
 
 

Applications, Economics and Scalability of Heat Pumps in Waste Water 
Treatment Plants and Energy Intensive Industries  

 
Michael R. Muller, Suleyman Kemal Betin and Joseph M. Dillon, 

Rutgers University 
 
 

ABSTRACT 

 
This paper investigates applications, economics and scalability of heat pumps for 

utilization of waste heat in industry.  Examples are taken from waste water treatment facilities.  
Our research identified 22 facilities with heat pump projects in multiple states.  The 

capacities ranged from 6 to 550 tons, with coefficient of performance averaging around 3.5.  
Each case was compared on the basis of annual cost savings and initial investment and it was 
found that simple paybacks of less than 5 years were possible.  In addition to their promising 
economic returns, the heat pumps also showed high scalability with sizes ranging from 3/4 tons 
capacity to well over several hundred tons.  This combination of factors makes electric heat 
pumps a viable option for waste water treatment plants as well as other industries that have 
abundant waste heat streams.   Additionally, heat pump applications in industries such as food 
processing, alcohol distillery and wood products are explored in this paper.  It is found that the 
applications are mainly focused on energy intensive drying processes where precise control of 
drying is crucial due to heat sensitive characteristics of the final product.  The payback times for 
the heat pump installations in these cases were found to range from 1.8 to 3.4 years. 

The main questions considered are the actual benefits of heat pumps with the less energy 
efficient electrical energy source and the impact of new gas-fired heat pumps. 
 
Introduction 
 

Low temperature waste heat streams with large flow rates represent huge sums of energy 
being lost in many industries.  However, effective recapture of this energy is often not possible 
with traditional means such as heat exchangers, because they cannot provide the sufficient 
temperature lift that is required for space conditioning or process purposes.  Heat pumps are an 
effective way to recapture these low quality waste energy streams and boost the temperature of 
air or water to a usable level.  Since these waste streams have virtually constant temperature, 
they can act as the necessary heat source for a heat pump.  If these waste streams were otherwise 
unavailable, other methods to obtain a constant temperature heat source and sink can be cost 
prohibitive.   

The chief advantage of using heat pumps is not obvious.  At first look, COPs of heat 
pumps are typically 3 or higher, but with system electrical efficiencies at 30%, the total energy 
needed for heating is about the same as burning a fossil fuel.  This is not exactly true, and as 
shown below, when typical boiler and furnace efficiencies are used (whether the heat pump 
replaces or simply assists a boiler or furnace system), the energy cost savings stemming from the 
heat pump’s COP is positive.  In other words, using a heat pump can be a better investment than 
using a furnace.  However, when waste heat which is otherwise discarded is used, the benefits 
become significant. 

A second class of applications is where both heating and cooling is needed. In this case a 
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Figure 1. Typical Waste Water Effluent Heat Pump in 
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compressor or absorber are already required for the cooling part of the cycle, lowering 
implementation costs and decreasing payback. 

While difficult to purchase in the US, the development of gas-fired heat pumps is likely 
to increase the impact of this type of technology and the utilization of low quality waste heat.  
The primary advantage of the gas-fired technologies (which include both engine driven and 
absorbers) is that the heat lost due to inefficiencies of compressors, engines etc. can be added in 
and contribute when a positive lift temperature is needed.  

 
Heat Pumps in Waste Water Facilities 
 

Waste water treatment plants are typically one of the largest energy consumers in a 
community and are often the focus of energy efficiency projects.  While the method of treatment 
varies by plant, invariably large amounts of thermal and electrical energy are required.  Typical 
treatment processes include aerobic and/or anaerobic digestion, sludge removal, dewatering as 
well as UV disinfection.  Once the water has been treated, it is discharged as effluent, typically 
into a local body of water.  This water is usually 50 to 60 °F and since the operation of the plant 
never ceases, this water is available year round.  Figure 1 shows the typical heat pump setup that 
takes advantage of this waste water. 

While the waste water has been treated and is mainly clean at this point, most systems 
installed in waste water facilities are of the closed loop type.  This is to avoid direct interface of 
the effluent with the heat pump, as fouling could occur.  The heat exchanger itself is submerged 
in the effluent and only in one instance did our survey of waste water plants uncover a complaint 
of fouling. 

The installation of heat pumps in North American facilities is prolific; our research 
identified 22 facilities with 
heat pump projects.  The 
typical use for these heat 
pumps is space conditioning, 
however some special 
applications exist.  For 
instance, one system in 
Washington was used to 
produce hot water to heat 
anaerobic digesters, while 
another in Colorado was used 
to heat a local swimming 
pool.  Of these 22 plants, only 
6 provided project cost data.  
The range of paybacks was 
from 4 to 18 years as 
illustrated in Table 1 1 , with 
some of these projects being 
included as part of new 
building construction while 

                                                 
1 Energy Information Administration, eia.gov 2011 industrial energy prices. 
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others are retrofits, The dataset shows reverse economies of scale as shown in Figure 2; with 
increasing tons the payback increases.  Due to the fact that the details of the specific project costs 
are unknown, we will only present the data as it stands and will infer that paybacks under 5 years 
are possible for these systems.  The list of the remaining plants that were surveyed is given in 
Table 2.  Information about the economics of these plants were not available. 

 
Table 1. Plant Survey Data 

Facility  System Total Cost Annual Savings Simple Payback  Tons

Washington County, NY  $7,000.00  $1,750  4  6

Waterville, ME  $88,200  $7,519  4.4  20

McMinnville, OR  $217,000  $26,927  8.06  35

Chicago, IL  $75,000  $8,900  8.43  31

Philadelphia, PA  $250,000  $18,100  13.81  81.5

Saco, ME  $334,000  $18,640  17.92  30

 

Table 2. Facilities with Heat Pumps 
 

 
 
 
 

 
According to the survey, heat pump installations are deployed in various climates 

throughout US.  The virtually constant temperature of the effluent enables feasibility of heat 
pumps in climates that are traditionally too cold for air source heat pumps.  This shifts the focus 
to the other significant barrier to heat pump implementation: the annual dollar savings.  In order 
for electrical heat pumps to have a lower operating cost than traditional systems such as furnaces 
and boilers, the COP must exceed the price ratio of electricity and natural gas.  This will be even 
more challenging with inexpensive natural gas.  In most areas of the country, the typical heat 
pump COP of 3-4 can easily overcome this barrier and provide significant savings, as shown in 
Table 3.  Natural gas-fired heat pumps can circumvent this obstacle and provide positive cost 
savings at the cost of low COP. 

 

 

 

 

  

Medina, NY  Silverton, OR  Sitka, AK  Whistler, BC  Williamsport, PA

Renton, WA  Moscow, ID  Stevens Point, WI  NAS Ocean, VA  Janesville, WI 

Avon, CO  Dekalb Co., GA Abingdon, VA Kent Co., DE 
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Figgure 2. Costt Data for HHeat Pump
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Commercially available heat pumps show excellent scalability, both in terms of available 
sizes and economies of scale.  Sizes for water to air heat pumps ranged from ¾ to 25 tons, while 
water to water ranged from 5 to 20 tons.  Larger capacities are available with custom systems or 
by modularly combining multiple systems.  The price per ton of the smallest available size of 3/4 
ton is very high at $6000; however installed cost per ton dramatically decreases with increasing 
capacity.  Both water to air and water to water heat pumps exhibit this behavior.  For heat pumps 
between 5 and 25 tons, the system cost can range from $1140 to $1750.  In comparing 3 major 
manufacturers, it was found that the COP of heat pumps for sizes of 0.75, 6, 10 and 25 tons did 
not follow any clear trend despite the fact that COPs were all determined using the same ISO 
standard 13256.  

In our preceding analysis of wastewater treatment plants, we found that the magnitude of 
waste heat available has provided incentive for many plants to undertake heat pump projects.  
The paybacks ranged from 4 to 18 years, with no clear relationship between system size and 
payback.  Many waste water treatment plants are municipally owned and can absorb longer 
paybacks; however other industries may not have this luxury.  Heat pumps have seen 
deployment in the food and wood products industries where they have enjoyed much shorter 
paybacks often on the order of 3 years or less.  Like the waste water treatment industry, these  

  

 
Table 3. Regional Industrial Energy Prices[1] 

Electricity Natural Gas Price Ratio 

$/MMBtu $/MMBtu EC/NG  Color

New England  $    35.20 $       9.58 3.67 

Middle Atlantic  $    22.30 $       8.86 2.52 

East North Central  $    18.90 $       6.93 2.73 

West North Central  $    16.91 $       5.88 2.88 

South Atlantic  $    18.61 $       7.20 2.59 

East South Central  $    17.17 $       5.55 3.10 

West South Central  $    15.91 $       5.68 2.80 

Mountain  $    16.15 $       6.61 2.44 

Pacific Contiguous  $    20.75 $       7.61 2.73 

Pacific Non‐Contiguous $    77.99 $    16.44 4.74 
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water from food products.  Since drying processes are energy intensive, their efficiency and 
optimum operating conditions is crucial for the economical operation of dryers.  Drying uses one 
or a combination of convection, conduction or radiation to transfer heat to the product that is to 
be dried.  Much work has been done to increase the drying efficiency of convection drying, 
particularly by the application of heat pump dehumidifiers (HPDs).  HPD dryers are finding 
increasing applications in the food industry for drying of nuts, fruit, vegetables, herbs and fish 
products. The retrofit of an industrial heat pump to a direct-fired natural gas conveyor dryer for 
apples was implemented in Washington.  The existing natural gas burners will remain as 
auxiliary and back-up heat.  The estimated energy savings for this project was 89,400 million 
BTU of natural gas per year, while increasing annual electricity use by 8,580,000 kilowatt hours. 

With net energy savings of $463,000 per year and an installed cost of $1.25 million, the 
heat pump retrofit had an estimated payback of approximately 2.7 years.  The estimated carbon 
dioxide emissions were more than 2.4 million pounds per year, which represents a 10% reduction 
in greenhouse gas emissions associated in the drying operations.  According to Paul Scheihing of 
the U.S.  Department of Energy's Industrial Technologies Program “There are dozens of food 
processors throughout the Northwest that can benefit from the technology2.”  

A thermally driven heat pump that delivers hot water and chilling simultaneously was 
developed and demonstrated at a California poultry processing plant.  It is driven by heat at 300 
F⁰, delivers hot water at 140 F⁰ and provides chilling at 35 F⁰.  It provides 160 units of heating 
and 60 units of chilling per 100 units of thermal energy input.  Electrical energy use is minimal 
at approximately 6 units of thermal energy equivalent.  Rejection of the heat extracted from the 
chilling load at a temperature high enough to be useful in industrial application is the main 
concept in this technology [10].   

The heat pump is a unique ammonia-water cycle, developed by Energy Concepts 
Company (ECC).  The heat pump also uses proprietary heat and mass exchangers, which allow 
the delivery of the two useful energy products: hot water and chilled water..  The heat pump was 
originally designed, fabricated, and tested at Energy Concepts Company, shipped to and installed 
at the facility in Modesto the week of March 2000.   

ThermoSorberTM supplies 100-tons of chilling and 3.2 million BTU per hour of hot water 
simultaneously, from 2 million BTU/hour of 80 psig steam.  It operates on a 20/5 basis 
automatically and completely unattended. 

The savings in both natural gas and electricity add up to over $276,120 per year.  Based 
upon the typical installed cost for a 250 ton unit of $500K, the payback is 1.8 years.  There is a 
corresponding large reduction in CO2 emissions which is 1,800 tons per year less[11].   

As a final example, a research project on a Gas Engine Heat Pump (GEHP) has been 
implemented in 2007 by Hepbasli Kuzgunkaya and Colak of Turkey (TUBITAK). The design 
was a gas engine driven solar assisted band conveyor HP drying system, as shown in Figure 4 the 
system was applied to food drying. 

.   

 

                                                 
2 Industrial Services Factsheet, Washington State University, 2009 
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