A Risk-Based Approach to Industrial Energy Efficiency Technical Review

Nicholas Dalziel, Willis Energy Services

ABSTRACT

The role of technical review is to mitigate risk to demand-side management (DSM) program administrators. If done effectively, technical review should aid the cost effectiveness of DSM programs by improving on targeted net-to-gross ratios and savings persistence.

Ex-post impact evaluations of programs have detailed guidelines and protocols for evaluators to follow, however those conducting the technical review of ex-ante projects have limited guidance material to follow.

This paper identifies and assesses current practices and results for ex-ante technical review of large, unique and, primarily, industrial capital incentive projects. The result is a risk-based, framework to align industrial technical review practices and advise an appropriate approach and rigor for maximizing the cost-effectiveness to DSM programs.

Part A: Jurisdictional Review of Industrial Energy Efficiency Program Exante Technical Review

To identify and assess the benefits and costs of industrial energy efficiency program exante technical review, a review of North American industrial energy efficiency programs was conducted. Research considered program design and objectives, delivery models in order to identify specific jurisdictions with established and substantial industrial energy efficiency programs that are, for the most part, administered and reported independently of commercial and other sector programs.

The following programs were deemed to represent the best combination of applicability and access to relevant information:

- BC Hydro's Power Smart Partners Industrial (Transmission and Distribution)
- Wisconsin's Focus on Energy Industrial
- California Public Utilities Commission's (CPUC) Southern California Industrial and Agricultural (SCIA) and Pacific Gas & Electric's (PG&E) Fabrication, Process and Manufacturing

Review of Impact Evaluation reports, and other information made available by the above organizations, was conducted in order to identify instances and establish benchmarks for commonly reported metrics that could be used as indicators and comparisons for program and technical review success, as shown in Table 1 below.

Impact Evaluation Metric	Program Success Indicator
Net-to-Gross ratios	Cost effectiveness; quality of technical review
Verified savings vs. Gross savings	Quality of technical review
Incentives as a percentage of total expenditures	Cost-effectiveness; program administration efficiency
Total expenditures as a percentage of budget	Program participation
Target achievement	Program participation
Various utility cost and benefit to cost ratios (TRC)	Cost-effectiveness

Table 1. Impact Evaluation Metrics and Indicators

While the practices employed by evaluation professionals are fairly standardized, there are some notable exceptions, such as the CPUC policy that "spillover" is not included in net reported savings results (Intron 2010 (PG&E); Intron 2010 (SCIA)). Thus, caution must be employed when comparing Impact Evaluation report results.

Significant findings:

- Both BC Hydro's Power Smart Partners Industrial and Wisconsin's Focus on Energy Industrial achieved very high realization rates, at 96.5% (average PSI Transmission and Distribution, CY 2005 - 2010¹) and 97% (average FY02 – CY10) (Schauer et al. 2010), respectively.
 - Focus on Energy included confidence intervals for the accuracy of their ex-ante reported project savings, which is an observed best practice.
- BC Hydro's Power Smart Partners Industrial (F2003-F2006) program achieved the highest net-to-gross ratio, of programs researched, by a significant margin, at 91% (Tiedemann and Sulyma 2008).
 - Approximately 30% and 65% higher than Focus on Energy and PG&E results (Intron 2010), respectively. Per note above, CPUC results do not include spillover.
- CPUC Impact Evaluation reports include several recommendations for program practice improvements, most significantly those specific to baseline establishment.
- Energy Trust of Oregon prepares "true-up" reports to evaluate project and program persistence beyond the initial evaluation period.
 - Similarly, Focus on Energy reports lifetime and lifecycle (run-rate) in addition to first-year savings.

Further investigation into BC Hydro's Power Smart – Industrial technical review process was conducted in order to gain context for the above results. Investigations were designed to gather information that is applicable to the time period of the evaluation results² (F2003 – F2006), review practice evolutions applicable to the later range of the gross verified (measurement and verification) vs. gross reported data provided (~CY2007 – 2010) for calculation of realization rates, as well as the most recent review practices.

¹ Based on data provided by BC Hydro staff. Previous reports of earlier program cycles yielded similar results, though the actual results are no longer available.

 $^{^{2}}$ Willis staff includes Steve Ireland, former manager of Power Smart Technical Services (1996 – 2006) and other Power Smart personnel, including the author (2005 – 2009). Thus, some of this research was internal, based on personal experience.

From these investigations, it is clear that Power Smart has pursued continuous improvement of the technical review process over several program cycles, with the objective of improving customer satisfaction and review efficiency, while maintaining technical review accuracy. From a date preceding the F2003 – F2006 program cycle, Power Smart Industrial technical review established and later refined a robust review scope, based on demand-side management (DSM) industry principles. This scope and a general approach have contributed to their success in achieving high realization rates.

During more recent program cycles (2007-08 to present), the primary shift in their approach is to make the review process more proactive by involving the technical review engineers at the earlier stages of project development. This shift is considered to be instrumental in achieving the Power Smart Engineering group's ultimate goal of reducing review efforts and processing application volumes at a rate that is approximately three times previous rates.

The implementation of these changes included the creation of an engineering department dedicated to field services that act as a liaison between program participants and their consultants, account managers and technical review engineers (Gudbjartsson 2012). While this is a new development for BC Hydro, the deployment of technical field services to program participants is conducted in other North American industrial energy efficiency programs. The difference, observed in the case of BC Hydro, is the integration with their technical review process and the collaboration with participant's engineering consultants.

Conclusions

BC Hydro's Power Smart Partners – Industrial and Wisconsin's Focus on Energy – Industrial programs provide examples of best practices for industrial technical review in terms of a scope and approach to achieve accurate results (realization rate). BC Hydro's program achieves high participation and customer satisfaction levels.

In all cases of industrial energy efficiency programs reviewed, the most significant opportunity to mitigate risk and improve program cost effectiveness through the technical review process is in a more proactive management of the net-to-gross ratio. As identified in CPUC Impact Evaluation reports, this can be achieved, for the most part, with improvements to base case establishment practices.

Empirical results and testimony suggest that pro-active technical review (i.e. involvement at the early stage of project/opportunity identification) is instrumental in achieving efficiency in the review process. Additionally, technical resources are best equipped to implement and manage the improved baseline establishment practices suggested by CPUC evaluation results; however, early (pro-active) involvement is necessary in order for net-to-gross, and subsequently costeffectiveness improvements, to be realized.

Part B: Industrial Technical Review Approach and Framework

This part is divided into two sub-parts, based on the conclusions in Part A:

- 1. Presentation of technical review best practices for establishing a base case.
 - Assessing the timing and impact of the remaining life of existing system
 - Establishing the anticipated replacement in absence of "the project"

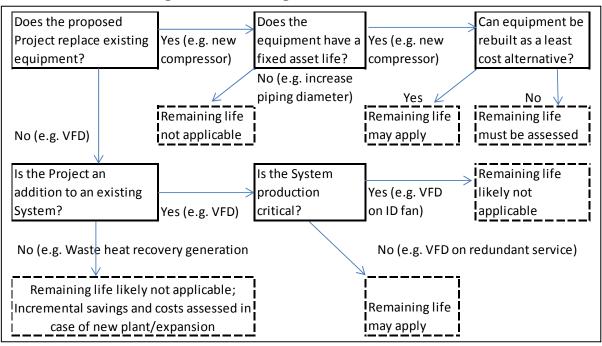
2. Presentation of a technical review standard to align ex-ante accuracy with the appropriate review rigor.

The following technical review approach and framework is intended for pro-active involvement of program technical resources, as per the conclusions in Part A.

Best Practices for Base Case Establishment

Efficiency project persistence is often conceptualized as the effective measure life (EML) or effective useful life (EUL) and administered by estimates and/or standards for the operable lifetime of the installed project; or the median project lifetime in a sample of a population of similar project types³. In this manner, the year-over-year project savings are calculated relative to a baseline that is based on pre-existing equipment, for the entire period of the EUL.

This does not properly account for the anticipated replacement in absence of the project, which should limit the project persistence or impact the incremental savings in any case where it is less than the EUL.


As stated in the CPUC PG&E Impact Evaluation, "This assumption would only be justifiable in situations where the program induced an early replacement of equipment that would otherwise have had a very high probability of continuing in operation for a period equal to the EUL of the new equipment." (Intron 2010 (PG&E), 1-5)

However, the CPUC Impact Evaluation's position that efficiency programs' ability to influence early replacement projects (i.e. anticipated replacement in absence of project > savings period) is a rare occurrence, does not appropriately recognize the industrial operating and economic environment. In the present day industrial sector, it is the norm for equipment to run well beyond the manufacturers specified technical asset life, especially in facilities with good maintenance practices, or in the case of equipment that can be rebuilt at a significantly lower cost than replacement. These factors need to be considered when assessing remaining life.

Additionally, from a technical perspective⁴, the issue of remaining life does not apply to all projects. The following decision flow provides guidance as to the need to consider remaining life of existing equipment for different project scenarios.

³ As explained in the Focus on Energy Evaluation Business Programs: Measure Life Study. KEMA: August 25, 2009

⁴ Economic considerations are outside the scope of this paper; these should be addressed by program design e.g. incentive payback thresholds and tiered incentive rates.

In the case of equipment that can be rebuilt as the least cost option, a general gauge for the applicability of remaining life is if the rebuild is expected to cost more the half the cost of replacement, then replacement would likely be considered in absence of an incentive. However, participant and project specific context should be included in the assessment.

Determining the remaining life of existing, operable, equipment is not an exact science. It is often overlooked by program applicant and non-technical program staff (sales/account management), especially since willful ignorance is typically in their interest, as it impacts a potential incentive. This leads to difficult and conflictive situations for technical review personnel, whereby applying an appropriate method will often have a negative impact on participant satisfaction. Lowering an expected incentive may have detrimental impact in cases where conditional approval has already been sought and received based on the anticipated incentive. This is a primary example of the benefits of proactive involvement of technical review personnel, who are best equipped to effectively manage the issue of remaining life to maximize program cost-effectiveness.

For practicality reasons, the "project incentive persistence" should be de-coupled from the "program reported persistence", in order to provide the flexibility to maintain program satisfaction/participation while reporting based on best available information. Because determining the remaining life of equipment is not an exact science, technical review recommendations should be based on categorizing projects according to standard remaining life bins, based on pre-defined project characteristics. The intention being that the standard would provide accurate forecasts for the population of projects for a given program, without expecting that the values are accurate in every case.

With the involvement of technical resources at the project inception stage, professional judgments can be applied in order to categorize and bin potential opportunities, thus setting appropriate expectations for project incentives. In order to make informed discretionary decisions, program specific tools should be developed that enable the merits of individual

projects to be assessed. For example, the Table 2 below, based on data from the Ontario Power Authority's (OPA) Process and Systems Upgrades Initiatives, depicts estimates of the program break-even periods (full and incremental program cost basis), based on full "project incentive persistence" (10 years). As shown in Table 2, it may be in the programs interest to provide a full incentive, even if the anticipated replacement timeline is less than the savings period. An alternative, also shown below, is to use demand-side management cost tests, such as total resource cost ratios.

Project Payback (years)									
Simple Payback (w/o incentive)	5.0	4.4	4.0	3.6	3.3	3.1	2.9	2.7	2.5
Project Payback (w/ incentive)	3.0	2.4	2.0	1.6	1.3	1.1	1.0	1.0	1.0
Program Break-even (years)									
Project basis (incentive only)	4.7	4.7	4.7	4.7	4.7	4.7	4.4	3.9	3.5
Program basis (all costs)	9.4	9.4	9.4	9.4	9.4	9.4	8.7	7.8	7.0
Project lifetime for TRC of 1.0	8.1	7.2	6.5	5.9	5.4	5.0	4.7	4.4	4.2
Project lifetime for TRC of 1.4	12.4	10.7	9.4	8.5	7.7	7.1	6.6	6.2	5.8

Table 2. Project Payback vs. Program Break-even

Technical Review Standard Framework

While the findings in Part A regarding the leaders in industrial energy efficiency program technical review best practices are highly specialized/specific, they are not unique. BC Hydro's industrial energy efficiency programs have previously been identified as industry leading in areas of program design and implementation by various bodies other jurisdictions. BC Hydro's industrial project incentive technical review scope has been adapted and applied to other North American industrial energy efficiency programs, such as the Ontario Power Authority's Industrial Accelerator Program and Process and Systems Upgrades Initiatives. A modified version of this scope is presented below:

- 1. Establish a **base case**, including:
 - a. System and general operation description
 - i. Including, changes to the operation of the system, known or anticipated, in absence of, or in addition to, the project.
 - b. System boundary and documentation of all energy consuming equipment within
 - c. Current condition of the system and establishment of remaining life
 - i. Analysis of the anticipated economic and technical end-of-life of current equipment and anticipated replacement in the absence of the project, resulting in a determination of the number of years that the equipment replacement has been accelerated and the consequential impact on energy savings
 - d. Detailed operation of the system
 - i. Hours of operation and relationship with production, or other global variables
 - ii. Operating parameters (local variables) and performance (efficiency)

- e. Development of the baseline energy consumption
 - i. Accounting for the base case operation, operational changes, and condition, including anticipated replacement in absence of the project
 - ii. Based on metered data and/or models/simulation, as applicable
 - Models and simulations for theoretical base cases (where anticipated replacement < savings period) based on assessment of standard technology efficiencies/energy performance standards
- 2. Measure analysis, including:
 - a. Estimation of energy savings: at appropriate interval (e.g. hourly, daily, seasonal or annual) and duration (e.g. first-year, lifetime, etc.), including:
 - i. Applicability and estimation of interactive effects, within and outside of the system boundary
 - ii. Applicability and determination of incremental versus full savings (per base case, remaining life and associated baseline energy consumption)
 - Incremental relative to the energy performance standards of equipment that would be installed in the absence of the project and higher efficiency capital improvements directly influenced by the incentive.
 - b. Determination of expected project life, based on measure life and remaining life (per base case) i.e. the minimum value
- 3. Project cost analysis, including:
 - a. Assessment of project cost estimate accuracy
 - b. Assessment of cost eligibility, as per program rules and relevance to the project scope
 - c. Applicability and determination of incremental versus full costs (per base case, remaining life)
 - ii. Incremental relative to equipment that would be installed in the absence of the project and higher efficiency capital improvements directly influenced by the incentive.
- 4. Assessment of other benefits and costs, including:
 - a. Changes in operating and maintenance costs, production/productivity, etc.
- 5. The benefit of the project to ratepayers in accordance with conservation and demand management industry standards (not in technical review scope)

Discussion with program personnel provides insight into BC Hydro's technical review process, design and a general overview of the expectations and approach. However, it does not provide a public standard that other program administrators can consistently implement in order to achieve comparable technical review realization rates and effectively mitigate risk. To that end, a framework for conducting the above scope has been developed based on Willis' experience in performing technical review services for the OPA's industrial programs. This framework attempts to incorporate parts of the BC Hydro process, design and approach, as well as elements of best practices from other industrial energy efficiency programs, previously identified, to effectively and appropriate mitigate risk.

For the purpose of technical review, risk is defined as the product of project materiality and savings uncertainty. The critical variables for technical review best practices for mitigating risk, while achieving accuracy (realization rate), customer satisfaction (timeliness and ease) and cost-effectiveness (NTGR and incentives as % of budget) are the appropriateness of information requirements and the rigor of review.

In order to develop a standard framework for applying the appropriate rigor (including information requirements) to the above-described technical review scope a stratified, a risk-based approach was developed. A continuum of information requirements and review approaches were developed for each technical review scope item and divided into appropriate tiers; between two and four. As shown in Table 3, below.

The quantitative scope items that impact the energy savings – specifically, the baseline electricity consumption and estimated future consumption/energy reduction – were further divided into their components (e.g. power, operating variability, operating hours, etc.) and uncertainty assumptions were generated for each component, as shown in Figure 2, below.

	Table 5. Thered information Expectations and Approach by Review Scope item					
SoW Item	Tier 1: < 1,000 MWh	Tier 2: 1,000 – 1,750 MWh	Tier 3: 1,750 – 3,000 MWh	Tier 4: > 3,000 MWh		
Base Case –	Expectations	Expectations				
System	- Provision of major equipment		Provision of all energy-consuming equipment information (model, type, capacity, hp, etc.) and			
Description,	information (model, type,	specifications/performance curves for	5 1 1			
Boundary and	capacity, hp, etc.)	- Description of system function/opera				
Equipment,	- Description of system	- Current equipment condition should	be accompanied by equipment age	e, run-time, previous failures,		
Current	function/operation and current	and/or current operation and maintenan	nce issues/costs.			
Condition/	condition is sufficient, unless:	Review Approach				
Remaining Life	- Condition description raises	- Site-visit, discussion and information	requests, as necessary to address	application deficiencies and		
(1.a, 1.b & 1.c)	issues regarding equipment	understand base case system operation	(including future in absence of pr	roject).		
	remaining life.	- Refer to previous section for review of	of remaining life and anticipated re	eplacement		
In case of	- System information or TR					
anticipated	experience suggests potential for					
replacement <	Interactive Effects (in which					
savings period;	case, a PFD or other details may					
Description of	be required)					
standard	Review Approach					
efficiency base	- Discussion or information					
case system in	requests, as necessary to address					
absence of the	application deficiencies and					
project consistent	understand base case system					
with adjacent	operation (including future in					
	absence of project)					
	- Refer to previous section for					
	review of remaining life and					
	anticipated replacement					

Table 3. Tiered Information Expectations and Approach by Review Scope Item

SoW Item	Tier 1: < 1,000 MWh	Tier 2: 1,000 – 1,750 MWh	Tier 3: 1,750 – 3,000 MWh	Tier 4: > 3,000 MWh
Base Case –	Minimum Requirements (for	Minimum Requirements (for	Minimum Requirements (for	Minimum Requirements (for
Detailed	Remaining Life > 0)	Remaining Life > 0)	Remaining Life > 0)	Remaining Life > 0)
Operation and	Power Estimates: 100% T2	Power Estimates: 50% T4 + 50% T3	Power Estimates: 50% T4 +	Power Estimates: 90% T4 +
Baseline Energy	(±12.5%), or 75% T3 + 25% T1	(±4.5%), or 75% T4 + 25% T2	50% T3 (±4.5%), or 75% T4 +	10% T1 (±2.1%)
(1.d & 1.e)	(±10.6%)	(±4.3%)	25% T2 (±4.3%)	Power Variation: T4
	Power Variation: T1	Power Variation: T2	Power Variation: T3	Operating Hours: T4
In case of	Operating Hours: T1	Operating Hours: T2	Operating Hours: T3	
anticipated				Review Approach
replacement <	Review Approach	Review Approach	Review Approach	Review includes independent
savings period;	- Review includes independent	Review includes independent	Review includes independent	calculation of the Baseline
Where	calculation of the Baseline	calculation of the Baseline Energy	calculation of the Baseline	Energy for Application
anticipated	Energy for Application	for Application validation and M&V	Energy for Application	validation and M&V Plan
replacement is a	validation and M&V Plan	Plan purposes. Including, for	validation and M&V Plan	purposes. Including, regression
like-for-life	purposes.	variable systems, independent	purposes. Including, for	analysis of power and correlating
replacement, use	- Review of operating variations	review of operating variations and	variable systems, regression	variable(s) + independent review
existing base	and cross-reference of operating	cross-reference of operating	analysis of power and	of operating variables
case. Otherwise,	variables limited to check of	variables (equipment performance/	correlating variable(s) (or	(equipment performance/
see below.	application calculations,	efficiency ⁵) to check Baseline	suitable alternative) +	efficiency), if appropriate
	corrections only if necessary, and	Energy estimate.	independent review of	(summation of 8,760 data may
	(verbal) confirmation of		operating variables (equipment	be sufficient).
	assumptions applied in		performance/ efficiency) for	
	Application.		extrapolation to annual	
			baseline	
Base Case –	Expectations	Expectations	Expectations	Expectations
Modeled	- Estimated load based on	- Calculated load based on	- Calculated load based on	- Calculated load based on
Baseline Energy	comparable benchmark	equipment specifications and	equipment specifications and	equipment specifications and
	Review Approach	assumed loading	comparable benchmark for	comparable benchmark for
	- As above, to extent possible	Review Approach	loading factors	loading factors
		- As above, to extent possible	Review Approach	Review Approach
			- As above, to extent possible	- As above, to extent possible

Table 3. Tiered Information Expectations and Approach by Review Scope Item

⁵ Establishing base case equipment performance/efficiency is often for the purpose of projecting post-project energy consumption

SoW Item	Tier 1: < 1,000 MWh	Tier 2: 1,000 – 1,750 MWh	Tier 3: 1,750 – 3,000 MWh	Tier 4: > 3,000 MWh	
Measure	Expectation T1	Expectation T2	Expectation T3/T4	•	
Analysis –	Review Approach	Review Approach	Review Approach		
Energy Savings	- Information requests, as	- Information requests, as necessary	- Information requests, as neces	sary to understand calculations	
(2.a)	necessary to understand	to understand calculations (incl.	(incl. samples).		
	calculations.	samples).	- Alternative estimate developed	d (per Energy Savings T3 standard)	
	- Complete and correctness	- Detailed review and check of		stimate (continuous operating point	
	review of application estimate, if	application estimate, if it meets		distribution documented; in which	
	it meets above expectation	above expectation (average operating	case, multi-points for different		
	(average operating point analysis	point analysis acceptable, if ~even		(verified) installations/case studies	
	acceptable; multi-points for	distribution expected; multi-points	is a last resort for cases involving	ng proprietary solutions (preferably	
	variable operation/different	for variable operation/ different	3 rd party results), or measures th		
	modes, incl. seasonality)	modes, incl. seasonality)	independently estimate projecte		
	- Benchmark comparison to	- Benchmark comparison to	- Assessment/investigation of sa		
	published results and internal	published results and internal	deteriorating base case) for proj		
	experience, if possible.	experience, if possible.	deterioration expected, apply qu	uantification of deterioration to	
	- Alternative estimate developed	- Alternative estimate developed (per	lifetime energy savings.		
	(per Energy Savings T1 standard)	Energy Savings T2 standard) if			
	if expectation not met, or	expectation not met, or application			
	application estimate outside	estimate outside benchmark range.			
	benchmark range.	- Assessment of savings			
	- Consideration of savings	deterioration (relative to			
	deterioration (relative to	deteriorating base case) for project			
	deteriorating base case) for	lifetime. If < 10% of savings,			
	project lifetime. If $< 10\%$ of	document assessment. If $> 10\%$, see			
	savings, document qualitative	Т3			
	expectation. If $> 10\%$, see T3				
Measure	Expectation: per Base Case System	n Description and Boundary		stem Description and Boundary	
Analysis –	Review Approach		Review Approach		
Interactive		red based on information provided and	Potential existence/impact cons		
Effects (2.a.ii)	reviewers knowledge of similar sys		provided, reviewers knowledge		
	1 1	(just acknowledged). Otherwise, apply	independent research, if likely t		
М	adjacent approach.		developed/integrated within Ba	seline Energy and Energy Savings	
Measure	Review Approach	1			
Analysis –		blacement > savings period, incremental			
Incremental	- If Remaining Life/anticipated replacement < savings period, Incremental Savings integrated within Energy Savings analysis based on separate Baseline Energy values for respective periods (pre & post-anticipated replacement date)				
Savings (2.a.iii)	Baseline Energy values for respect	ive periods (pre & post-anticipated repla	cement date)		

Table 3. Tiered Information Expectations and Approach by Review Scope Item

SoW Item	Tier 1: < 1,000 MWh	Tier 2: 1,000 – 1,750 MWh	Tier 3: 1,750 – 3,000 MWh	Tier 4: > 3,000 MWh	
Measure	Review Approach		Review Approach	-	
Analysis –	Expected Life = minimum of rema	ining life (anticipated replacement)	Expected Life = minimum of remaining life (anticipated		
Expected Project	and measure life		replacement) and measure life		
Life (2.b)	Measure life review based on Wisc	consin Measure Life Study	Measure life review based on Wis	sconsin Measure Life Study,	
			permanence of implemented meas		
			useful life of critical equipment to		
Project Costs	Other Tier Inclusions: >50%	Other Tier Inclusions: >25%	Other Tier Inclusions: >25%	Other Tier Inclusions: < 10%	
Green = down	sensitivity margin ⁶ for Projects <	margin <3,000 MWh (>1,750), or	margin > 3,000 MWh, or <10%	margin < 3,000 MWh (>1,750)	
Tier (lower risk)	1,750 MWh	<10% margin <1,000 MWh	margin < 1,750 MWh (>1,000)	T4 Exclusions: >25% margin	
$\mathbf{Red} = \mathbf{up} \operatorname{Tier}$	T1 Exclusions: < 10% margin	T2 Exclusions: >25% margin, or	T3 Exclusions: >25% margin,		
(higher risk)		<10% margin	or <10% margin		
	Requirements	Requirements	Requirements	Requirements	
Estimate	- Breakdown of Project costs by	- Breakdown of Project costs by	- Breakdown of Project costs by	- Breakdown of Project costs by	
Accuracy (3.a)	major cost categories (separation	major cost categories and	major cost categories and	major cost categories and	
	of equipment costs from total	(significant) line items, as	(significant) line items, as	(significant) line items, as	
	sufficient for turnkey vendor	appropriate	appropriate	appropriate	
	solutions)	- Budgetary quotes for all	- Budgetary quotes for all	- Budgetary quotes for all	
	- Budgetary quote for major	significant equipment	significant equipment and	significant equipment and	
	equipment, if available	Review Approach	construction, if applicable	construction, if applicable	
	Review Approach	- Information requests, as	Review Approach	Review Approach	
	- Information requests, as	necessary to meet requirements	- Information requests, as	- Information requests, as	
	necessary to meet requirements	- Completeness/correctness review	necessary to meet requirements	necessary to meet requirements	
	- Completeness and correctness	- Benchmark assessment of project	- Completeness/correctness	- Completeness/correctness	
	review of application estimate	costs, or (if similar comparisons	review	review	
	- Benchmark comparison to	not available)	- Assessment via comparative	- Assessment via comparative	
	similar projects/equipment	- Assessment via independently	equipment and construction	quotes, or estimation methods, if	
		obtained comparative equipment	quotes, if feasible	necessary (quotes not	
		quotes	- Benchmark comparison of	available/account for less than	
			other (soft) costs	75% of project costs)	
				- Benchmark comparison of other	
				(soft) costs	

Table 3. Tiered Information Expectations and Approach by Review Scope Item

⁶Sensitivity margin is a calculation of the % change in project costs before the incentive is impacted, per program rules. The above example is based on the OPA's Process and Systems Upgrades Initiatives, limitations of a one-year post-incentive payback and 70% of project costs.

SoW Item	Tier 1: < 1,000 MWh	Tier 2: 1,000 – 1,750 MWh	Tier 3: 1,750 – 3,000 MWh	Tier 4: > 3,000 MWh		
Project Cost –	Requirements as per Estimate Ac	curacy (3.a) above				
Eligibility (3.b)	Review Approach					
	- Determination of cost item eligib	- Determination of cost item eligibility and applicability to project scope				
	- Additional information requests f	- Additional information requests for cost item details, as necessary, to assess eligibility in case of questionable cost items				
Project Cost –	Requirements as per (modeled) B	ase Case System Description (1.a) and E	Stimate Accuracy (3.a) above			
Incremental	Review Approach					
Costs (3.c)	- If Remaining Life/ anticipated rep	ning Life/ anticipated replacement > savings period, incremental costs are not applicable.				
		lacement < savings period, Incremental				
		roject, per (modeled) Base Case, and hig		its directly influenced by the		
	incentive. Apply applicable Project	t Cost – Estimate Accuracy (3.a) Tier ap				
Other	Apply incentive calculation	Apply incentive calculation	Apply incentive calculation sense			
Benefits/Costs	sensitivity margin approach	sensitivity margin approach above +	Other Tier Inclusions: If OB/C >	25% of PB, for projects >1,000		
(OB / C)	above + Other Tier Inclusions: If	Other Tier Inclusions: If OB/C <10%	MWh			
Green = down	OB/C <5% of project benefits	of PB, for project all projects or >	T3 Exclusions: If OB/C <10% o	f PB		
Tier (lower risk)	(PB), for all projects	25% OB/C of PB <1,000 MWh				
$\mathbf{Red} = \mathbf{up} \operatorname{Tier}$	T1 Exclusions: If $OB/C > 25\%$	T2 Exclusions: If OB/C >25% PB or				
(higher risk)	PB	<5%				
	Expectation	Expectation	Expectation			
	Explanation of the source of	- Explanation and calculation of	- Explanation and calculation of	other benefits or costs must be		
	benefits or costs	other benefits or costs must be	provided			
	Review Approach	provided.	- Values should be based on actu	al data, whenever		
	- Information requests, as	- Values based on comparables,	possible/feasible			
	necessary to meet requirements	industry standards, benchmarks, etc.	- Provision of asset maintenance			
	- Application value accepted	typically acceptable, unless actual	warranties, if applicable/purchas	ed		
	unless it significantly deviates	data is readily available	Review Approach			
	from reviewer's experience. In	Review Approach	- Information requests, as necess			
	case of upward deviation,	- Information requests, as necessary	- Independent calculation for ver	11		
	expectations and review adjusted	to meet requirements	determination of alternative valu	ie		
	to T2.	- Completeness and correctness				
	- If no OB/C's identified,	review of the calculation				
	reviewer does not investigate	- Validation of benefit/cost source				
		- Independent calculation only if				
		necessary/practical				

Table 3. Tiered Information Expectations and Approach by Review Scope Item

Accuracy Assumptions - Uncertainty Estimations					
T1	T2	ТЗ	T4		
Base Case: Baseline Energy Consumption					
Power Estimates					
kW from nameplate data, (with context e.g.		kW from Amps, with power factor measurement and	kW measurements, or calculation		
loading estimate/ description from operator):	kW from Amps, with estimated Volts and power	estimated Volts, or vice versa, with motor spec pf	based on measured Amps, Volts and		
10 - 30% 20	% factor: 10 - 15% 12.5	% info: 5 - 10% 7.5%	6 power factor: 0.5 - 2.5%	1.5%	
Power/Production Variations (estimations include assu	mption that base case production is representative of future	production)			
Constant Operation					
		Mean power from multiple spot measurements,			
Mean power from spot measurement, with	Mean power from multiple spot measurements	distributed over course of year/time of day, that			
constant loading justification (for calc:	(within short period) that demonstrate constant	demonstrate constant loading + justification (for			
Baseline Energy = mean power x operating	loading + justification (for calc: Baseline Energy =	calc: Baseline Energy = mean power x operating			
hours): 10 - 20%	mean power x operating hours): 5 - 15%	hours): 2.5 - 7.5%			
Variable Operation	10%	5%	12+ month power/load data:	2.5%	
Annual extrapolation of operation (load or	10%	5/6	0 - 5%	2.3/0	
other operating parameter) based on < 2	Annual extrapolation of operation based on > 2	Annual extrapolation of operation based on > 2			
weeks continuous data, with	weeks (incl. multiple production cycles) of	weeks (incl. multiple production cycles) of			
production/mode variation cross-reference,	continuous data, with production/mode variation	continuous load data, with correlating parameter for			
but without a correlating parameter for	cross-reference, but without correlating parameter	full year:			
extended period: 10 - 20%	for extended period: 5 - 15%	2.5 - 7.5%			
Operating Hours (estimations include assumption that	base case production is representative of future production)				
Constant Operation (typically single motor system, or n	nultiple motors that always run together, or are totally indepe	ndent)			
Annual operating hours estimated from	Annual hours from < 2 weeks continuous operating	Annual hours from > 2 weeks continuous operating	12+ month operating log (or 8,760		
operating/production schedule and operator	data/log extrapolation + supporting info from	data/log extrapolation + supporting info from	system, less maintenance and		
experience: 10 - 20% 15	% schedule/operator experience: 5 - 15% 10	% schedule/operator experience: 2.5 - 7.5% 5%	shutdown): 1 - 4%	2.5%	
Variable Operation (including multiple motor systems,	with sequencing based on demand)				
Annual opeating hours (per motor) from	Annual opeating hours from extrapolation of		12+ month operating log		
extrapolation of operation data/log based on	operation data/log based on > 2 weeks (incl.	Annual operating hours from extrapolation based on	(alternatively, all motors operate		
< 2 weeks continuous data, with	multiple production cycles) of continuous data,	> 2 weeks (incl. multiple production cycles) of	8,760 hours, less maintenance and		
production/mode variation cross-reference:	with production/mode variation cross-reference: 5 -	operation log/run-time data, with correlating	annual shutdown, with supporting		
10 - 20% 15	4 15% 10	% parameter for full year: 2.5 - 7.5% 5%	information): 1 - 4%	2.5%	
Energy Savings: Post-Project Projected Consumption	or Energy Reduction %				
Efficiency measure correlated to a current operating pa	rameter, including production/operating hours (in case of spe	cific efficiency improvement)			
Uncertainty of average savings % (single-	Uncertainty of projected consumption based on				
point) based on engineered/experienced	spot measured operating conditions and/or	Uncertainty of projected consumption based on			
estimate/ benchmark & new equipment specs	detailed engineering calculation & new equipment	continuous measured operating conditions & new			
(if applicable) 20	% specs, for each distinct mode 10	% equipment specs 59	6		
Efficiency measure relates to changing operating param	neters; no pre and post-project correlation				
	Uncertainty of projected consumption based on				
Uncertainty of projected consumption based	engineering calculation (incl. new equipment	Uncertainty of projected consumption based on			
on engineering calculation (incl. new	specs, if applicable) + calculation/simulation of	engineering calculation (incl. new equipment specs,			
equipment specs, if applicable) + projected	projected operation (e.g. reduced flow, pressures,	if applicable) + calculation/simulation of projected			
operation (e.g. reduced flow, pressures, etc.)	etc.) based on spot measurement of current	operation (e.g. reduced flow, pressures, etc.) based			
based on benchmarking/ industry experience 20	% conditions 10	% on continuous measurement of current conditions 59	6		

The uncertainty assumptions are based on Willis' project and measurement and verification (M&V) data analysis experience⁷. The uncertainty assumptions were combined via uncertainty calculation methods to arrive at total energy savings uncertainty values. Table 4 presents the project materiality ranges (in MWh/year) and associated expected uncertainty, based on the assumptions in Figure 2 and description of review and requirements in Table 3.

		Tier				
	1	2	3	4		
Electricity Savings Range (MWh/yr)	< 1,000	1,000 < x < 1,750	1,750 < x < 3,000	> 3,000		
Assumed Mean Project Size by Tier (MWh/yr)	550	1,375	2,375	4,000		
PR Tier Threshold based on Levelized Risk (MWh/yr)	1,000	1,750	3,000	5,000		
Uncertainty Estimates						
Base Case	43%	25%	14.5%	7.1%		
Power	28%	14.5%	9.5%	4.6%		
Measurement Accuracy - Option A	13%	4.5%	4.5%	2.1%		
Measurement Accuracy - Option B	11%	4.3%	4.3%	n/a		
Variation	15%	10%	5.0%	2.5%		
Operating Hour Variability	15%	10%	5.0%	2.5%		
Electricity Savings	54%	32%	19%	12%		
Projected Consumption/% Reduction	20%	10%	5%	5%		
Incentive Risk						
Incentive Risk based on Assumed Mean Project Size	\$59,400	\$88,140	\$89,180	\$93,960		
Levelized Incentive Risk for Max Savings per Tier	\$108,000	\$112,175	\$112,650	\$117,450		

Table 4. Technical Review Savings Uncertainty and Risk by Tier

These values represent the expected maximum savings result uncertainty, within the bounds of appropriate project assumptions. Meaning, greater deviations are possible, if due to contradiction of a given assumption or in the event of an unforeseen circumstance (the majority of unforeseen circumstances should be mitigated by appropriate technical review). Also meaning, the average savings results are expected to deviate from estimated values by a lesser percentage (especially in the lower tiers), but confidence intervals cannot be developed at this time.

The initial technical review risk associated with each tier was calculated based on the median project materiality and the uncertainty. The materiality bandwidths and subsequent risk calculations were iterated until an approximately levelized technical review risk was achieved for all tiers, as depicted in Table 4, above. The combination of the above tables make-up a technical review standard framework that can be applied to any industrial energy efficiency, energy acquisition, capital incentive program.

⁷ Work is under way to track an update assumptions based on future verified data

References

- B. Taylor, D. Trombley, and J. Reinaud. 2012. *Energy Efficiency Resource Acquisition Program Models in North America*. Institute for Industrial Productivity.
- K. Tiedemann, and I. Sulyma. 2008. *Demand Side Management Milestone Evaluation Report*. Burnaby, BC: BC Hydro Power Smart.
- L. Schauer et al. (The Focus evaluation team). 2010. Focus on Energy Annual Evaluation Report (2010). Madison, WI: Tetra Tech Inc.
- Intron Inc. 2010. 2006-2008 Evaluation Report for the Southern California Industrial and Agricultural Contract Group. CPU0018.01. Oakland, CA: Intron Inc.
- Intron Inc. 2010. 2006-2008 Evaluation Report for PG&E Fabrication, Process and Manufacturing Contract Group. CPU0017.01. San Francisco, CA: Intron Inc.

Gudbjartsson, Loren (BC Hydro Power Smart). 2012. Personal Communication. January 17.

Acknowledgements

Special thanks to Ken Lau and Rico Luk at BC Hydro Power Smart for 2005 – 2010 industrial program gross reported and gross verified project savings results data.