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ABSTRACT 

Water heating accounts for 17.7% of total residential energy use in the United States and 
is the second largest end use after space heating and cooling. There is great potential to improve 
the energy efficiency of residential water heaters and reduce their energy use in new and existing 
homes. Previous efforts primarily focused on improving the insulation and combustion efficiency 
of water heaters, whereas little effort has been made from the control perspective. Heat pump 
water heaters (HPWHs) provide an energy efficient solution for water heating. Instead of 
generating heat directly, HPWHs transfer heat from the environment into the water in the tank. 
The heat pump is two to three times more energy efficient than resistance elements, although 
HPWHs typically include elements for backup and high demand situations. We propose a model 
predictive control (MPC) framework that aims to achieve maximum energy savings while 
maintaining thermal comfort. This framework uses algorithms that automatically learn users’ hot 
water consumption patterns and adaptively increase the use of the heat pump to avoid resistance 
element use. It has been tested through simulations with hot water draw profiles collected from 
field tests. Simulation results indicate that this technique will save up to 20% for a low user or 
more than $20 per year. 

Introduction 

The building sector is the largest consumer of energy and accounts for 40% of primary 
energy use in the United States, more than the industrial and transportation sectors (U.S. Energy 
Information Administration 2012). Residential buildings’ energy use exceeds that of commercial 
buildings, consuming 22.5% of the total primary energy. Water heating comprises 17.7% of 
energy use in residential buildings, and is the second largest end use after space heating and 
cooling (U.S. Energy Infromation Administration 2009). There is great potential to improve the 
energy efficiency of residential water heaters, which is a key step to achieving significant energy 
reduction in new and existing homes. 

Many improvements can be made to increase the energy efficiency of residential water 
heaters. Previous efforts primarily focused on improving the jacket insulation, adding insulation 
to the inlet and outlet piping, and increasing the combustion efficiency of fuel-fired water heaters 
(Hirst and Hoskins 1978). Little effort has been made to use more advanced control strategies to 
increase efficiency. Most water heaters use a hysteresis strategy that uses setpoints and 
deadbands to control the heat sources reactively. These simple control methods are widely 
adopted in modern residential water heaters because of their low implementation cost. However, 
most use a fixed thermostat setpoint and are unsuitable for implementing advanced control 
algorithms to generate additional energy savings. 

Heat pump water heaters (HPWHs) offer an energy efficient solution for water heating. 
Unlike conventional storage water heaters that generate heat directly, HPWHs transfer heat from 
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the ambient air into the water in the tank. HPWHs usually have a rated efficiency (energy factor) 
between 2 and 2.75 and are the highest efficiency electric water heaters available other than 
solar. HPWHs in the United States typically feature both a heat pump and at least one electric 
resistance element for heating, which is used for backup and high demand situations. Their 
multiple heat sources make them perfect candidates for implementing advanced control 
algorithms to reduce energy use. Algorithms can be used to minimize the use of the electric 
resistance element and increase the use of the heat pump, thereby improving the overall energy 
efficiency of the water heater. However, there are technical challenges in implementing these 
energy saving measures. One major challenge is predicting the users’ hot water consumption. If 
high use periods could be anticipated, the heat pump could preheat the tank, reducing element 
use. We propose a novel framework to bridge the current gaps in water heater control, event 
prediction, and advanced control theory. Based on model predictive control (MPC), this 
framework aims to optimally modulate the thermostat setpoint and increase heat pump use 
without impacting thermal comfort. Under this framework, algorithms have been developed to 
identify patterns from past hot water use and estimate future hot water draw events.  

Recent research on water heater controls can be broadly divided into two categories: low 
level (on and off) control of water heaters for demand side management and high level control of 
individual water heaters for thermal comfort or energy efficiency. The simplified low order 
(single node) tank models used in demand side management (Paull, Li, and Chang 2010; 
Kondoh, Lu, and Hammerstrom 2011) may not be suitable for studies where energy efficiency 
and thermal comfort of individual water heaters are the primary focus. For low level control, 
Healy et al. concluded that a linear time invariant model relating input rate and output rate may 
not be appropriate for fully describing water heater performance (Healy, Ullah and Roller 2011). 
Henze and Yuill (2009) successfully demonstrated MPC on a tankless water heater in real time; 
however, this technique does not apply to storage water heaters because it minimizes outlet 
temperature error, which is not an issue for storage water heaters.  

Energy efficiency of residential water heaters can be further improved by using advanced 
control techniques. Standby losses can comprise a significant amount of the total energy 
consumption. Lowering the thermostat setpoint temperature when hot water demand is low can 
reduce these losses. One research question for our paper is how to modulate the thermostat 
setpoint to reduce energy consumption while maintaining thermal comfort. This leads to the 
other research question of this paper: how to effectively coordinate the heat sources of the 
HPWH to improve energy efficiency. To answer these research questions, it is critical to predict 
hot water usage patterns from past events such that optimal control strategies can be created.  

Modeling of Heat Pump Water Heaters 

Modeling of storage water heaters is extensively studied by the research community, and 
various models have been developed to meet different research objectives (Kondoh, Lu, and 
Hmmerstrom 2011; Paull, Li, and Chang 2010; Nehrir, Jia, and Pierre 2007). These models are 
not suitable for our study because they either do not consider thermal stratification or are too 
computationally intensive. Dynamic one-dimensional (1-D) models for storage tanks have been 
used in several simulation tools (Klein 2010; Crawley 2001). These tools apply mass and energy 
conservation to isothermal spatial zones called nodes. Radial and axial variations in temperature 
in the tank are neglected. These models allow for thermal stratification and provide a good 
balance between run time and model complexity (Burch 2011). 
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Modeling of Thermally Stratified Tanks 

A dynamic 1-D model is developed for the storage water heaters in this project. A generic 
tank model is shown schematically in the left part of Figure 1. It is divided into a series of 
isothermal vertically stacked nodes. The number of nodes is chosen as a tradeoff between model 
accuracy and computational workload (Maguire 2012). 

 

          
Figure 1. Schematics of thermally stratified tank models. Left: generic model; Right: HPWH model. 

In this model, higher nodes always have a temperature greater or equal than lower nodes 
to capture stratification caused by buoyancy. Mixing occurs between nodes to ensure that this 
stratification is always maintained.  

The following 1-D model is based on an instantaneous energy balance for each node: 

 (1) 

where  is defined as the product of the mass of water in node i and heat capacity of water,    

is the temperature of node i, and  denotes the rate of change in thermal energy. Equation (1) 

models heating from either source , standby loss , draw , conduction , and 

mixing in the tank . Detailed explanation of individual terms can be found in (Jin, Maguire 

and Christensen 2014). 
 

Table 1. Parameters of the HPWH model 

Items Values 

Nominal volume 66 gallons (0.238 m3) 
Heat pump deadband 18°F (10°C) 
Electric element deadband 15°F (8.3°C) 
Power of electric element 4.5 kW 
Rated compressor power 0.80 kW 
Standby power 2.39 W 

 
Equation (1) is a generic model for storage water heaters. Locations of heat sources and 

heat input rates vary for different water heaters. By specifying the location and the input rate of 
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the heat sources, Equation (1) can be applied to any type of storage water heater. In this work, an 
HPWH model is developed for a specific HPWH. As shown in the right part of Figure 1, the 
entire tank is uniformly divided into 12 nodes. The immersed condenser coil is located at the 
bottom of the tank in nodes 1 and 2. The temperature sensor for the heat pump is located in node 
7. The element is located in node 9, providing 4.5 kW of heat capacity in case the heat pump 
cannot keep up with the demand. The temperature sensor for the element is located in node 10. 
Table 1 summarizes the parameters of the HPWH model. 

State Space Model 

State space models are widely used to study the properties of dynamic systems. To 
simulate the non iterative part of Equation (1) for this study, a continuous time state space model 
can be developed by neglecting the conduction and mixing terms: 

                                             (2) 

                                                                       (3) 

where state , control ,  is the temperature of 

node i,  is the ambient temperature,  is the inlet water temperature, and  and  are 

the binary control signals of the heat pump and the element, respectively. The definitions of , 

 and  matrices can be found in (Jin, Maguire and Christensen 2014). Hysteresis controllers 

are used to control the HPWH based on temperature differentials and user specified setpoints. 
The conduction and mixing terms are accounted for through iteration. 

The state space model is a linear time variant system because matrices  and  vary 
with time if flow rate changes. To incorporate flow rate and temperature information that is 
recorded in discrete time, a discrete time state space model is more suitable for our study. 
Therefore, Equations (2) and (3) can be discretized, assuming zero-order hold for the input u, to 

                                      (4)                         

                                                                 (5) 

where  and  can be computed by utilizing the following property with the sample time                               

                                                            (6) 

Because the system is time variant,  and  need to be updated at every time step.  

is the same as . The choice of  is a trade-off between model accuracy and implementation 

speed.  minute is adopted as the sample time in this paper. 
The state space model of the HPWH has been implemented in MATLAB and validated 

with laboratory test data whereby a full day draw profile was imposed on a test article under 
closely monitored operation. Both consumed electric energy and delivered energy of the HPWH  
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model are compared with the data collected from laboratory test. As shown in Table 2, 
differences for both terms are within 4%, indicating the model is a reasonable approximation of 
the HPWH. 

 
Table 2. HPWH model validation 

 Consumed energy  Delivered energy 

MATLAB model 7.39 kWh 16.84 kWh 

Laboratory data 7.66 kWh 16.25 kWh 

Difference -3.81% 3.65% 

 
Model Predictive Control of Heat Pump Water Heaters 

MPC refers to a range of control methods that use a model to obtain the control signal by 
minimizing an objective function (Camacho and Bordons 2007). Typical MPC structure consists 
of a dynamic model of the process or system, a history of past control actions, and an objective 
function over the receding prediction horizon to calculate optimal control strategies. MPC is an 
iterative optimization process over a finite prediction horizon. It seeks the control strategies that 
minimize the objective function, subject to certain constraints. Also known as receding horizon 
control, MPC implements only the first step of the obtained control strategy and repeats the 
entire process as the prediction horizon is shifted forward. 

Different types of models have been used as the prediction model in the MPC structure. 
Linear input/output models are among the most popular because of their simplicity. The model 
can be either derived analytically from a physics based model (Henze and Yuill 2009), or 
generated numerically using system identification techniques (Ma et al. 2012). Storage water 
heaters are complex systems with inherent nonlinearities caused by thermal stratification. Time 
invariant models are typically used in MPC. However, tank dynamics change fast and are 
strongly affected by draws. As a result, a time invariant model cannot capture the dynamics of 
the tank. 

Most MPC algorithms use a quadratic cost function to minimize the weighted sum of 
control actions and deviation from reference signals. Inspired by this cost function structure, we 
created a custom cost function that considers both energy savings and thermal comfort. The cost 
function contains a weighted sum of an energy consumption term and a temperature sag term, 
which are analogous to the control action and deviation from reference signals in the original 
structure, respectively. 

Framework of Model Predictive Control for Heat Pump Water Heaters 

As shown in Figure 2, the MPC takes measurements from the HPWH simulated via the 
state space model, calculates the optimal control strategies based on measurements, and sends 
the setpoint profiles back to the HPWH as the control signal. In our MPC framework, we choose 
to control the setpoints rather than heat sources to reduce instrumentation cost and prevent 
overheating. The right half of Figure 2 shows the detailed structure of the controller, which 
consists of three modules: draw volume prediction, a simplified HPWH model, and setpoint 
optimization. 
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MPC of water heaters is a challenging problem because disturbances such as hot water 
draws are the dominating factor affecting operation. To effectively control the water heater, 
proactively responding to the upcoming draw events is more desirable than reactively turning on 
the heat sources when the tank temperature is too low. For this reason, it is important to estimate 
the hot water draw volume based on past hot water consumption and incorporate the estimation 
into the MPC framework. Flow rate is the input of the draw volume prediction model, and can be 
measured by a flow meter or estimated based on changes in tank temperature. 

 
Figure 2. Framework of model predictive control for HPWH. 

A model is needed to predict the tank water temperature given the estimated draw volume 
and setpoint temperature. Although the 12 node model described above captures the tank 
dynamics well, it is meant to be a virtual test bed of the actual HPWH and is too computationally 
intensive to serve as the prediction model. As a tradeoff between computational load and model 
accuracy, we use a simplified 2 node model as the prediction model, which is described below. 

The goal of the MPC controller is to generate an optimal setpoint profile for the heat 
pump and element. A simple but effective approach is exhaustive search. The costs associated 
with all possible combinations of setpoints are calculated, and the profile that generates the 
minimum cost is selected as the optimal. The computation load of this method depends on the 
size of the search space, the length of the prediction horizon, and the complexity of the 
prediction model. The objective function used in setpoint optimization is defined as follows: 

 

 
(7)

where  is the optimal setpoint profile,  is the prediction horizon (in terms of number of 

steps),  is the weighting function for consumed energy,  is the electricity rate (a flat rate is 
used here, but time-of-use [TOU] rates or critical peak pricing [CPP] could be accommodated), 

 is the power consumed by the heat pump,  is the power consumed by the element,  is 

the current setpoints being evaluated,  is the weighting function for thermal comfort, and  is 

an indicator of thermal comfort.  
Equation (7) aims to find the optimal setpoint profile  that minimizes the weighted 

sum of energy consumption and thermal comfort over the prediction horizon . When using a 
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flat rate, MPC minimizes the consumed energy and equivalently minimizes the energy cost. If a 
TOU pricing structure is used, the proposed framework could be used with demand response 
analysis, thereby saving energy cost for end users and shifting load to off peak periods. 
 

 

Figure 3. Illustration of the receding horizon concept in model predictive control. 

Figure 3 shows the receding horizon concept in the proposed MPC framework. The 
controller time step is 30 minutes and the prediction horizon is four time steps, totaling two 
hours into the future. At the current time, the setpoint profile that minimizes the cost over the 
next two hours is found, and the first step of the setpoint profile is implemented for the next 30 
minutes. The entire process is repeated at the end of the first step, and a new profile is generated. 

Draw Volume Prediction 

Accurate prediction of future draw events is critical for the success of the proposed MPC 
framework. We present a new prediction algorithm that is designed to predict the draw volume 
for each time step. The entire day is uniformly divided into 48 bins, each with a width of 30 
minutes. The average daily draw volume of the past 10 days in each bin is calculated and serves 
as the predicted draw volume for each time step. The 10 day window is sliding and updated at 
the end of each day, so the prediction algorithm can capture new patterns in hot water 
consumption. Weekday and weekend data are considered separately, as hot water consumption 
patterns are often significantly different for weekdays vs. weekends.  

Simplified Heat Pump Water Heater Model 

A prediction model is needed to estimate the future status of the physical system and find 
the control strategy that minimizes the cost function. The search process could be 
computationally expensive, especially when the prediction model is complex or the search space 
is large.  System identification techniques have been used to identify numerical models of 
input/output relationship in HPWHs. These identified models, however, are not valid if operating 
conditions change due to the nonlinearity and transport delay in the tank. 

As shown above, the 12 node HPWH model is a good approximation of the actual 
system; however, it is not a good prediction model for MPC for two reasons: (1) computational 
costs are high because many nodes and iterations are required; and (2) temperature 
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measurements are needed for each node to update the model status, which makes the 
instrumentation cost prohibitive and reduces the reliability of the entire system. Therefore, a 
simplified model is needed. 

 

Figure 4. Layout of the simplified two node HPWH for prediction. 

Figure 4 presents the layout of a 2 node HPWH prediction model, which is formulated by 
combining the nodes in the original 12 node HPWH model. As shown in Figure 4, we combine 
nodes 1-8 to form a new node of volume V1, and combine nodes 9-12 to form a new node of 
volume V2. We divide the nodes in this way mainly because the temperature sensors for the heat 
pump and the element are located in node 7 and node 10, respectively. By combining nodes in 
this way, the temperature measurements taken from the sensors could be directly used to update 
the states of the prediction model, so no additional temperature sensors are needed. 

The 2 node model has been compared with the 12 node model using a realistic 30 day 
long draw profile generated by the Domestic Hot Water Event Schedule Generator (DHWESG) 
(Hendron, Burch and Barker 2010). The validation results are shown in Table 3, where the total 
energy use, heat pump energy use, electric element energy use, and delivered energy are 
compared between the 12 node model and the 2 node model. Overall, the results of both models 
are close enough to consider the 2 node model a reasonable approximation for MPC: the energy 
use difference is 2.40% and the delivered energy difference is -5.21%. The 2 node model 
overestimates the heat pump energy use by more than 8%, because T1 in the new model is lower 
than Thp in the original model, so the heat pump turns on more often. Similarly, T2 is in general 
higher than Telec, so the element of the 2 node model consumes less energy. 

 
Table 3. Model validation using DHWESG profiles (30 days) 

Model type 12 node 2 node Difference 

Total energy use (kWh) 134.80 138.04 2.40% 

Heat pump (kWh) 95.12 104.11 8.63% 

Electric element (kWh) 38.25 36.38 -4.89% 

Delivered energy (kWh) 327.61 310.53 -5.21% 
 

Setpoint Optimization 

An exhaustive search algorithm is used to find the optimal setpoints for the HPWH. Two 
candidate setpoints are defined for both the heat pump and the element. In the current study, we 
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constrained the heat pump to switch between high and low values (in this study, combinations of 
120°F/130°F and 120°F/140°F were used), and the element may switch between 120°F/115°F. 
These setpoints were chosen to minimize electric element use and maximize heat pump use. 
More setpoints can be included in the procedure at the cost of increased computation, which 
might require a different approach than an exhaustive search. There are in total  
setpoint profiles to be explored and the associated cost to be computed. Additional constraints 
can be applied to reduce the number of candidate setpoint profiles and expedite the optimization 
process. As an initial attempt, these constraints are not considered in the current paper. 

Simulation Results 

This section presents the simulation results of the proposed framework using field test 
data collected from two studies: a low use (35 gal/day) home in Boulder, CO (Barley, Hendron 
and Magnusson 2010) and a high use (92 gal/day) home in Sacramento, CA (Maguire et al. 
2011). Long term monitoring equipment was installed to collect water use data from these homes 
for more than one year. Two performance metrics—energy savings and temperature sag—are 
used to evaluate the effectiveness of the proposed MPC algorithm. Temperature sag is defined as 
the additional amount of energy needed to heat the water to a level that would be acceptable for 
users when the outlet temperature drops below a comfortable level (assumed here to be 110°F). 
Tracking this metric is important to ensure that the control algorithms do not provide energy 
savings at the expense of providing inadequate hot water. 
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Figure 5. Temperature, setpoint, power consumption, and draw for one day with MPC.  

Figure 5 shows the performance of the MPC method for one day in the high use home. 
On this day, past draw patterns predict large draws in the evening. Based on this prediction, the 
heat pump setpoint is raised to 140°F for two periods. Although there is only a small draw after 
the first period when the heat pump setpoint is raised, there is a large draw after the second 
period. Preheating the tank ahead of this draw allows the heat pump to meet this load instead of 
using the electric resistance element. This illustrates that although day to day variations in hot 
water use prevent the model from perfectly predicting large draw events, it can identify when hot 
water events are likely to occur and respond appropriately. 

For comparative evaluation of the advanced controls, two baseline simulations are also 
conducted using different setpoints for each home. The first baseline uses 120°F as the setpoint 
for both the heat pump and the element. The second baseline uses the highest temperature the 
heat pump used (130°F for the low use home and 140°F  for the high use home) and 120°F as the 
setpoint for the element.  A higher temperature was used in the high use home to ensure that the 
HPWH was able to provide adequate hot water. 

Table 4 shows the results for the MPC cases and baseline cases for both low and high end 
uses. Total energy consumption, as well as energy consumed by the heat pump and the element, 
is presented, along with temperature sag. Table 4 shows that MPC consumes less total energy 
than either baseline in both cases. The MPC case can provide better thermal comfort than 
baseline 1; however, baseline 2 provides the best thermal comfort of the cases considered here at 
the expense of much higher energy consumption. Thermal comfort is a highly subjective 
measure, based on occupant preferences. However, simulation results for an average use home 
(using a draw profile from the DHWESG) with a typical electric storage water heater would in a 
moderate climate would have a larger temperature sag than any of the cases explored here.  
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Table 5 summarizes the annual savings achieved by MPC in terms of both energy and 
cost. Cost savings were calculated using the 2012 average rate of $0.1188/kWh. Compared to 
baseline 1, MPC yields up to 40 kWh annual energy savings. Life cycle cost savings should be 
able to recover the instrumentation cost needed to implement the MPC technique in an HPWH 
relative to this baseline and still achieve greater thermal comfort. Compared to baseline 2, MPC 
achieves about 170-190 kWh of annual energy savings and more than $20 annual cost savings, 
which would provide net life cycle cost savings for a homeowner. 

 
Table 4. Results of annual simulation for the two draw profiles 

Case  Method 
Setpoint (°F)  Energy consumption (kWh) Temperature 

sag (kJ) Heat pump Electric Total Heat pump Electric 

Low 
use 

Baseline 1 120  120  736.7  599.9  117.6  121.8 

Baseline 2 130  120  867.8  821.9  27.2  2.9 

MPC 130/120  120/115  697.3  650.9  27.4  46.0 

High 
use 

Baseline 1 120  120  1754 1192 541.1  1798
Baseline 2 140  120  1906 1740 145.0  332.2
MPC 140/120  120/115  1715 1478 215.9  1548

 
 

 

 

 Table 5. Comparison of energy and cost savings between MPC and baseline methods 

Case Metric MPC vs. baseline 1 MPC vs. baseline 2 

Low use 
Annual energy savings 39.37 kWh (5.3%) 170.48 kWh (19.6%) 

Annual cost savings $4.68 $20.25 

High use 
Annual energy savings 38.5 kWh (2.2%) 190.7 kWh (10.0%) 

Annual cost savings $4.57 $22.65 

Conclusions 

We present a novel MPC framework for HPWHs in this paper. Unlike traditional MPC, 
the proposed method has a modified structure that is customized for HPWH control. The 
proposed framework uses an exhaustive search method to find the optimal setpoint profile that 
maximizes energy savings and thermal comfort based on the draw volume estimated from past 
hot water draw events. Significant energy and cost savings can be achieved with only a modest 
decrease in thermal comfort. The proposed framework is very flexible, and can incorporate TOU 
or CPP pricing structures in its optimization cost function to create additional cost savings. It 
could also be slightly modified to incorporate demand response (load add/shed) capabilities. 

Future research directions include improving computational efficiency, reducing the 
instrumentation cost and testing on actual hardware. A more efficient search method is needed to 
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reduce the computation complexity and make the algorithm suitable for implementation in 
embedded systems. We are also actively looking for alternative techniques to measure 
temperature and flow rate in a cost effective manner. Finally, the framework should be 
implemented in prototypes for laboratory and field demonstrations.  
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