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ABSTRACT  
 

Utility-sponsored operation and maintenance (O&M) based energy efficiency programs 
rely on consistent and defensible methodologies for developing energy models that provide the 
basis for quantifying savings results.  Without the ability to accurately distinguish the effects of 
O&M-type improvements from changes in production, ambient conditions, or other energy 
driver variables, individual initiatives may succumb to a lack of management support or 
skepticism of reported savings on the part of program evaluators. This paper outlines six major 
steps to develop defensible regression-based energy models for monitoring and reporting energy 
savings in industrial energy efficiency programs.  The paper explains several valuable lessons 
learned during the model development process for a large industrial facility. The paper then 
compares differences in model coefficients and fractional savings uncertainty between models 
created with daily and monthly time resolution for two large industrial facilities. The results 
show that, for large industrial facilities, the prediction capability and the estimated fractional 
savings uncertainty are greatly improved when using defensible modeling techniques and models 
with daily time resolution. 

 
Introduction 

 
Since 2010, the Energy Management (EM) components of the Bonneville Power 

Administration’s Energy Smart Industrial (ESI) program have actively monitored and reported 
energy savings from operation and maintenance (O&M) improvements for 41 industrial 
facilities. The facilities, spread over 19 public utility service areas, have a combined annual 
electrical load of over 200 aMW. Energy savings resulting from O&M improvements for each 
project are quantified using the avoided savings approach, a method that draws from Superior 
Energy Performance (SEP) Measurement and Verification Protocol for Industry (SEP 2012), 
International Performance Measurement and Verification Protocol (IPMVP) Option C (IPMVP 
2012) and ASHRAE Guideline 14-2002 (ASHRAE 2002). In 2012, a third party conducted an 
impact evaluation that provided an independent assessment of the statistical modeling methods 
and analysis techniques used to quantify energy savings from 17 pilot engagements.  Using an 
alternative statistical method, the evaluation demonstrated close agreement in the savings results 
for 15 of 17 projects, and yielded a realization rate of 88% on 8,278 MWh of O&M electrical 
energy savings (Ochsner et al. 2013).  

This paper begins by outlining six major steps that the ESI Energy Performance Tracking 
(EPT) team has found beneficial in developing linear regression models for sub-system and 
plant-wide energy use in industrial facilities.  The resulting models provide robust prediction 
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capabilities to track energy savings during project implementation and to defend those savings 
during project evaluation. The ESI Monitoring, Tracking, and Reporting (MT&R) Reference 
Guide (ESI EPT Team 2012) further details this methodology.  

The paper then details valuable lessons learned from modeling the plant-wide energy use 
of a large industrial facility, which highlight the need for a methodic and defensible approach to 
model development. Using actual data from two large industrial facilities, the paper compares 
model coefficients and estimated fractional savings uncertainty between models created with 
monthly and daily time resolutions. In contrast to conclusions based on commercial buildings 
with no production energy drivers (Carpenter et al. 2010), the results show that the effects of 
production energy drivers on energy use cannot be assumed to be consistent with time. 
Furthermore, the uncertainty in reported energy savings will be substantially less for models with 
daily time resolution as opposed to a monthly time resolution. The paper presents select model 
statistics for seven regression-based models created in the ESI program, including an estimate of 
fractional savings uncertainty.   

  
Process of Developing a Linear Regression Model 

 
Developing a linear regression model to monitor and report energy savings for industrial 

energy efficiency O&M projects consistent with SEP and IPMVP protocols is an iterative 
process. This process requires the practitioner to work with large data sets, to understand the 
major energy drivers in a facility, and to have a working knowledge of statistics. From the 
experiences of the EPT team in developing over 40 regression models, the predictive ability of 
the model depends largely upon the practitioner’s ability to navigate this iterative process in a 
sequential manner.  The six major steps outlined in this paper are: 1) identifying potential energy 
drivers, 2) acquiring and establishing a baseline data set, 3) developing a linear regression model, 
4) reviewing model fitness, 5) performing an uncertainty analysis, and 6) selecting the “best” 
model or alternative direction. Figure 1 provides a graphical representation of these steps, along 
with sub-steps typically involved in the model development process. 
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Figure 1.  Key Steps In Energy Model Development Process 

 
 

Before modeling is performed, sufficient time should be spent with steps one and two, 
identifying potential energy drives and acquiring and establishing a baseline data set. These two 
steps help  avoid modeling errors such as using variables that have no physical relationship to 
energy use, and using data that contains erroneous observations. After a model is developed, 
model fitness should be carefully inspected, and then an uncertainty estimate, based on estimated 
project savings, should be calculated. As possible from the data set, several models deemed 
acceptable from both the perspective of model fitness and the desired level of uncertainty should 
be provided for team review so that the “best” model or alternative direction can be selected by a 
cross-functional group of stakeholders.  

The EPT team, within the context of the ESI program, consists of a three- to five-member 
body that includes a BPA energy efficiency representative who serves as chairperson, an ESI 
program manager, and ESI’s Energy Performance Tracking engineer.  The model developer and 
various subject matter experts also regularly contribute to the working meetings.  This cross-
functional structure provides the necessary level of engineering and statistical expertise, while 
ensuring both BPA and ESI program concerns are represented.   The team review also helps 
ensure that the selected model balances the programmatic requirements for statistical rigor with 
the practical need to maintain a level of simplicity (or ease of use) that will promote frequent 
updates by the end user.  In select circumstances where the available data does not permit the 
development of an adequate regression model, team input is instrumental in determining an 
alternative approach to measuring savings.  
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Identifying Potential Energy Drivers (Step 1) 
 
A thorough understanding of the facility and processes is essential to acquiring and 

establishing a baseline data set of energy use and potential energy drivers. Often, facility 
personnel have a comprehensive understanding of the process, and invoking this expertise at the 
beginning of the modeling process can help identify potential energy drivers. When possible, the 
modeler should conduct a site visit with such facility personnel to understand the plant’s major 
energy drivers. Time spent up front understanding the processes often reduces the time invested 
in developing numerous models, and ultimately improves the predictability of the final model.     
 
Outline process and energy flows (Step 1, sub-step). A diagram that includes all energy supply 
streams crossing the measurement boundary and product flows within the measurement 
boundary is an instrumental aid for the modeling process. This diagram should include all major 
processes and production meters and depict their location in relationship to the process. 
Knowledge of all motor control centers (MCCs) that provide energy to equipment within the 
measurement boundary and the location of the energy meters is essential for the modeling 
process. A list of all major energy-using equipment associated with each MCC can be valuable. 
Figure 2 is an example illustration of the process within the measurement boundary, the 
electrical energy use that crosses the measurement boundary, and the location of the production 
meters (PM) and electricity meters (EM).  

 
Figure 2. Example Illustration of Processes, Energy Flows, and Metering Locations 

 
 
Review energy and energy drivers at granular intervals (Step 1, sub-step). A review 

of energy and production data at hourly or sub-hourly intervals can provide valuable insight into 
the operation of the plant, including patterns of high energy use and start-up times. Such trends 
present important opportunities for model improvement and require further investigation to 
understand key energy drivers.  
Figure 3 shows that plant start-up and shut-down times can be determined from a facility’s 
hourly energy use.  
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Figure 3. Hourly Facility Energy Use Showing Plant Start-Up and Shut-Down Times 

 
 

Acquiring and Establishing a Baseline Data Set (Step 2) 
 
Data sets of energy and production often have missing data and erroneous observations, 

and so data needs to be reviewed for null values and outliers. Many data analysis algorithms 
often omit null values when aggregating and averaging data. Without this awareness, the 
modeler may choose to review the data in an aggregated form without considering the underlying 
mathematical influence of the null values.  Figure 4, which represents null values as zero, shows 
a high frequency of such data points within the five-minute interval data set, but the impact of 
these values on the daily aggregated summation isn’t obvious through casual inspection.   

  
Figure 4. Fifteen-Minute Interval Energy Use Depicting Null Values and Daily Energy Use 

of Same Data Set 

 
 

Properly synchronize data sets (Step 2, sub-step). Plants usually record production from the 
beginning of the process or shift until the end, a time period that is typically different from the 
beginning and end of the day (e.g., 12 am to 12 am).  Thus, it is important to know the start and 
end times for each production value so that the correct energy use and weather values can be 
attributed to the defined time periods.  Failure to recognize this offset can introduce error into the 
model, and possibly lead to the erroneous inclusion or exclusion of variables. 
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Developing a Linear Regression Model (Step 3) 
 

Developing a regression model is an iterative process that should include evaluating all 
energy drivers and different combinations of these energy drivers. For each model created, the 
modeler should document the reasons for or against deeming a model as acceptable and why a 
particular modeling path was chosen. This becomes valuable information when reviewing 
models both internally and with other stakeholders, such as local utilities, end users, or program 
evaluators.  
 
Determine duration of data set (Step 3, sub-step). The duration of the data set must be long 
enough to capture the entire range of production and weather. Baseline periods of less than 12 
months are vulnerable to the omission of critical production cycles and often neglect to capture 
the influence of the full spectrum of ambient conditions.  Figure 5 illustrates the production 
cycles for a fresh-pack vegetable processing facility, and demonstrates how the duration of the 
data set will impact the variables within the data set and the range of these variables.  
 

Figure 5. One Year of Production for Products A, B, and C 

 
 
Select time resolution, major energy drivers, and model form (Step 3, sub-step). Time series 
and x-y graphs of energy use and production greatly aid in the selection of time resolution, major 
energy drivers, and model form, all of which are typically interrelated and significantly impact 
the fitness of the model. Typically, the energy use patterns during production and non-production 
periods can be distinguished using these types of graphs. The energy use of large industrial 
facilities is often an order of magnitude higher during production periods relative to non-
production periods because facility operations are different during these two distinct periods.    

For such facilities, it is generally best to develop separate models for production and non-
production operations, each with daily time resolution. For facilities that show production to be a 
less dominant driver of energy use or for batch-type processes, a longer time interval such as 
weekly may be preferred. Monthly models are generally discouraged because of their poor 
resolution and their limited usefulness as a proactive management tool.  

Likewise, daily models that combine both production and non-production modes through 
the use of indicator variables are discouraged, as an indicator variable assumes only a phase-shift 
between these two distinct modes of operation. This can skew the model coefficients, which is 
important during production periods because the prediction capability of the model can be 
reduced by including the data during the non-production periods. From an engineering 
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standpoint, operations during non-production periods typically do not influence energy use 
during production periods, and so these modes of operation should be modeled separately.  

The production mode for facilities with large refrigeration or chilled water systems can 
often be modeled with a three-parameter cooling multi-variable model, as explained in the 
Inverse Modeling Toolkit (Kissock, Haberl & Claridge 2002). An example of this model is: 
 
Ep = Interceptp + RS (Twb – Change-Point)+  +  CoeffP1  · Prod1 + … + CoeffPn ·Prodn             (1) 
  

Where electrical energy use during production (Ep), is a function of the right slope (RS), 
ambient wet-bulb (Twb), and production energy drivers (Prod). The parenthetic quantity is zero 
for all negative values and the production variables should be limited to only those shown to 
influence energy use.  

Often, a simple linear regression or two-parameter model can be used to correlate 
electrical energy use during non-production (Enp) to ambient wet-bulb temperature as: 
 
Enp = Interceptnp+ Coeffnp  · Twb                         (2) 
 

Figure 6 shows that the energy use signatures of a refrigeration-dominated facility 
between production and non-production periods are vastly different. During production, the 
energy use signature is in the form of a three-parameter-cooling multi-variable model, and during 
non-production, energy use is in the form of a two-parameter model.  

   
Figure 6. Energy Use Signature With Respect To Average Daily Wet-Bulb Temperature 

(Twb) Of a Refrigeration-Dominated Facility during both Production and Non-Production 
Periods 

 
 
Valid range of data set (Step 3, sub-step).  The range of data used to build the model should be 
carefully inspected such that observations at the high and low ends of the production range do 
not leverage or significantly influence the model. In addition, the modeled data should not 
include large gaps or areas where the data is insufficient. Figure 7 shows an area of the data set 
where modeling judgment is needed because the data appears to be of a different form. 
Furthermore, the data set exhibits data insufficiency as the facility transitions between 
production and non-production periods. Again, Figure 7 shows that a production model can be 
significantly different from a model that combines both production and non-production 
operations.  
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Figure 7. Energy Use Signature With Respect To Production of a Refrigeration-Dominated 

Facility during both Production and Non-Production Periods 

 
 

Reviewing the Fitness of the Model (Step 4) 
 
 After a linear regression model has been developed, the fitness of the model should be 

reviewed. This review needs to encompass a broader evaluation of statistical indicators than a 
mere criteria check of goodness-of-fit statistics, such as the coefficient of determination, R2, and 
the coefficient of variation of the root mean square error, CV-RMSE.  As previous authors have 
explained (Reddy & Claridge 2000), R2 and CV-RMSE have limitations, and selection of models 
based solely on a cut-off criterion can be arbitrary and often misleading.   

 
Review of model coefficients (Step 4, sub-step). The first step in this process should be an 
engineering evaluation of the relative magnitude of the model coefficients. If model coefficients 
indicate that energy use decreases as production increases (e.g., a negative coefficient), then the 
reason for this occurrence must be determined.  Further investigation is also needed if a less 
energy-intensive process results in a larger impact on energy use than a highly intensive energy 
process.   

 
Review of residuals (Step 4, sub-step). The underlying assumption of a regression model is that 
the residuals (actual energy use minus the energy use predicted by the model) are normally and 
independently distributed with an average value of zero. From an applications standpoint, 
reviewing the residuals can help identify not only outliers, but model weaknesses and process 
changes as well. Three graph types considered important when reviewing residuals are: 1) a time 
series of residuals, 2) an x-y plot of each independent variable versus the residuals, and 3) a 
histogram of residuals. Of the three graphs, the EPT team has found the time series of residuals 
most useful in identifying model inadequacies, often as a result of process changes. As an 
example, Figure 8 shows a shift in the residual pattern near the latter part of the baseline period, 
indicating a process change or disruption that isn’t described by the selected variables.  Left 
unaddressed, this issue within the baseline period has the potential to ultimately bias the savings 
estimate for the project.    

0

50,000

100,000

150,000

200,000

250,000

0 50 100 150

D
ai

ly
 E

n
er

gy
 U

se
 

(k
W

h
/h

)

Production (lbs/dy)

Judgement Area

Non-production

Production

Production Model

Combined Production/Non-production Model

Data Insufficiency

6-8 ©2013 ACEEE Summer Study on Energy Efficiency in Industry



 

 
Review 
residuals
can help 
model is
cause.  

 
F

 
Quantify
industria
an extend
resulting 
standard 
coefficien
energy d
model’s r
 

݌ ൌ
∑೙೟స
∑

 
 O
but all at
understan
identifyin

1

1

2

2

D
ai

ly
 E

n
er

gy
 U

se
 

(k
W

h
/d

y)

predicted v
, reviewing 
identify are
 over-predic

Figure 9. Ex

y auto-corr
l facilities o
ded period o

in positive
errors of t

nts. This ma
drivers.  Th
residuals (e)

	ሺ௘೟షభሻ௘೟సమ

ሺ௘೟೙
೟సభ ሻଶ

  

On several p
ttempts have
nding of the
ng other rele

100,000

150,000

200,000

250,000

1-Jan

Figure 8.

versus actu
the predicte

eas of the mo
cting energy

xample of a 

relation coe
ften exhibits

of time. Such
ely auto-cor
the coefficie
ay lead the 
e auto-corre
) as (Montgo

  

rojects, the 
e been unsu

e process hav
evant variabl

21

. Example o

al energy u
ed and actua
odel to inve

y use. These

Time Serie

efficient of 
s a time serie
h operations 
rrelated resid
ents and the
practitioner 

elation coeff
omery, Peck

EPT team h
uccessful. To
ve provided 
les, or aggre

-Jan

A

of a Time Se

use (Step 4
al energy use
stigate. Figu

e areas shou

s Plot of Ac

residuals 
es pattern, su
can lead to 
duals. Posit
ereby inflate
to include v

fficient of re
& Vining 20

 

has used tran
o this point,
the insight 

gating the da

10-Feb

Actual P

eries of Resi

, sub-step).
e in both a 
ure 9 shows 

uld be invest

ctual and Pr

(Step 4, s
uch as a sim
a residual pa
tive auto-co
es the statis
variables in 
esiduals, p, 
012): 

 

ansformation
, only a mor
necessary to
ata to a more

1-Mar

redicted

iduals 

. Similar to 
time series p
two distinct

tigated to de

redicted En

ub-step). T
milar product
attern with f

orrelation un
stical signif
the model t
can be calc

 

ns to reduce 
re thorough 
o address au
e appropriat

21-M

Periods to
Investiga

a review o
plot and x-y
t areas wher
etermine the

ergy Use 

The operatio
tion operatio
few sign cha
nderestimate
ficance of m
that are not 
culated from

    

auto-correla
data review

uto-correlatio
te time interv

Mar

o 
ate

 

 

of the 
y plot 
re the 
e root 

 

on of 
on for 
anges, 
es the 
model 

truly 
m the 

  (3) 

ation, 
w and 
on by 
val.      

6-9©2013 ACEEE Summer Study on Energy Efficiency in Industry



 
 

 
Estimate Uncertainty of Estimated Project Savings (Step 5) 

 
Typically, industrial energy efficiency O&M projects have multiple stakeholders who all, 

to a varying degree, have a vested interest in the confidence and uncertainty of the project’s 
energy savings. Therefore, estimating the uncertainty of the estimated project savings provides 
an objective framework to judge competing models in a manner consistent with the interests of 
the multiple stakeholders. Before the project begins, reasonable estimates of the uncertainty of 
project savings can be made based on estimated project savings, a value typically obtained from 
engineering calculations. To this point, estimates of uncertainty of project savings have been 
calculated based on procedures outlined by ASHRAE Guideline 14.  
 
Team Selection of “Best” Model or Determination of Alternate Path (Step 6) 

 
After a model is developed, model fitness should be carefully inspected, and then an 

uncertainty estimate, based on estimated project savings, should be calculated. As possible from 
the data set, several models deemed acceptable from both the perspective of model fitness and 
the desired level of uncertainty should be provided for team review so that the “best” model or 
alternative direction can be selected by a cross-functional group of stakeholders.  

The EPT team actively communicates with various stakeholders during model 
development to ensure the “best” model selected contains the right balance of model 
predictability and complexity. Model selection is typically guided by model fitness and fractional 
savings uncertainty, but other stakeholder interests such as the usability of the model must also 
be considered. In the event that a correlation of facility energy use cannot be determined, input 
from the team is valuable in deciding how energy savings will be measured for a given project. 
Documenting statistics for model fitness and fractional savings uncertainty is important for 
internal team review, as well as review with the various stakeholders, as shown in Table 1. 

 
Table 1. Example Table Showing Model Selection Based On Fractional Savings 

Uncertainty At 80% Confidence for an Estimated Project Savings Of 3% 

 
 
 Lessons Learned from a Large Industrial End User 

 
At the beginning of the ESI program, a regression model was created for a large food 

processor with annual energy use of approximately 60 million kWh/yr. The refrigeration system 
uses approximately 50% of facility energy use, while the pumping, conveying, compressed air, 
and lighting systems use the remaining 50%.  Early in the savings period, the plant suspected that 
an additional production variable, one not included in the model, influenced facility energy use 

Trial # % CV‐RMSE
Model 

Parameters

Actual Baseline 

Observations
Auto‐correlation

Savings 

Observations

Fractional 

Savings 

Uncertainty (%)

1 4.1% 7 300 0.14 300 15.7%

2 3.8% 8 300 0.02 300 12.8%

3 3.7% 7 300 0.01 300 12.4%
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and asked the Team to re-evaluate the model. During the re-evaluation, several notable 
corrections were made to the model. 

First, a subject matter expert at the plant was invoked, and through conversations with 
this individual, the Team learned that daily production was counted from 7 am to 7 am, not 12 
am to 12 am. Second, a more thorough understanding of the process resulted in identifying a new 
variable that served a proxy for process yield, which was a key driver of facility energy use. 
Third, the form of the model was changed based on information obtained from the subject matter 
expert and experiences gained from other projects since the development of this model. 
Originally, an indicator variable for production (PI) was used to model both production and non-
production operations with a single model. The model had the following form: 

 
Et =   Intercept + Coeff1 · Twb  +  Coeff2  · Prod – Coeff3  · Prod2 + Coeff4 · PI                 (4) 

 
The revised model was separated into two distinct models; a production model and a non-

production model. The production model took the form of Equation 1 and the non-production 
model took the form of Equation 2. Table 2 shows that relative to the original model,   R2 
decreased, but so did the %CV-RMSE, and consequently the fractional savings uncertainty. The 
decrease in R2 resulted from a decrease in the slope of the data, and the decrease in CV-RMSE 
resulted in from a decrease in the spread of the data. This illustrates how selecting models based 
solely on the statistics of R2 and CV-RMSE can be misleading.  

  
Table 2. Model Improvement after Implementing Current Methodology 

 
 
Lessons Learned from Daily Time Interval Models  

 
Additional hardware and software requirements make regression models with daily time 

resolution more expensive to construct than regression models on a monthly resolution.   
Furthermore, other authors (Carpenter et al. 2010) have shown that when outdoor air temperature 
is the sole energy driver, daily and monthly models for these types of facilities yield nearly the 
same result. Therefore, the additional costs incurred to develop a regression model with a daily 
resolution may seem unwarranted. Our experience indicates that the additional time and 
complexity of daily resolution are needed to reduce the uncertainty to a level that allows the 
model to detect energy reduction in the range of 3-5%. Typically, the majority of additional time 
is incurred for data acquisition and management, rather than the modeling process itself.   

Two models were developed in order to investigate the differences between models 
created on a daily and monthly time resolution for large industrial facilities. Models of a daily 
time resolution were constructed from production periods and are assumed to be invalid for non-
production conditions. The models on a monthly time resolution were created by aggregating 
production and energy use and averaging temperature of the entire data set, which is on a daily 

Model Data Frequency R
2 % CV‐RMSE Auto‐correlation

Fractional 

Savings 

Uncertainty (%)

Original Daily 0.92 7.8% 0.25 30.6%

Rev, Prod Only Daily 0.83 2.3% 0.23 9.7%
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time resolution, to monthly values. Energy and production were then divided by the number of 
days in the month and a weighted regression was performed as outlined in ASHRAE Guideline 
14 using the analysis tool Energy Explorer (Kissock 2010).  Each model took the form of 
Equation 1, a three-parameter cooling multi-variable model. Although each model had additional 
production variables, only one production variable is shown for illustration purposes as the other 
variables provided essentially the same information.  

As shown in Table 3Error! Reference source not found., only the temperature change-
point coefficient was similar for both daily and monthly models. As pointed out by previous 
authors (Carpenter et al. 2010), this is likely a result of a similar distribution of temperature 
effects throughout time. However, in large industrial facilities, production is typically the 
primary energy driver. Thus, model effects are usually dominated by the production mode, and 
these effects are typically not evenly distributed throughout time. This can lead to significant 
differences in model coefficients and model fitness.  

The fractional savings uncertainty (FSU) is typically much larger for models with 
monthly time resolution as opposed to daily, resulting from substantially fewer data points. 
When the uncertainty that accompanies the reported energy savings for a project is large, 
skepticism rises about the true savings value. For Model 4 in Table 3, the FSU for a monthly 
model is reasonable, but this is driven by a lofty expectation of project savings. However, if 
actual project savings are a modest 2.8%, then the FSU for a monthly model grows to 82.8%, 
while the FSU for a daily model is within 20% uncertainty. In other words, for the monthly 
model, the uncertainty may be nearly as large as the reported savings.    

 
Table 3.  Comparison of Models with Time Resolutions of Daily and Monthly, FSU Is 

Provided For An 80% Confidence Level 

 
 

Model Development Results from Selected Participants 
 
Table 4 shows statistics for model fitness, R2, CV, and auto-correlation, and estimated 

fractional savings uncertainty expected based on estimated projected savings for seven ESI 
program participants. The results show that with a methodic and rigorous approach, models with 
good fitness and relatively low uncertainty can be developed. For this select group of models, the 
estimated fractional savings uncertainty at 80% confidence is estimated to be less than 20%.  
However, instances have occurred in which data sets provided models with substantially lesser 
fitness. At this time, we do not believe that model fitness should be a barrier to program 
participation. 

 

Model #

Subsector Resolution R2

%CV‐ 

RMSE Intercept RS

Change‐ 

point

Prod. 1 

Coeff

Est.   

Savings FSU (%)

Daily, prod only 0.84 3.9% 45,999 205 36.2 4.7 10.5% 4.8%

Monthly, all 0.89 4.1% 22,782 126 32.6 22.77 10.5% 22.1%

% Difference ‐ ‐ 50% 39% 10% ‐381%

Daily, prod only 0.89 1.6% 80,702 931 55.0 685.8 5.9% 8.3%

Monthly, all 0.78 7.2% 53,179 1,696 54.2 1830 5.9% 67.0%

% Difference ‐ ‐ 34% ‐82% 1% ‐167%

Model #4

Food Proc.

Model #6

High Tech
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Table 4. Model Statistics from Selected Participants, FSU Is Provided For An 80% CL 

 
 

Summary and Conclusions 
 
This paper outlined a six-step procedure that the ESI EPT Team has found beneficial to 

the development of linear regression models for sub-system and plant-wide energy use in 
industrial facilities.  The procedure outlined in these six steps demonstrated close agreement in 
the savings estimates for 15 of 17 projects evaluated by an independent third party in 2012.  The 
paper provided several key lessons learned from modeling the energy use of a large industrial 
facility.  
 Regression-based models created with a daily time resolution were shown to provide an 
estimated fractional savings uncertainty of less than 20%, with 80% confidence. For the same 
confidence level, the fractional savings uncertainty exceeded 20% for those models created with 
a monthly time resolution. The results show that  for linear regression models used to model sub-
system and plant-wide energy use in industrial facilities, the prediction capability and the 
estimated fractional savings uncertainty are greatly improved when using defensible modeling 
techniques and models with daily time resolution. Further work seeks to improve the 
methodology used to estimate fractional savings uncertainty. These results, along with energy 
savings achieved for each project, will then be used to provide a cost benefit analysis between 
models with daily and monthly time resolution.  
  

Model 
No.

Sector
Time 

Interval
R2 % CV 

RMSE
Model 

Parameters

Actual 
Baseline 

Observations

Auto-
correlation

Estimated 
Savings 

Observations

Estimated 
Project 

Savings (%)
FSU (%)

1 Food Processing Daily 0.83 2.3% 6 225 0.23 300 2.8% 9.8%
2 Food Processing Daily 0.91 2.3% 10 228 0.65 300 4.8% 10.1%
3 Food Processing Daily 0.93 2.1% 8 281 0.47 281 10.5% 3.3%
4 Food Processing Daily 0.84 3.9% 6 275 0.27 275 10.5% 4.8%
5 Food Processing Daily 0.85 3.1% 7 153 0.06 280 6.2% 5.2%
6 High Tech Weekly 0.89 1.6% 4 50 0.23 50 5.9% 8.3%
7 Pulp & Paper Daily 0.94 3.3% 3 142 0.18 300 3.1% 12.1%
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