physical meaning to the ROM coefficients. This will make it possible to evaluate how changes in 
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the house, such as increased insulation, can change the A/C usage and possibly suggest retrofits 
for current houses. 
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