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ABSTRACT  

This paper presents an economic framework for integration of energy efficiency and 
renewable energy in manufacturing plants that results in net-zero carbon emissions at net-zero 
costs.  The paper begins by reviewing the economics of net-zero energy buildings and discussing 
why a different approach is needed for manufacturers to cost-effectively achieve net-zero carbon 
emissions.  Net-zero carbon manufacturing begins by applying the integrated systems plus 
principles approach to energy efficiency that provides a coherent, reproducible and teachable 
method to improving manufacturing energy efficiency.  The savings realized from energy 
efficiency improvements are used to first make investments in on-site renewable energy and 
subsequently to purchase Renewable Energy Credits.  The result is that net-zero carbon 
emissions are achievable for most manufacturers at net-zero cost in a manner consistent with 
manufacturing business practices. The paper demonstrates this method with case-study data from 
manufacturing energy assessments. 

 
Introduction 

 
The Intergovernmental Panel on Climate Change’s Fourth Assessment Report calls for 

reductions in CO2 emissions of 50% to 85% from 2000 emissions by 2050 in order to limit 
global average temperature rise to 2.0-2.4 °C above pre-industrial levels (IPPC, 2007).  To 
achieve this scenario, CO2 emissions would need to peak before 2015.  Achieving these CO2 
emission targets will require significant improvements in energy efficiency across all economic 
sectors and widespread adoption of renewable and/or low-carbon energy sources (Kutscher, 
2007; Pacala and Socolow, 2004). 

In the buildings sector, significant effort is devoted to net-zero energy buildings that 
integrate energy efficiency and on-site renewable energy that result in net-zero carbon emissions.  
In buildings, on-site net-zero energy is economically viable due to buildings’ relatively low 
energy requirements, relatively large collector areas, relatively long economic lifetimes and lack 
of energy-added exports.   

Unfortunately, none of these factors are applicable to the manufacturing sector.   
Manufacturers have high energy requirements, relatively low collector areas, short product and 
economic lifetimes, and generate energy-added exports. Even after implementing energy 
efficiency measures most manufacturers are far from net-zero energy or carbon.  Thus, 
manufacturers need a different economic and investment paradigm for achieving significant 
carbon emission reductions.   

The 123-zero approach capitalized on, rather than being constrained by, manufacturing’s 
economic and energy use characteristics.  In particular, it capitalizes on the energy intensity of 
manufacturing operations by aggressively identifying and implementing energy efficiency 
improvements as step “1”.  In step “2”, it uses income from energy efficiency improvements to 
make capital purchases in on-site renewable energy, thereby freeing traditional capital resources 
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for traditional investments in the production process.  Because manufacturers produce energy-
added goods for off-site use, the supply of energy from off-site renewable energy technologies 
such as wind turbines is appropriate and in most cases necessary.  Thus, step “3” is to purchase 
Renewable Energy Credits for the remaining energy requirements, and hence achieve net-“zero” 
carbon emissions.  Our research and experience indicate that the 123-zero approach is both 
consistent with manufacturer’s business models and is readily achievable by most manufacturers 
all across the country. 

 
Net-Zero Energy Buildings 

 
A 2007 National Renewable Energy Laboratory (NREL) study concluded that 62% of 

buildings could reach net-zero energy given today’s available technologies (Griffith et al., 2007).  
A zero-energy building was defined as a building with net site energy use of zero or less (less 
recognizes the possibility that a building could produce more energy than it consumes).  Creating 
a zero-energy building is accomplished in two steps.  First, energy efficiency measures reduce 
building energy consumption.  Second, on-site renewable energy technologies are utilized to 
produce the quantity of energy equal to the remaining demand. 

NREL estimated that, on average, energy efficiency opportunities can reduce energy 
consumption in buildings by 43%.  This is a significant step, because consumption must be 
reduced to a level that can be realistically offset by on-site renewable energy like solar 
photovoltaics (PV).   For example, a fundamental constraint for buildings to achieve net-zero 
energy using solar collectors is available roof space.  Economics also underscore the importance 
of implementing energy efficiency before resorting to renewable energy technologies.  For 
example, the average cost of energy for both energy efficiency and renewable energy options can 
be calculated as the ratio of annual loan payments to annual energy output or savings.  Applying 
this method to a careful design of a net-zero energy house in Dayton, Ohio (Mertz et al., 2006, 
Mertz et al., 2007) showed that 8 energy efficiency measures were more cost effective than solar 
hot water (at a first cost of $833/m2) and 12 energy efficiency measures were more cost effective 
than solar PV (at a first cost of $5/W) (Figure 1).   

 
Figure 1.  Energy Efficiency and Renewable Energy Options Sorted by Average Cost for a 

Net-Zero Energy Home in Dayton, OH 
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Although in most cases, energy efficiency is more cost-effective than renewable energy 
(Katherine et al., 2009), energy efficiency alone can’t achieve net-zero energy or net-zero carbon 
emissions.  However, the combination of energy efficiency and renewable energy is successful in 
achieving cost effective net-zero energy use in buildings over typical building timeframes.  In the 
example from Figure 1, energy efficiency meets 39%, solar thermal meets 17% and solar 
photovoltaic systems meet 44% of total building energy demand, with a total average cost of 
$0.18 /kWh over the lifetimes of the energy systems.  This is comparable to the average cost of 
purchased energy when projected energy escalation costs are included.  Thus, over a 30-year 
lifetime, the owning and operating cost of this net-zero energy building is about the same as a 
traditional building. 

In the commercial sector, the largest net-zero energy building in the U.S. is a 220,000 
square foot NREL facility which was completed in June 2010.  The building achieved energy use 
50% lower than ASHRAE 90.1-2004, with a 1.6 megawatt PV array meeting the remaining 
demand.  Currently, 21 commercial buildings have been approved by the U.S. Department of 
Energy to be net-zero energy (U.S. D.O.E., 2011).   Another 39 buildings have been identified as 
potentially net-zero energy, but have yet to provide sufficient documentation to be approved.  
The “Federal Leadership in Environmental, Energy, and Economic Performance” executive 
order is sure to help continue pushing net-zero buildings forward (Office of the President, 2009).  
It requires all new federal buildings that enter the planning process beginning in 2020 to achieve 
net-zero energy by 2030. 

 
123-Zero Approach to Net-Zero Carbon Manufacturing 

 
While net-zero energy buildings have begun to emerge, net-zero carbon manufacturing 

has proven to be more challenging.  The high energy requirements and shorter economic 
timeframes of manufacturers make it much more difficult to achieve net-zero energy under the 
same economic and energy paradigms as buildings.  However, net-zero carbon manufacturing at 
net-zero cost is achievable if the paradigm is shifted to capitalize on manufacturing’s unique set 
of attributes. 

First, unlike buildings, manufacturers produce goods that require energy inputs and 
export those goods off site.  Thus, expecting a manufacturer to use only on-site renewable energy 
is unreasonable from a thermodynamic system point of view.  This means that a net-zero 
paradigm appropriate for manufacturers should begin by targeting net-zero carbon emissions 
instead of net-zero on-site energy, and allowing the use of off-site renewable energy.  In essence, 
this draws the thermodynamic system boundary large enough to account for the production and 
distribution of energy-added goods.   

 
Figure 1. Thermodynamic System Boundary of Buildings and Manufacturers 
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A Manufacturing Case Study 
 
Thomas Edison once stated, “I’d put my money on the sun. What a source of energy!” At 

a time when electricity was still in its infancy, it was already clear to Edison that our energy 
would someday come from renewable sources. Today, renewable energy is widely available and 
increasingly affordable. For manufacturers, using the cash flow from improving energy 
efficiency to finance on-site renewable energy and subsequently purchase Renewable Energy 
Credits (RECs) is a no-cost 123-zero path to environmental responsibility. 

Consider the following case study of a typical energy assessment performed by the 
University of Dayton Industrial Assessment Center in Cincinnati, Ohio. The total cost of energy 
for the plant was $1,180,212 per year.  CO2 emissions associated with plant energy use were 
12,053 tonnes per year. A one-day on-site audit identified energy savings opportunities with a 
total potential savings of $156,883 per year, which would reduce CO2 emissions by 1,446 tonnes 
per year.  The simple payback of the savings opportunities was 25 months, after which these 
energy savings would generate a positive cash flow for the company.  Implementation of these 
recommendations would decrease current energy costs by 13% and CO2 emissions by 12% per 
year. 

Traditionally, manufacturers would invest the income after the initial investment was 
paid off in other parts of the company such as new product development, production, labor, etc. 
Thus, energy efficiency would simply become another vehicle for enhancing corporate 
profitability.  However, to achieve net-zero carbon emissions, this cash flow could be reinvested 
in on-site renewable energy as soon as the initial investment in energy efficiency is paid off.   

In this case, the net cost savings from energy efficiency are sufficient to purchase a 381-
kW photovoltaic solar array that, with a 30% tax credit from the federal government, would cost 
about $1 million, assuming the installed cost was $3.80 per watt.  The 381-kW system was the 
largest system that would pay for itself in 5 years.  The purchase would occur 25 months after 
implementing the energy efficiency projects once the energy efficiency investments are paid off. 
This sequenced approach gives the company time to evaluate the energy efficiency measures 
before committing to another energy related investment.  It also enables the company to manage 
one energy related investment at a time. 

Once the solar PV system is active, it would generate revenue in three ways. First, the 
solar array would generate 527,986 kWh per year of electricity, reducing annual energy costs by 
$34,108 per year. Second, the energy generated by the solar array can be sold in form of SRECs. 
The current market price for SRECs in Ohio is $40 /MWh ($0.04 /kWh). We assumed the price 
of SRECs would decline linearly every year for 10 years until it reached the current price of 
voluntary RECs of $2 /MWh ($0.002 /kWh). Using this assumption, the sale of SRECs would 
generate an average of $13,094 per year for the first five years. Finally, through the Modified 
Accelerated Cost-Recovery System (DSIRE, 2013), the investment can be recovered through 
depreciation deductions over the course of five years, resulting in $49,753 per year of federal tax 
deductions.   

Thus, the energy cost savings realized through energy efficiency, coupled with the three 
additional forms of revenue generated by the solar array, would result in a revenue stream 
sufficient enough to cover five annual loan payments of $249,826 per year at 7% interest. After 
five years (7 years from the start of the energy efficiency measures), the on-site solar PV system 
would be completely paid off and annual revenue would still be an average of $196,060 per year.  
This revenue can be used to purchase enough RECs to offset the remaining 85% of carbon 
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Table 1. 123-Zero Approach in Different U.S. Locations 

Location 
Avg. Solar 
Radiation(a) 

Elec. 
Cost(b) 

PV 
Installed 
Price(c) 

Current 
SREC 
Price(d) 

PV 
Size 

CO2 
Emission 
Factor(e) 

20-Year 
Cumulative 
Cash Flow 

 kWh/m2-dy $/kWh $/W $/SREC kW lb/kWh - 
Cincinnati, OH 3.73 $0.065 $3.8 $40 381 1.54 $511,381 
Baltimore, MD 4.04 $0.085 $3.3 $128 664 1.14 $1,236,387 
Boston, MA 3.91 $0.124 $3.6 $220 994 0.93 $2,602,742 
Philadelphia, PA 3.98 $0.073 $3.4 $10 449 1.14 $543,594 
Chicago, IL 3.86 $0.057 $3.5 $10 407 1.54 $491,807 
Miami, FL 4.83 $0.081 $3.0 - 567 1.32 $1,006,532 
Dallas, TX 4.89 $0.058 $4.4 - 365 1.32 $465,446 
Los Angeles, CA 4.94 $0.105 $3.6 - 590 0.72 $1,050,218 
Denver, CO 4.59 $0.070 $3.5 - 445 1.88 $851,866 
Note: (a) TMY3, 2013; (b) U.S. EIA, 2013; (c) SunShot, 2012 & Solar Energy Facts, 2012; (d) SREC-Trade, 2013; 

(e) eGRID, 2012 
 
Implementing Net-Zero Carbon Emission Manufacturing: The Business Case 

 
Although net-zero carbon emission manufacturing at net-zero cost is clearly possible, the 

concept faces several challenges in the business world.  Why manufacturers should make the 
commitment to net-zero carbon?  Does it make good business sense to make such a decision?  
How, in practice, is this idea likely to be implemented?   

Despite the importance of energy to industries, the overall cost of energy as a fraction of 
the total value of shipments is relative small. The industrial sub-sector with the highest relative 
energy costs, petroleum and coal products, spends only about 9.4% of total sales revenue on 
energy.  The average fraction of energy costs per sales revenue across the entire industrial sector 
is 2.2% (MECS, 1998). 

Despite the relatively small fraction of total revenue spent on energy, energy costs 
significantly impact manufacturer profitability since profit margins for many manufacturers are 
in the range of 5%.  Thus, some companies implement energy efficiency improvements and 
reinvest the resulting savings in the business simply to shore up profits and ensure sustainability.  
As cited in a 2006 Harvard Business Review article, “The most important thing a corporation can 
do for society, and for any community, is contribute to a prosperous economy.”  (Porter, 2006)  
A company can do no good for society if it does not keep its doors open. Energy efficiency is a 
powerful tool for a struggling manufacturer to rein in operating costs, and get the business back 
on track.  These struggling manufacturers are probably less likely to pursue net-zero carbon 
emission opportunities. 

However, many manufacturers are in a strong enough financial position that they can 
evaluate and choose certain “social responsibility” goals.  From education, to poverty, to disease 
prevention, the options for a corporation to make a positive social impact are numerous. A 
growing number of companies are making greenhouse gas (GHG) emissions reduction a part of 
those goals. Programs such as the EPA’s Center for Corporate Climate Leadership help 
companies measure and manage the emissions of their facilities. As of 2010, over 110 
corporations had voluntarily set goals with the EPA to make significant reductions in GHG 
emissions.  Another 70+ corporations were in the process of joining the program (CCCL, 2012).  
The next step for a company already looking to reduce GHG emissions would be to go all the 
way to net-zero emissions. While simply reducing GHG emissions may in reality be strictly a 
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business decision with secondary social benefits, the decision to go net-zero carbon becomes 
much more of a social responsibility commitment.  Does making that type of commitment make 
good business sense for a manufacturer? 

One school of thought on business social responsibility comes from Nobel Prize winning 
economist Milton Friedman.  In 1970, Friedman published an article in The New York Times 
Magazine titled The Social Responsibility of Business is to Increase its Profits.  In the article, 
Friedman says “there is one and only one social responsibility of a business—to use its resources 
and engage in activities designed to increase its profits so long as it […] engages in open and free 
competition without deception or fraud.”  (Friedman, 1970)  According to this line of thought, 
Friedman would likely argue that the leadership of a corporation has no right making the 
decision to spend profits purchasing RECs in an effort at social responsibility. The individuals 
that own and work for the corporation should be allowed the opportunity to decide on their own 
whether they want to purchase RECs with their personal income. By making the decision for 
them, the corporation is reducing potential returns to stakeholders, reducing wages for employees 
and raising prices for customers. 

A counterpoint to Friedman is made by Michael Porter and Mark Kramer in a 2002 
article titled The Competitive Advantage of Corporate Philanthropy (Porter, 2002).  Porter and 
Kramer point out that Friedman’s assumption that social responsibility goals are always in 
tension with the financial goals of a corporation is not always true.  They argue that strategic 
social initiatives are a way to bring social and economic goals into alignment. The social causes 
a company should work to address are those that its operations impact and those that are 
underlying drivers for a company’s competitiveness. Targeting these causes not only achieves 
goal alignment, it allows a corporation to leverage its resources to do more good than any 
collective group of individuals could achieve.  Following this line of thought, would Porter and 
Kramer argue a goal of net-zero carbon emissions is an appropriate strategic social initiative? 

Reducing carbon emissions without significantly impacting the financial performance 
would very much seem to fit in the category of a strategic social responsibility initiative.  While 
a net-zero carbon goal may not be appropriate for every manufacturer, it seems that many 
manufacturers could follow this roadmap to make a significant positive impact on this urgent 
issue. 
 
The Energy Efficiency Implementation Challenge 
 

While some manufacturers may be willing to immediately implement all potential energy 
efficiency projects, most manufacturers implement just over 50% of the energy efficiency 
opportunities available to them (IAC Database, 2011).  A low implementation rate creates two 
major challenges in the effort to achieve net-zero carbon.   First, since energy efficiency 
improvements directly reduce plant carbon emissions, unimplemented efficiency opportunities 
increase the quantity and cost of RECs necessary to achieve net-zero carbon emissions. Second, 
less money is available to invest in an onsite renewable energy system and RECs, which makes 
achieving net-zero carbon more difficult. Thus, a high implementation rate for energy efficiency 
measures is vital to achieving net zero carbon emissions at net zero cost.   

Two root causes are commonly cited for a low energy efficiency project implementation 
rate.  First, many companies are either unwilling or unable to provide the necessary capital 
funding to implement some energy efficiency projects. Typically over 40% of energy efficiency 
improvements can be realized with little to no upfront cost (Vassallo, 2011), however some 
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recommendations do require a substantial capital investment.  Second, many plant managers fear 
energy efficiency projects will not perform as advertised (Tobias et al., 2011).  They worry the 
financial benefits may never materialize, and they worry about impact to other goals like 
production quantity and quality. 

One way to address these fears is to start with small energy efficiency projects and work 
up to projects with larger impact. This strategy was discussed in detail by Mills, (2009).  Mills 
points out that starting with small, safe energy efficiency projects that have negligible impact on 
the production process can relieve uncertainty from plant personnel. For example, projects such 
as lighting or HVAC are a good place to start. Once plant management can see these simple 
projects worked and created actual financial value, they may be more willing to jump on-board 
with projects of increasing complexity and process involvement. 

However, stopping after the small safe projects will not lead to net-zero carbon at net-
zero cost.  Eventually companies will have to take serious aim at energy efficiency 
improvements.  An excellent example is DuPont Corporation.  Since 1990, DuPont reports it has 
decreased energy usage by 19% while increasing production by 21% (Vassallo, 2011). They 
estimate total savings from energy efficiency to be 5 billion dollars. Along with the billions of 
dollars in financial savings, DuPont was also able to reduce carbon emissions by 60%. DuPont 
says they were able to do all this without throwing huge amounts of capital dollars into energy 
efficiency. DuPont states they believe an energy efficiency program can become “fully or nearly 
fully self-funding, actually generating a large portion of its own capital.” 

 
Summary 

 
This paper shows how to drive radical reductions in manufacturing carbon emissions by 

capitalizing on manufacturing’s unique economics, rather than trying to force manufacturing into 
the building paradigm.  It demonstrates the strong linkage between energy efficiency and 
renewable energy across end use sectors, and shows how to leverage one to enhance the other.  
The 123-zero method described here is shown to be consistent with business practices that find 
safety in sequential implementation of energy projects and use strategic initiatives to bring social 
and economic goals into alignment.  The method is shown to be economically viable to most 
manufacturing firms in all areas of the country. 
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