

The BEE Software Collaborative:
An Open Source, Rule-Based Architecture for Building Energy Efficiency

Martha Brook, California Energy Commission

Scott Criswell, Wrightsoft Corporation

ABSTRACT

In the Building Energy Efficiency (BEE) software domain, there is an emerging
collaboration supported by government, utilities and key industry organizations with developers
from both the public and private sector. This collaborative is producing and organizing building
component and climate data, along with energy simulation tools and a core software library. This
library includes rule sets and rule processing software that operate on a building data model to
spawn energy simulations that conform to the rules. Some rule sets contain simple default
assumptions for most building parameters. Others implement design constraints through logical
operations on data model elements. The first products from this collaborative will be public and
private software tools that implement building energy efficiency code compliance in California.
This paper introduces the data, models, rules and software that comprise this shared open source
library. An invitation to join the collaborative is extended by illustrating how the BEE software
can support a variety of programs and products in the energy efficiency modeling domain.

Introduction

Performance-driven building energy design, whether a goal or a mandate, requires robust

modeling tools. Both single building energy design studies and sector level energy policy
analyses can be more successful if these tools facilitate multiple building energy simulations,
comparisons to benchmarks and design targets, and the application of constraints and intelligent
defaults. This success is not often realized because these building modeling tools, if they exist at
all, are proprietary, such that only building design projects with substantial budgets can afford
their use. Resource constraints and competitive bidding requirements also keep governments and
other policy makers from accessing and updating these tools for policy analysis and program
implementation.

California’s long history of performance-based energy efficiency standards has resulted
in a building design community that expects to have flexibility in meeting these standards. This
flexibility can enable design innovation, but only if the modeling tools used for code compliance
can simulate the energy performance of innovative designs and apply the required code
constraints. There should also be regular feedback during the iterative design process as to
whether and to what extent design alternatives meet or exceed code. Although California has
thirty years of experience with performance standards, its building designs have not benefited
from these seemingly requisite modeling processes. The building energy models used in code
compliance software typically lag behind technology advances, and the process of proving that
buildings meet code is separate from, rather than integrated with, typical design regimens.

12-47©2012 ACEEE Summer Study on Energy Efficiency in Buildings

 California energy policy includes aggressive goals to design and construct Zero Net
Energy buildings, by 2020 for residential buildings and by 2030 for nonresidential buildings
(CEC, 2012). Beyond California, across the nation and beyond, climate policies and
environmental stewardship are driving the need for high performance buildings. Developing
policy requirements for, and designing high performance buildings will require better
collaboration between government and industry, to leverage limited resources.

All market actors involved in the design of and mandate for high performance buildings
can benefit from the ability to produce multiple simulations, apply design assumptions and
policy requirements to building models, and compare results to design targets. We call the
aggregate of these model-based processes “rule-based analysis,” a term meant to encompass both
building energy simulation and structured modifications to the building models simulated.
Modeling tools that implement rule-based analysis for design and product performance
investigations can be used by a diverse set of market participants. Architects, designers, product
manufacturers, energy consultants, code developers, and program implementers motivated to
improve the energy performance of buildings all need access to, and the ability to modify, tools
that facilitate rule-based analysis.

Background

Performance Standards in California

The Warren-Alquist Act requires the California Energy Commission (CEC) to “develop a

public domain computer program which will enable contractors, builders, architects, engineers
and government officials to estimate the energy consumed by residential and nonresidential
buildings” in order to implement California’s Building Energy Efficiency Standards (Standards,
aka Title-24) (CEC, 2007). The Standards include a performance-based compliance option that
requires the use of software that is certified by the CEC for this purpose.

To meet the WAA mandate, the CEC must (1) establish reference methods for modeling
the energy-related features of building designs, and (2) provide publicly available Standards
compliance software. The reference methods establish the engineering basis for estimating the
hourly energy use of residential and nonresidential buildings across California’s climate regions
and are used to determine the energy cost savings expected from updates to the Standards. The
CEC also uses these reference methods (separate methods for residential and nonresidential
buildings) as the basis of comparison during the compliance software certification process,
where private vendors can submit their own software for consideration as additional compliance
tools.

For the 2013 Residential Standards reference method, California’s investor-owned
utilities collaborated with the CEC to co-fund the development of the California Simulation
Engine (CSE). CSE is a first principles residential building simulation tool without the
simplifying assumptions for solar gains and mass transfer of the previous residential reference
method, CALRES. CSE is a set of building energy simulation algorithms currently available in
open source software (Wilcox, 2010).

The 2013 Nonresidential Standards reference method is EnergyPlusTM, the building
simulation tool supported by U.S. DOE. The CEC’s previous reference method was DOE2.1e, a

12-48©2012 ACEEE Summer Study on Energy Efficiency in Buildings

tool no longer publicly supported by either U.S. DOE or the CEC. EnergyPlus as the reference
method will allow the CEC to establish a basis of comparison for modeling a much broader set
of building energy technologies and control systems than was possible in previous code cycles.
EnergyPlus is also available under an open source software license (LBL, 2012).

California’s performance-based compliance process requires a proposed building design
to be compared to a “standard” building design, which is the proposed design modified to just
meet the mandatory and prescriptive requirements of the Standards. The compliance software
must compute annual energy budgets for each design and produce comparative results. If the
annual energy budget of the proposed design is equal or less than that of the standard design, the
candidate building design complies with the Standards. The implementation of California’s
performance standard is accomplished with rule-based analysis software. Historically, the CEC
has met its mandate to provide Standards compliance software to the public by obtaining a
limited license to proprietary software from vendors who also provide private Standards
compliance software to the market.

Other Rule-based Software for Code Compliance

Rule-based analysis software has been used over the last fifteen years to implement

multiple performance standards in the U.S. and Canada. A few of these efforts resulted in
proprietary software tools with the common feature of being able to, outside of compiled source
code, edit and deploy a set of rules that modify a building model for a proposed design, and
generate a separate standard design building model. COMcheck-Plus, developed by Regional
Economic Research for the Pacific Northwest National Laboratory, implemented the ASHRAE
90.1-1989 Energy Cost budget in 1997-99. eQUESTtm, a graphical user interface to the DOE-2.2
simulation engine developed by Jeff Hirsch and Associates, adapted the COMcheck-Plus rule-
based analysis features to develop a California Title-24 energy code analysis ruleset that was
certified for Standards adopted in 2001, 2005 and 2008. eQUEST is distributed as freeware, but
is not currently an open-source product (http://doe2.com/equest/). Natural Resources Canada is
now in the process of developing an eQUEST derivative, CAN-QUEST, which will test
compliance to Canada’s 1997 MNECB and NECB 2011 energy codes.

Open Source Software Collaboratives

The majority of application software used for building energy modeling by end-users is

proprietary. While this usually includes the benefit of software support, there are significant
disadvantages when public agencies have mandates to develop, maintain and update software for
program implementation. Proprietary software solutions typically result in requiring ongoing
sole source contracts with limited source code and distribution licenses. When several public
agencies or their delegates need to modify each other’s software tools for specific
implementations, they are forced to enter into additional sole source agreements that also have
limited license to modify and distribute the proprietary software. Further, if agencies do not own
the software tools they fund, the public cannot access and make use of the source code to
produce derivative works, thereby limiting the value that publicly funded software projects
provide.

12-49©2012 ACEEE Summer Study on Energy Efficiency in Buildings

Open source software projects are becoming popular in many sectors. This quote from NASA’s
Open Government Initiative describes the benefits that can arise from public and private
collaboration, which is not specific to NASA but applicable to open source software
collaboratives in general: “Open source development-which allows free access to software
source code to allow anyone to make improvements-is revolutionizing the way software is
created, improved, and used. The open source software movement is inherently transparent,
participatory, and collaborative. Open source at NASA gives the public direct and ongoing
access to NASA technology... [NASA should]shift our open source activities from its one-way
direction of giving the public access to finalized software products, to allowing two-way
collaboration as part of the development process. The benefits of allowing the public to assist in
development of NASA software include increased software quality, accelerated software
development, and a higher rate of technology transfer both to and from NASA.” (NASA, 2012)

OpenStudio is a great example of a government funded project in the building energy
design domain that provides access to source code and executable applications to facilitate
private sector use. OpenStudio is a cross-platform collection of software tools that facilitates
building energy modeling using EnergyPlus and Radiance (NREL, 2012). OpenStudio is not
currently itself a collaborative, in that multiple organizations or individuals outside of NREL
staff do not contribute to the code base, but OpenStudio is available under a Lesser General
Public License and derivative works are being developed from this software.

The Building Energy Efficiency (BEE) Software Collaborative

The CEC has made a commitment to collaboratively develop, test, document, and support

open source building energy modeling software and other building energy analysis tools used for
Standards development, Standards compliance and other energy efficiency public policy
implementation. The BEE Software collaborative members are other funding partners managing
public goods energy efficiency programs, software vendors interested in adding code compliance
functionality into their design tools, and building scientists, data modelers and software
developers constructing the open source software architecture.

For the 2013 Standards, the CEC will use the BEE Software to construct the compliance
software for both the residential and nonresidential Standards. This California Building Energy
Code Compliance (CBECC) software will use CSE for residential and EnergyPlus (via
OpenStudio) for nonresidential building energy modeling, then add a software layer that
implements the performance compliance rules. The BEE Software architecture separates rules
processing from the energy simulation, so it will support modifications of the rules to implement
other programs sponsored by collaborative members. This architecture also separates the rule
processing software from both the simulation tool and the user interface via application
programming interfaces (APIs), so collaborative members can employ alternate user interfaces to
access the rule-based analysis capabilities, and also employ the rules processing software with
different simulation tools.

12-50©2012 ACEEE Summer Study on Energy Efficiency in Buildings

BEE Software Architecture

The BEE Software comprises four principal components: User Interface, Rules Engine,

Simulation Engine, and Report Module. Figure 1 illustrates at the highest level how these
modules combine for the BEE Software. The solid lines in Figure 1 indicate the current software
implementation with CBECC, and the dashed lines indicate where collaborative members are
expected to create new BEE Software implementations.

Figure 1. High Level BEE Software Architecture

The User Interface (UI) is simple, relative to the detailed building and system

description processes facilitated by several building energy design tools. The BEE Software is
not intended as a design tool, although its functions can readily support parametric analyses and
apply design regimen rules. The collaborative, to date, is providing a “bare bones” interface that
may of course be expanded in the future. The user will have the ability to describe building
features with the UI as necessary to populate the Rules Engine data model. Users will be able to
read/open/edit Rules Engine building models written from other building design, simulation, and
analysis tools if these tools can export the Rules Engine data model via XML. This should
facilitate importing complex building models, a welcome alternative to creating them from
scratch within the UI. OpenStudio, for example, exports the nonresidential Rules Engine
building model. The UI Tool is designed for the Windowstm operating system as a desktop/client
program.

The Rules Engine is the key component that allows rules to be applied to building
models. This software module can be integrated into other tools and interfaces to perform a
variety of rule-based Building Energy Modeling (BEM) analyses. The Rules Engine uses a
building data model that is simulation engine agnostic, to facilitate its use within multiple design
tools. This is an important element of the BEE Software – to meet the objectives of the
collaborative, rule generation cannot require knowledge of the specific terms used at the
simulation engine level. Another important feature of the Rules Engine is that it reads in the
rulesets at run time; the rulesets are not included in the compiled software code. Multiple rulesets
can be used within a single instance of the executable software, as long as the data terms in the
rulesets are consistent with the data models supported by the Rules Engine (the Rules Engine
currently supports separate data models for residential and nonresidential buildings). This
functionality provides a great amount of flexibility and ease of use for the collaborative.

Rules Engine

CSE

OpenStudio

Other Simulation
Engines

CBECC

Other User
Interfaces

Reporting Module

12-51©2012 ACEEE Summer Study on Energy Efficiency in Buildings

Members can experiment with different performance rules in multiple rulesets without editing or
recompiling source code.

The Simulation Engine is more than just the BEM tool that produces hourly simulations
of building energy use. This component performs the following functions: (a) translates the
Rules Engine data model into the simulation engine input data language, (b) manages the
simulations, and (c) retrieves the simulation results, maps them back into the Rules Engine data
model, then returns them. The CBECC software will connect with CSE for residential energy
simulations and EnergyPlus, via OpenStudio, for nonresidential energy simulations.

The Reporting Module will accept data model elements and analysis results from the
Rules Engine, then use that data to populate standard reports. The Reporting Module will write
these reports to one or more common formats (such as PDF, or XML/XSD/XSL files) which will
then be made available through the User Interface for display, print, or transmission to another
application. The Reporting Module is the least developed of all the BEE Software components,
to date. Currently, the functional requirements for the Reporting Module meet the specific needs
of California’s performance code compliance software. These functions can be expanded to meet
other data reporting and results visualization needs of collaborative members, given time and
resources. The benefit of this software architecture, where the Rules Engine calls the Reporting
Module, is that third party software applications that incorporate the Rules Engine to add code
compliance (or other rule-based design processes) will not need separate reporting capabilities.

Key Components of the BEE Software

Rules Engine

At the heart of BEE Software is the Rules Engine, which performs the following
functions:

 Confirms building model validity before rules processing begins,
 Establishes rule evaluation order from rule and attribute dependencies,
 Processes rules to generate building models ready for simulation,
 Manages building model transformations required to implement the rules,
 Manages simulations,
 Reports messages and results to the calling application.

The Rules Engine API enables tools to send and receive data models. The API also

allows the User Interface to retrieve needed display data from the ruleset, such as building
component descriptions, valid numeric ranges, and units.

Building Data Models

The data models used to describe building components in the BEE Software contain only
as much detail as is necessary to assign rules to energy-related attributes. The data models are
not intended to include the detail necessary to be used directly in energy simulation, although

12-52©2012 ACEEE Summer Study on Energy Efficiency in Buildings

they are made up of a fairly broad and complex range of information, as illustrated by the
summary of the nonresidential building model in Figure 2.

Figure 2. Summary of the Nonresidential Building Model

Objects, Properties and Relationships

12-53©2012 ACEEE Summer Study on Energy Efficiency in Buildings

The nonresidential data model was developed by reviewing relevant data exchange and
data model standards (gbXML and IFC), the COMNET Modeling Guidelines and Procedures,
OpenStudio’s internal data model, and Title 24, Part 6 (gbXML, 2012; IFC, 2012; COMNET,
2010 ; NREL, 2012; CEC, 2008). The collaborative believes that incorporating existing data
model components, where appropriate, and establishing an explicit map between the BEE
software data model and these existing data models, when a direct incorporation is not possible,
will allow the BEE software products to be readily integrated into other industry tools.

The residential data model development relied on the collaborative members’ extensive
experience modeling residential energy consumption for Standards development and compliance.
While there are nascent data exchange standards for the residential building energy domain (e.g.
HomePerformanceXML), these do not have the required hierarchical structure or detailed
attributes needed for rule-based energy analysis (BPI, 2010). The BEE Software includes
separate data models for residential and nonresidential buildings because (1) the rule assignments
expected to be needed by collaborative members for each require a different set of building
energy attributes, and (2) the data models native to CSE and EnergyPlus that the BEE Software
data models must eventually be translated into are significantly different.

Implementing Multiple Data Models and Rulesets

The BEE software can support multiple data models and rulesets without requiring the
modification (and recompilation) of the Rules Engine and User Interface source code. The fact
that text files are used to define both the scope of the rule-based analysis and the corresponding
user entries allows the software implementations to be managed by domain experts rather than
software developers.

Translations of the Rules Engine data model to and retrieval of results from simulation
tools are completed in modules tightly integrated with the Rules Engine. The residential building
model translation is done within the ruleset data model itself, which includes parallel object
definitions, one set used to interface with users (via CBECC and third party user interfaces) and
a second set that map directly to CSE inputs. The nonresidential building model is exported from
the Rules Engine in the form of an XML file and translated for EnergyPlus within OpenStudio.
Collaborative members who wish to combine rule-based analysis with their own simulation
engines need to create translations of the Rules Engine data model to the equivalent building
component descriptions native to their simulation tools.

Ruleset Structure

A ruleset is represented by a series of files that contain energy code data and logic in the
form of rule expressions and look-up tables. The source versions of these files are text (.txt &
.csv) which make them very easy to view, edit, compare and track in version control systems.
The ruleset source files are combined into encrypted binary files when distributed with software
that use or integrate the Rules Engine, in order to ensure the integrity of the compliance analysis.
Some of the data that is contained in a compliance ruleset is as follows:

12-54©2012 ACEEE Summer Study on Energy Efficiency in Buildings

 Ruleset ID & version. Identifiers available at runtime to identify the ruleset and its
version;

 Look-up Tables. A series of text/CSV files containing a wide variety of data defined by
the rule authority (e.g. the energy code) that can be referenced by rules in the ruleset;

 Range Checks. The definition of range limits (message, warnings and errors) and
conditions in which those limits are to be applied to building model component attributes;

 Component Libraries. Individual building component definitions (consistent with rule
requirements) that can be imported into building models generated by the ruleset;

 Rules. Lists of rules that control how a building model is manipulated (e.g. to determine
its compliance with the energy code).

Rule Expressions

The following tables provide a summary of the expression syntax and functionality of the
rules applied to building model attributes that are processed by the Rules Engine.

Table 1. Arithmetic and Logical Expression Operators

Functional Requirements for ACM Standards Compliance Engine Software, Version 0.6 (Criswell et al., 2011).

Arithmetic: * Multiplication
 / Division
 + Addition
 ‐ Subtraction (or Unary Minus)
 % Remainder (mod)
 ** Exponential
 Logical: || or .OR. Or
 && or .AND. And
 ! or .NOT. Not
 == or .EQ. Equal
 != or .NE. Not equal
 >or .GT. Greater than
 <or .LT. Less than
 >= or .GE. Greater than or equal to
 <= or .LE. Less than or equal to

Table 2. Standard Expression Functions

Functional Requirements for ACM Standards Compliance Engine Software, Version 0.6 (Criswell et al., 2011).

 abs(x) Absolute value
 max(x1, x2) Maximum
 min(x1, x2) Minimum
 int(x) Rounds x to nearest integer
 ftoa(x) Converts a floating point number

to a character string
 strlen(x) Number of characters contained

in string x

12-55©2012 ACEEE Summer Study on Energy Efficiency in Buildings

 strlower(x) Returns an all lower case version
of string x

 strupper(x) Returns an all upper case version
of string x

 log(x) Natural logarithm
 log10(x) Base‐10 logarithm
 exp(x) Exponential (e raised to the

power x)
 pow(x1, x2) Power (x1 raised to the power x2)
 mod(x1, x2) Modulus (remainder) of x1 / x2
 sqrt(x) Square root
 sin(x) Sine (angle expressed in radians)
 asin(x) Arcsine (result in radians)
 cos(x) Cosine (angle expressed in

radians)
 acos(x) Arccosine (result in radians)
 tan(x) Tangent (angle expressed in

radians)
 atan(x) Arctangent (result in radians)
 Note: All function names are case insensitive.

Table 3. Executable Expression Statements

Functional Requirements for ACM Standards Compliance Engine Software, Version 0.6 (Criswell et al., 2011).

 if (expression) then
 statement
 else if (expression) then
 statement
 else
 statement
 endif
 endif
 Note: Each if statement must contain an else.

 switch (expression)
 case (const) : statement
 case (const) : statement
 default : statement
 endswitch
 Note: Each switch statement must contain a default.
 Note: The individual case values listed as const must be either numeric constants or

 enumerations which can be directly translated into numeric constants at parse‐time
 in order to prevent excessive evaluation‐time error checking and minimize the
 complexity of the statement.

Notes: All reserved words in bold (if, else, endif, ...) are case insensitive.
If and Switch statements can be nested as long as the expression evaluates to a single return value.

12-56©2012 ACEEE Summer Study on Energy Efficiency in Buildings

Conclusion

The BEE software infrastructure can support a myriad of public and private efficiency

programs and products. Data models, building component properties, system designs, rule sets
and user interfaces can be shared and expanded to meet product specific needs. The Wrightsoft
Corporation is in the process of leveraging the BEE software for a product designed to test
compliance of single and multi-family homes to the residential energy code in the state of
Florida. This product will take advantage of CSE to perform hourly simulations of energy use
and will include a customized ruleset consistent with Florida’s IECC-based energy code. This is
the first example of a collaborative member taking advantage of this open source software to
develop a new building energy efficiency software product.

The BEE software can also support other rule-based analysis other than energy code
compliance. A few obvious candidate applications that can leverage the BEE software are
beyond-code programs such as LEED, or California’s New Homes and Savings By Design
programs. Building asset rating systems can also be readily implemented using this rule-based
software architecture. Also, private design firms can establish their own set of rules of default
assumptions and performance benchmarks for application in their high performance building
design processes. Technology manufacturers can also access and modify code rulesets to test
and propose how new products should be modeled in an energy code context, which will
facilitate these technologies’ incorporation into future performance standards.

References

[BPI] Building Performance Institute. 2010. Schema documentation for

HomePerformance_XML.xsd.http://www.homeperformancexml.org/sites/default/files/Ho
mePerformance%20_XML-2%20Schema%20Documentation_0.pdf.

[CEC] California Energy Commission. 2007. Warren-Alquist State Energy Resources
Conservation and Development Act. Sacramento, CA: CEC-140-2007-004.

 [CEC] California Energy Commission. 2008. 2008 Energy Efficiency Standards for Residential
and Nonresidential Buildings. Sacramento, CA: CEC-400-2008-001-CMF.

[CEC] California Energy Commission. 2012. 2011 Integrated Energy Policy Report.
Sacramento, CA: CEC‐100‐2011‐001‐CMF.

[COMNET] Commercial Energy Services Network, 2012. Commercial Buildings Energy
Modeling Guidelines and Procedures. RESNET Publication 2010-001.

Criswell, Scott A. et al. 2011. Functional Requirements for ACM Standards Compliance Engine
Software, Version 0.6. San Francisco, CA: Architectural Energy Corporation.

[gbXML] The Open GreenBuilding XML Schema, Inc. 2012. http://www.gbxml.org/
currentschema.php.

12-57©2012 ACEEE Summer Study on Energy Efficiency in Buildings

[IFC] buildingSMART International Ltd. 2012. Industry Foundation Classes.
http://buildingsmart.com/standards/ifc.

[LBL] Lawrence Berkeley National Laboratory. 2012. EnergyPlusTM Open Source License v1.0.
Berkeley, CA.

[NASA] National Aeronautics and Space Administration.2012. Open Government Initiative.
http://www.nasa.gov/open/plan/.

[NREL] National renewable Energy Laboratory. 2012. OpenStudio. http://openstudio.nrel.gov/.

Wilcox, Bruce A. 2011. 2013 Residential Standards Development Software.
http://www.energydataweb.com/consortium/Documents/Wilcox110114SDP.pdf.

12-58©2012 ACEEE Summer Study on Energy Efficiency in Buildings

