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ABSTRACT 

There are often several phases of energy efficiency analysis on a portfolio of existing 
buildings prior to retrofits or operational changes being implemented. The earliest stage of 
analysis involves sizing the energy efficiency opportunity that exists in each building. This 
process provides utilities and program administrators with a mechanism to prioritize buildings 
and determine whether deeper (and more time consuming) analysis is warranted. During early 
stage efficiency analyses, most practitioners focus on prioritizing buildings with high-level 
metrics such as Energy Use Intensities (EUI) or ENERGY STAR scores. These aggregated 
performance indicators are often inadequate for identifying good candidates for energy 
efficiency programs.  

Focusing on buildings with limited energy savings potential leads to increased program 
costs and low project conversion rates in the later stages of delivering energy efficiency services. 
This study presents three different approaches for early-stage retrofit analyses designed to 
improve simple benchmarking alternatives. The first approach involves classical, detailed energy 
modeling efforts to construct a calibrated building dynamic energy model. The second approach 
also constructs a building energy model (quasi-steady state) to evaluate interactive EEMs, but 
utilizes a streamlined approach and less asset data from the building in question. Instead, 
algorithms infer unknown variables based on publicly available data, previous audits, and 
historical monthly energy consumption to determine savings potential and opportunities. The 
third approach utilizes sub-hourly interval energy consumption data and site location to 
determine specific facility insights. These specific insights provide suitable information for 
software driven rapid energy model construction and optimization. This paper describes these 
three approaches and illustrates how they can be used for early-stage retrofit analyses in a 
portfolio of six buildings. Despite the significant differences in the amount of required input data 
and time, the projected savings across three approaches are similar, demonstrating that rapid 
energy modeling and analytical approaches can play a prominent role in targeting buildings and 
identifying energy efficiency opportunities at scale. 

Introduction 

Utilities and efficiency program administrators have been facing the challenge of 
identifying energy savings in existing buildings for decades. Total utility energy efficiency 
program investment in the US has almost tripled from 2008 to 2012, from approximately $2 
billion to almost $6 billion (Nowak, Kushler, Witte, & York, 2013). To reach increasingly 
aggressive energy efficiency mandates, utilities must become more sophisticated and proactive in 
how they target their commercial customer base with their energy efficiency programs. 

Aligning the right customers with the right efficiency programs has historically been an 
obstacle. Some utilities have relied on leads either from inbound requests, customer bill 
complaints, or by simply focusing on basic benchmarks such as total consumption or EUI. These 
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passive approaches have limited results; simply prioritizing efficiency potential based on annual 
energy consumption is normally an inadequate indicator for actual savings opportunities.  

ENERGY STAR scores and EUI metrics have been shown to be functionally ineffective 
in assessing the energy savings potential of a particular building. Figure 1 illustrates the results 
of a random sample of 500 building energy audits conducted over the past two years regarding 
the energy savings potential of the building type and the respective ENERGY STAR score. 
Additionally, Figure 2 illustrates the results of offices in terms of annual EUI. 

 

     
Figure 1. Relationship of uncertainty, applicability and 

level of effort. 
Figure 2. Applicable approaches with different levels 

of asset and consumption data. 

Despite their widespread usage, neither ENERGY STAR scores nor EUI are capable of 
providing the accuracy and level of detail to effectively prioritize buildings based on their energy 
efficiency savings potential. ENERGY STAR, the more detailed of the two approaches, 
evaluates building energy performance by normalizing energy use type, building size, location, 
and other operational and general asset characteristics. EUI more broadly measures energy 
consumption per square foot and is often used to compare buildings of the same use type.  

While both ratings are common tools for benchmarking a building’s energy use, they 
have minimal correlation to the actual potential a building has for energy savings, particularly 
across a large and diverse portfolio. The primary reason is that both ENERGY STAR and EUI 
are driven by a single point benchmark (annual energy usage). The problem is, however, there is 
great diversity in the way a building uses energy throughout a year. Two buildings may end up 
with the same amount of energy consumption at the end of 12 months, but they may take two 
very different paths to get there. Buildings can be relatively efficient (or inefficient) during 
different times of day; in response to different types of weather; or by each end use, such as 
lighting, heating, cooling, and plug loads, among others. To be clear, this is not to say that there 
is no value in either benchmarking methodology. When used in the correct context, both can 
provide a direct comparison of two buildings in terms of energy usage, e.g., which building 
consumes more energy and, perhaps more importantly, create awareness about energy efficiency 
amongst stakeholders. However, this is not the same thing as asking which building has the 
greatest potential for energy efficiency savings. One building can use more energy than another 
and yet be running efficiently. 

Forward-looking utilities are addressing this problem by using data analytics to better 
identify, target, and secure these commercial building efficiency opportunities. However, as 
utilities move from being reactive on a relatively small scale, to proactive on a portfolio-wide 
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scale, assessments must be made across a large customer base with very limited information 
about the respective facilities. 

In most cases, utilities know little more than the building address and the energy 
consumption, and during the early stages of customer engagement, often lack critical insight into 
the facility prior to making commitments to deploy energy audits and engineering services. In 
addition to prioritizing buildings, with the ability to engage customers with customized 
efficiency opportunities, personalized to their specific buildings, utilities have a much greater 
chance at securing customer interest and participation in an energy efficiency program. As utility 
programs evolve through this paradigm change from reactive to proactive, and as all stakeholders 
strategize how to utilize their efficiency programs to drive deeper energy savings at scale, 
utilities will need to leverage the right data and solutions at each step of their process.  

Based on results from a utility funded pilot, this paper compares three different 
approaches for early-stage retrofit analysis. The first approach, a whole building dynamic 
simulation with detailed asset data, involves classical energy modeling efforts to construct a 
building simulation, including calibrating the model to observed consumption and evaluating 
interactive EEMs. The second approach, quasi steady-state models with minimum asset data, 
utilizes less asset data to infer unknown variables based on publically available data and previous 
audits in the database. Similar to the first approach, the model simulates current performance, is 
calibrated to observed consumption and then determines achievable performance by analysis of 
interactive EEMs. The third approach, interval-based inverse modeling with automated forward 
modeling, utilizes sub-hourly interval consumption data and site location to determine unique 
insights and recommendations about the building. 

This paper describes these three approaches, compares outputs such as savings estimates 
and end use disaggregation from each approach, and estimates potential incremental savings 
realized in the context of an efficiency program. The objective of this exercise to help inform 
stakeholders of the benefits of each approach so they can best apply them to their program needs. 

Three Approaches for Retrofit Decision Analysis 

Approach 1: Whole Building Dynamic Simulation with Detailed Asset Data 

Several transient building simulation software packages (e.g., eQuest, EnergyPlus, 
TRNSYS) have been extensively vetted and well-used in the industry over the past few decades. 
These software packages are high-fidelity energy models that can accurately simulate the actual 
building behavior, given sufficient information and time from a skilled energy modeler. 
Transient building simulation software emulates the performances of energy systems in a 
building by solving the full set of dynamic heat balance equations using non-linear numerical 
methods. These types of software packages therefore are considered a “best practice” for 
modeling a building and its energy and control systems to a high degree of detail. 

The dynamic simulation approach for retrofit analysis requires detailed asset data and 
usually monthly energy consumption data (O’Neill et al., 2011; Raftery et al., 2011). Collecting 
reliable building asset information is often a challenge when stakeholders begin trying to 
proactively engage customers to discuss potential savings opportunities in buildings. 

In practice, protocols and guidelines such as the International Performance Measurement 
and Verification Protocol (IPMVP) and ASHRAE Guideline 14 have specified the whole 
building calibrated simulation approach to identify energy savings. Guideline 14 provides 
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explicit statistical criteria to with which to evaluate relative accuracy of an energy model, to be 
considered a sufficiently calibrated model. 

The typical procedure of the approach requires the engineer to review drawings, collect 
consumption and weather data, construct building geometry, create HVAC systems and zoning, 
calibrate the model, create design options, iterate the model to optimize the potential energy 
savings, and prepare reports. In the context of an energy efficiency program, utilities and 
program administrators are most likely to leverage this approach in response to a customer 
compliant (e.g., about a high bill), or by requests for a utility funded audit driven by traditional 
customer engagement methods such as mass marketing or delivery and validation of incentive 
applications by account executives. 

There are two drawbacks of this approach for early-stage savings analysis: scalability and 
objectivity. First, it takes tremendous amount of time to collect asset data, and usually even 
longer to create and calibrate the model. According to a U.S. Department of Energy (DOE) 
FEMP report (U.S. DOE, 2004), typical model construction time ranges between 3 (three) 
person-days to 6 (six) person-months, and costs between thousands and hundreds of thousands of 
dollars, depending on the project size. Second, the creation of whole-building energy models 
requires deep expert knowledge and experience. Based on different assumptions (e.g., plug load 
power intensity), different users using different software packages may generate significantly 
different simulation results (Guyon, 1997). 

Researchers (Long et al., 2013; New et al., 2012) have been working on improving whole 
building dynamic simulation scalability by modularizing model creation and applying super-
computing techniques, which are an important step towards applying this type of approach to 
mass scale prioritization and remote opportunity identification. 

Approach 2: Quasi-Steady State Model (QSM) with Minimum Asset Data 

QSMs for buildings are computationally less intensive mathematical representations that 
offer the potential for near high-fidelity analysis, with a significant reduction in processing time. 
They are based on first order thermodynamics and aggregated building specifications (e.g., 
simplified geometry, less zoning, and aggregated system performance parameters). These 
models, while still based on energy-balance methodologies, enable significant computational 
efficiency and streamlined assumptions to overcome the drawbacks of the first approach. 
Because of these inherent benefits, QSMs have been used for large-scale building stock energy 
modeling (Reichmuth & Turner, 2010; Zhao, et al., 2011), intensive model calibration (Heo, 
Choudhary, & Augenbroe, 2012), standardized performance rating (Corrado & Fabrizio, 2007; 
Corrado et al., 2007), and are increasingly being leveraged for ASHRAE Level I, II and even 
supplementing Level III on-site energy audits. 

In the context of early stage retrofit analysis, QSMs focus less on predicting actual usage 
of the building and more on comparing and sizing the impact of EEMs under typical building 
design and operational conditions. Unknown model input parameters are inferred based on a 
much smaller set of publically-available asset data such as use type, vintage, floor area, and heat 
source from previous audits of similar buildings. The model can then be iterated to quickly rank 
hundreds of EEMs based on their environmental and economic impacts (Heo et al., 2012). 
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Approach 3: Interval-Based Inverse Modeling with Automated Forward Modeling 

Given a physical system, inverse modeling uses observed measurements (energy 
consumptions) to replicate the actual values of model parameters (building characteristics). 
Forward modeling, in contrast, predicts consumption results given actual model parameters. 

Traditional simplified inverse modeling based energy data analyses methods use weather 
data and other optional variables (e.g., occupancy) to build various regression models, such as a 
change-point model (ASHRAE, 2002; Kissock, Haberl, & David E. Claridge, 2003). If the 
building is not sub-metered, which is usually the case, algorithms have been developed to 
disaggregate end use categories from interval usage data (Akbari, 1995; Birt et al., 2012). These 
traditional methods have then been significantly advanced by various DOE run National Labs, as 
well as private companies in the past several years, enabled by the rapid development of big data 
computing technologies and related analytical advancements. 

Interval energy consumption data has become more and more accessible due to changes 
in the markets such as energy deregulation, the advancement of energy efficiency and demand 
response programs, as well as with the development smart grid technologies. To provide 
sufficient insights from inverse modeling, at least a full year of hourly or sub-hourly interval 
energy data is ideal to allow for statistical significance.  

Interval-based inverse modeling is the most scalable approach amongst the three in that it 
is the most rapid (analysis can happen in minutes per building) and cost-effective. It is also as 
purely objective approach compared to the other two approaches, because it detects information 
directly from interval consumption data, and frequently determines key parameters, such as 
operating and occupancy hours, much more accurately than what is reported by building owners , 
managers and operators. 

It is important to note that these statistical models must be trained using large sets of 
building data. Utilities and data analytics companies that have acquired these large data sets 
usually consider them proprietary and develop their own models for internal use. Furthermore, 
data quality, both in terms of format and content, is still evolving; initiatives like the White 
House-sponsored Green Button effort could help eliminate these challenges by standardizing 
both the format and content of energy interval data.  

Case Studies 

In this study, we selected six actual buildings and applied the three approaches to each 
building. These buildings consist of four large office buildings and two secondary schools, all of 
which are located in ASHRAE climate zone 5. Table 1 lists additional building information and 
the Figure 3 shows the modeled buildings made in Approach 1. 

 

 

15311-©2014 ACEEE Summer Study on Energy Efficiency in Buildings



 

Figure 3. Order by row: Office #1-4, School #1-2. 

 

Table 1. Summary of building information 

Building Building Area (ft2) Heating Type Cooling Type 
Office #1 237,000 Electric Electric 
Office #2 612,000 Non-Electric Electric 
Office #3 452,000 Non-Electric Electric 
Office #4 93,000 Electric None 
School #1 137,000 Non-Electric Electric 
School #2 161,000 Electric None 

 
We also collected all available data needed for each of the three approaches under 

review, although not all data was used for each approach. The purpose of the case study is to 
demonstrate how these approaches can be used in a project, and to determine which approaches 
are more applicable with different levels of data adequacy and time constraints. 

Approach 1: Whole Building Dynamic Simulation with Detailed Asset Data 

This approach builds a unique energy model specific to the actual building specifications 
including the detailed building geometry, operational schedules, lighting and equipment loads, as 
well as HVAC equipment and controls. The tool used to complete the early stage retrofit analysis 
is Open Studio, which leveraged a Trimble SketchUp plug-in for geometry creation and utilizes 
EnergyPlus as the back-end whole building energy simulation. 

The inputs for each building type were different based on the building type and the 
observed consumption. Each model was calibrated to very closely match annual, daily and sub-
hourly electric interval consumption data. The table below shows the calibration levels for each 
model. ASHRAE Guideline 14-2002 requires Coefficient Variance Root Mean Squared Error 
(CVRMSE) to be less than 15% and the Normalized Mean Bias Error (NMBE) to be less than 
5% to be able to qualify as a calibrated model. Each model was calibrated to exceed this criterion 
as the following table shows. Table 2 depicts calibration results for all the buildings. Figure 4 
shows monthly calibration results for Office #3 as an example. 

Table 2. Calibration levels for each model 

Reference Name Annual % Difference CVRMSE NMBE 
Office #1 0.61% 3% 1% 
Office #2 1.41% 7% -2% 
Office #3 0.39% 7% 0% 
Office #4 0.71% 6% 1% 
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School #1 0.71% 6% 0% 
School #2 1.37% 8% -1% 

 

Figure 4. Calibration result of Office #3 using dynamic simulation. 

Once the six models were calibrated, individual changes were made to each model to 
evaluate the savings potential of industry standard EEMs. The energy impact of these measures 
accurately captured the interactive effects of each change as they were applied to a whole 
building model. An abbreviated list of the EEMs that were applied to each model where: 
Decreased Lighting Power Density, Decreased Miscellaneous Equipment Power Density, 
Improved Chiller Performance (where applicable), Reduced Minimum Flow for VAV boxes, 
Improved Exterior Wall and Roof Insulation, and Improved Window Fenestration. These EEMs 
were compared to the base model individually and also as a combined final package to include 
potential interactive effects. Though it is possible to explore many options with a high fidelity 
model, it is both computationally expensive and time intensive. The process of creating a 
detailed energy model for early-stage analysis and energy efficiency potential brainstorming has 
significant challenges. This is because there is a large set of information that must be collected 
and built into a relevant energy model. Without a high level of certainty in or availability of 
building asset information, the cost associated with developing a unique energy model of the 
facility offers diminishing returns as a means of proactively engaging utility customers in energy 
efficiency programs. 

Approach 2: QSMs with Minimum Asset Data 

QSM analytical methodologies allows for quickly inputting a limited amount of known 
asset data, inferring supplemental unknown asset information from buildings of a similar type, 
calibrating the model to actual consumption data, and assessing different options for upgrading a 
building with individual EEMs and packaged groups of interactive EEMs.  

ASHRAE Guideline 14-2002 "Measurement of Energy and Demand Savings"
coefficient of variation of the root mean square error

7% CVRMSE 4.063E+09 2.416E+09 4.816E+08 4.185E+08 1.949E+09 2.997E+08 1.421E+09 6.118E+08 1.319E+09 1.527E+09 1.736E+09 6.478E+08
0% NMBE 63,742      49,152      21,946      (20,458)     (44,145)     (17,311)     37,691      24,735      (36,317)     (39,073)     (41,662)     (25,451)     

normalized mean bias error
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For this application, the inputs used to create a QSM were building area, operational start 
and stop times, building type, lighting load, miscellaneous equipment load, heating fuel type and 
cooling type.  This information was collected during Approach 1 and represents a significant 
reduction in the amount of data needed to be collected to run a representative energy model. 
Unknown model input parameters were inferred based on data from thousands of previous 
energy audits. 

To calibrate the model, the approach focuses on changing key variables that impact the 
energy consumption of the building such as ventilation, lighting and plug loads, and operational 
start and stop times. The computational time to analyze the QSM in seconds instead of minutes, 
so analyses and calibration times are greatly reduced over Approach 1. As before, the six 
building energy models were calibrated (as shown in Figure 5) to meet ASHRAE 14 standards 
but it took approximately 30 minutes to calibrate each model for Approach 1 as opposed to 6-8 
hours per high-fidelity energy model. 

 

 
Figure 5. Calibration result of Office #3 using QSM. 

Once a calibrated QSM was created, various EEMs were automatically analyzed and the 
overall building model optimized for cost effective energy savings. QSMs can quickly run 
through many different combinations of EEMs to find the optimal package(s) for each particular 
building based on interactive measure effects, depth of savings and implementation cost. 

For example, the recommended measures for office #2, targeting a less than 3 year 
financial payback were: increase cooling set points, decrease heating set points, reduce lighting 
load by changing lighting to T8 lights, utilize network-based computer power management 
software, install air-side economizer with dry-bulb changeover control, add demand controlled 
ventilation, and cycle supply air at night. Other retrofits, such as HVAC replacement or facade 
retrofit, were considered but did not meet the pre-specified payback threshold. These EEM 
scenarios were compared to the base model individually and also as a combined final package. 
This allows the analysis to show the interactive effect of the EEMs on all building systems. More 
potential EEMs were analyzed in Scenario 2 because the QSM could be run more quickly in 
terms of computation time and ease of adding new alternatives. 

The respective time to complete and process each QSM took approximately 4 hours per 
building. This is largely because there was less focus on building asset information input and 
calibration, and more focus on aggregated building information. Interestingly, when building 
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inputs were simplified, it allowed the user to focus more on what impacted the model calibration 
and what EEMs could deliver the most cost effective energy savings. 

Though this approach loses some of the fidelity of a more detailed energy simulation, it 
served as a useful tool to analyze the six buildings, quickly determine the potential energy 
savings and provide specific ways to improve the performance of the building.  

Approach 3: Interval-Based Inverse Modeling and Automated Forward Modeling 

The final approach uses energy interval data and the site location to determine building 
characteristics when combined with concurrent observed weather conditions. This approach 
creates a mathematical inverse model to determine what building characteristics would create a 
consumption pattern that matches to the building’s actual consumption. Instead of requiring 
detailed building asset data, this approach can help to automatically and objectively estimate key 
building parameters and operational conditions. In this analysis, advanced inverse modeling 
techniques beyond simple change point models were able to determine the building type, heating 
type, cooling type, occupancy start and stop time, lighting and equipment loads and the presence 
of a base load in the building (such as a data center). All of the indicators were determined 
through an automatic process that required no human intervention.  

 

 
Figure 6. Graphical representation of interval usage and weather data for Office #3. 

Insights provided by inverse modeling techniques are then used to generate a unique 
building energy model on-the-fly of the building in question. This forward modeling exercise is 
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similar to the efforts in Approach 1 in terms of creating an efficient version of the building and 
allowing the building as-is to be quickly compared against an optimized version of itself. Once 
the optimized model is created, the next step is to calculate where and when the optimized model 
is performing more efficiently than the building and what building systems are likely inefficient. 
From these indicators, building specific recommendations are automatically generated on where 
the building can improve and what the expected energy savings may be for these changes. 

Common insights that were determined from the building’s interval consumption data 
included buildings were active longer than necessary, buildings were both heating and cooling 
during specific periods of the year, cooling responses being high compared to the thermal load 
on the building, and higher than expected ventilation consumption. 

Results and Discussion 

Table 3 lists the total predicted potential energy savings for each building across the three 
respective approaches with in this study. As can be seen, despite significant differences in the 
amount of required input data, engineering staff time, and computer processing, the projected 
savings across three approaches are relatively similar. Each approach also identified similar 
opportunities to engage customers at the early stages of energy efficiency evaluation. 

Table 3. Summary of projected savings across the three approaches 

Reference  Approach 1 Approach 2 Approach 3 
Office #1 18.1% 12.6% 14.1% 
Office #2 19.5% 10.1% 13.7% 
Office #3 15.4% 17.0% 15.9% 
Office #4 25.3% 24.8% 28.7% 
School #1 24.7% 31.0% 20.8% 
School #2 17.7% 25.7% 21.4% 

 
To further compare these approaches, Table 4 compares the amount of information 

needed and average time spent per building for each approach. As described early in the 
introduction, Approach 1 requires the most detailed asset data and takes longest time to create. 
Moving towards Approach 3, less asset data are required because of the reduction of energy 
model complexity and usage of more granular energy data. 

Table 4. Data & typical time required for different approaches 

Data Needed 
Approach 1 

Dynamic Sim. 
Approach 2 

QSM 
Approach 3 

Inverse Modeling 
Site Location √ √ √ 

1-year Electricity Usage Data Monthly Monthly 15-min Interval 

Geometry Detailed drawings 
Floor area and 

shape 
Floor area only 

Basic Asset Data (e.g., building type, 
shape, schedule, etc.) 

√ √  

Detailed Asset Data (e.g., H/C set 
points, lighting and plug load 

intensities, ventilation rate, etc.) 
√   
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Time Spent Per Building 4-5 days < 1 day <1 hour 

 
One of the findings in this study is that consumption data can and should be leveraged as 

part of the energy efficiency program, particularly during the early stages, to improve the 
interaction with the customer, and ultimately to get to a better outcome for the utility. Some of 
these benefits include increased customer awareness of the energy efficiency potential within 
their specific building and relevant utility incentive programs, as well as providing an effective 
means of managing the costs to maintain suitable program budget levels during the rapid 
expansion of programs and offerings. Generally, during the early stages of retrofit analysis, the 
level of detail of the analytical model can be reduced while maintaining a reasonable level of 
uncertainty, as shown in Figure 7. More specifically illustrated in Figure 8, when almost no asset 
data is available, utilities can still detect significant information about building with interval data 
analytics using Approach 3. In situations where some asset data and monthly consumption data 
are available, Approach 2 can be used to cost effectively identify insights by inferring more 
details about the building. To an extreme, for buildings whose detailed asset data are available 
(perhaps through a previous audit), Approach 1 can generate more building specific results with 
less uncertainty. It is up to the utility to determine which approach(s) are the most appropriate 
one to use, depending on the level of asset and consumption data available, expected effort to put 
on the project, and level of uncertainty needed to make the decision. 

 

Figure 7. Relationship of Uncertainty, Applicability and 
Level of Effort 

Figure 8. Applicable Approaches with Different Levels 
of Asset and Consumption Data 

Having the ability to engage customers with high efficiency potential and aligning those 
customers with the right efficiency programs will be a critical step moving forward in the 
process as utilities evolve from being reactive on a relatively small scale, to proactive on a 
portfolio-wide scale. Utilities can address this problem by using advanced data analytics to better 
target commercial building efficiency opportunities across a large customer base; engage those 
customers on a one to one basis and thereby; drastically improve the early-stage energy 
efficiency evaluation process. 
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