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ABSTRACT 
 

Energy consumption in residential buildings is a complex phenomenon that stems 
from the combination of technical features and practices of occupants. Despite the central 
role occupants play, long-term modeling exercises at large scale often lack behavioral realism 
and explicitness. This study shall focus on the integration of conservation behaviors in the 
long-term modeling of space heating energy consumption in the residential sector. Based on a 
recent survey on 2,012 French households, we shall compare three energy demand models: 
an engineering model with normative behavior, an engineering model that includes several 
space heating practices, and a statistical model that captures the impact of all variables 
(technical, practices and socio-demographic). Our results confirm the importance of behavior 
in the explanation of energy consumption and quantify the role played by explicit practices 
on one hand and socio-demographic variables on the other. Nevertheless significant 
differences can be observed between calculated and actual energy consumptions, suggesting 
several potential uncertainties in the calculations. Consequently, we investigate how these 
uncertainties might impact the results of a prospective study focused on behavioral changes. 
 
Introduction  

Residential space heating is responsible for about 20% of energy consumption and 
15% of greenhouse gases emissions in France [CEREN, 2007; CEREN, 2009; DGEMP, 
2008]. Many technical solutions to reduce energy consumption are well known, well 
developed and may lead to long-term financial benefits [Laurent et al., 2009]. This makes this 
sector very attractive for national long-term energy policies [Levine, 2009].  

Many models aim at quantifying the energy savings that can be achieved through 
technological, economical or behavioral changes. However, large-scale long-term studies 
tend to focus either on technical potential or on the purchase decision of energy-efficient 
equipment. Indeed, very few large-scale studies have explicitly considered the impact of 
conservation behaviors per se (i.e. without technical change) until recently [BC Hydro, 2007; 
Dietz et al., 2009; Gardner and Stern, 2009]. Given the importance of possible behavioral 
changes on mid- and long-term scales, our paper focuses on the implementation of 
conservation behaviors in a prospective model on a national scale. 

Conservation behaviors regarding residential space heating mainly consist of the 
following practices: 

 
• Temperature management: lowering the internal temperature and heating only when 

and where occupants are at home,  
• Ventilation rate management: reducing the amount of time when windows are open. 

 
It has been shown that behavior may affect residential energy use to the same extent 

as do more efficient equipment and appliances [Linden et al., 2006]. In terms of space heating 
more specifically, thermal simulations have shown that the energy consumption of a dwelling 
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may differ by a factor of 3 depending only on temperature and ventilation rate management 
(with the same technical context) [Allibe, 2009]. 

Based on these observations, we tried to integrate these behaviors into different 
models in order to have a more comprehensive view of conservation behaviors. Thus, we 
made a complete survey of 2,012 French households to quantify to what extent space heating 
energy consumption is due to behavioral or technical attributes (see Section 2). The 
questionnaires gave information on the technical performance of the dwelling (shell and 
equipment) as well as on the household’s heating practices and their socio-demographic 
attributes. The statistical analysis of energy consumption confirms the importance of behavior 
and allows us to distinguish practices from socio-demographic impact. Statistics also suggest 
several sources of uncertainty. Therefore we shall investigate the way these uncertainties 
might impact the results of our prospective model. 

The first section of the paper shall review some demand models and their ability to 
simulate long-term behavioral changes. The survey shall be presented in the second section, 
followed by model results in Section 3. Finally, uncertainties and their consequences on long-
term prospective model results shall be investigated in Section 4. 
 
A Review of Space Heating Energy Consumption Models and Their Ability 
to Model Long-Term Behavioral Changes 

Many models aim at calculating the space heating energy consumption of dwellings. 
They are applied on different scales, from a single house to the world housing stock. They 
also reveal different views with regard to the factors that determine energy consumption, with 
emphasis either on direct factors (for instance technical features or explicit practices) or on 
more indirect ones (for instance income or energy price). Technically speaking there are two 
main groups of energy consumption models: top-down and bottom-up [Hourcade et al., 2005; 
Swan et al., 2009]. Top-down models offer an aggregate view of energy consumption and are 
mainly used in economic prospective studies. They generally have a good macroeconomic 
and microeconomic realism but lack technological and non-purchase behavioral explicitness. 
These features make them unable to represent the disaggregate effect of single practices, 
which is why we had chosen not to use them. Conversely bottom-up models aggregate 
individual energy consumption to provide a global one. Furthermore, some of them can be 
used without any historical data, thereby allowing them to represent future trends 
independently of past ones, a significant advantage for a prospective study. Their ability to 
depict energy demand in a comprehensive and explicit way makes them an adequate tool for 
the objectives of our study. 

Bottom-up models can be categorized into two main groups: statistical and 
engineering models [Swan et al., 2009, Kavgic et al., 2010]. Statistical models are based on 
an analysis of the actual energy consumption of households depicted by a group of variables 
whose level of detail can vary. Statistical analysis then estimates the impact of each variable 
on energy consumption. These models fit quite well with actual consumption data but contain 
some inexplicit energy consumption that may not remain constant in the long-term (for 
instance, the constant in a linear regression). The engineering models are not based on actual 
energy consumption but on an engineering description of the technical infrastructure: shell 
and systems performances, and their use by households: mean internal temperature and 
ventilation rate (that are often normative through the use of heating degree hours and standard 
ventilation rate for each ventilation technology). This description of the energy consumption 
determinants provides a physical realism that is crucial for long-term models (whose resulting 
physical coherence must be checked due to the magnitude of changes that can be modeled in 
the long-term). This kind of model allows for great technical and behavioral flexibility in the 
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long-term. However, such models are not able to represent the impact of non-technical and 
non-practice variables (like income or energy prices) if they are not directly correlated with 
practices or technical variables.  

The representation of human behavior in long-term energy consumption models is 
often limited to purchase behavior [Moezzi, 2009], which models households as more or less 
rational economic actors. Conservation behaviors can be present in models in the form of 
short-term elasticity [Haas and Schipper, 1998] or the utilization intensity factor [Schuler et 
al., 2000], but are seldom tackled explicitly, with the exception of some rare studies like the 
BC Hydro Conservation Potential Review [BC Hydro, 2007].  

Space heating practices in the residential sector are numerous and variable, which 
makes them difficult to measure on a large scale. In the survey we designed and used, we 
asked about practices that are measurable by the household, like the mean internal 
temperature during the space heating period, the frequency and duration of windows being 
left open, or the presence of a little- or non-heated room in the house. As presented above, 
such a high level of detail requires a bottom-up model. Consequently, we used the two types 
of bottom-up models (engineering and statistical) and compared their results. The statistical 
model provides a quantifiable and realistic impact of separate practices whereas the 
engineering model provides physical explicitness and theoretical impact. 

 
Presentation of the Survey 

In order to be able to integrate behavioral aspects into the thermal simulation 
engineering model we launched a self-administered paper survey among 2,012 French 
households in June 2009 and asked them to fill out both technical items and consumption 
practices. 

 
Table 1. Type of Items Asked in the Paper Survey 

 
 

In order to get representative results on a national scale, respondent households were 
then weighted according to income quintile, urban density of the geographical location, type 
of family, ownership status, type of housing, age of the head of family and age of the 
housing. The annual energy bills declared by households in the survey for 2008 were then 
collected, but the space heating part (SH) had to be separated from the overall fuel bill. We 
then used a regression methodology developed by CEREN1 [CEREN, 2007] for domestic hot 
water (DHW) and cooking end-uses. For other specific electricity end-uses2 we ran a multi-
linear regression (R2=0.53) among the households (N=348) that employ electricity only for 
these uses. We then deduced the space heating energy consumption SH for each fuel type i. 

 
b

ii
aa

iii OtherCookingDHWTotalSH −−−=  
a: estimated with CEREN methodology  

b: Estimated with  a multi-linear regression ran on survey panel 
 

                                                 
1CEREN is a French research centre on energy economics and provides reference national data on energy 
consumption by domestic end-use. 
2 This includes lighting, cooling, cleaning and multimedia end-uses for instance. 
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We then compared the space heating energy consumption obtained from the survey 
results with the national residential space heating energy consumption data provided by 
CEREN in 2008. 

 
Figure 1. Space Heating Energy Consumption in Residential French Sector 

 
 
These results suggest that our sample is representative of space heating energy 

consumption: we observe very slight differences in overall space heating energy consumption 
and in the comparison by fuel type. 

 
Statistical Model and Engineering Model Results 

Statistical Results 

 The size of the sample was first reduced to N=923 respondents. This is due to the fact 
that some respondents do not have energy bills, either because their rent includes space 
heating (especially in apartments) or because they have not declared any. We also excluded 
about 100 households for whom the final space heating energy consumption does not fall 
between 20 and 400 kWh/m2  3. Then we ran various multi-linear regressions on the sample of 
respondents in order to explain the variation in total household space heating consumption. 
Our goal here is not to build a model that may be reused to predict energy consumption, but 
rather to show the weight of the different types of determinants.  

We first built a quite complex model with a multi-linear regression approach that 
takes into account the whole bundle of variables mentioned in the survey (about 150 degrees 
of freedom). This model (model 1) allows us to explain about 57% of the variance in space 
heating consumption. This first model is interesting because it gives an upper bound to the 
variance that may be explained with the help of these variables. That is, this 57% of variance 
explained will be useful when comparing the accuracy of the statistical model and the 
engineering model. 

Then we built a second model (model 2) which is easier to manipulate and understand 
with only 17 variables (28 degrees of freedom). We considered the variables that are quite 

                                                 
3These values correspond to lower and upper bounds for  very old and poorly insulated housing and for recent 
housing that follows the latest thermal regulation [DGUHC,2006]. 
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significant with a (Pr>F) < 0.2. This means that there is a more than 4/5 chance that the 
variable is useful in explaining the variance in consumption. 
 The following results show that thanks to the different variables we can explain nearly 
50% of the total variance in space heating energy consumption. We can further observe that 
the regression model is reliable as the global Pr>F value is < 0.0001.  
 

Table 2. Results for Multi-Linear Regression : Model 2 
                                      Analysis of Variance 
 
                                            Sum of 
         Source                 DF          squares     Mean square    Value F    Pr > F 
         Model                  28           13601      485.734388      32.43    <.0001 
         Error              858.99           12866       14.978248  
         Corrected Total    886.99           26467  
 
                                     Model Fit Statistics 
 
                       R-Square        0.5139     Adj R-Sq        0.4980 
                       AIC          2431.9433     BIC          2435.8992 
                                  SBC          2570.8231     C(p)           29.0000 
 

Table 3 details the types of variables used in the regression. The degrees of freedom 
and Pr>F values given for each variable explain the level of disaggregation and the level of 
contingency of the variables. 

 
Table 3. Definition of Variables Used in the Regression 

Variable definition4 Degrees of 
freedom Pr > F 

Technical and weather variables   
Useful living area 1 <0.0001 
Construction year 5 <0.0001 
Type of housing  + 1 <0.0001 
Number of rooms 1 <0.0001 
Existence of thermostat 1 0.0087 
Heating degree hours * 1 <0.0001 
Surface heat loss** 1 0.0002 
Efficiency of heating system 1 0.0070 
Practices variables 
T°C in the main room 1 <0.0001 
Global T°C management*** 1 0.0001 
Length of ventilation per week 1 0.1785 
Part of house not heated 1 0.1091 
Days spent outside home 1 0.0344 
Socio-demographic variables   
Income  1 0.0195 
Type of housing  + 1 <0.0001 
Age of head of household 3 0.1550 
Size of family 6 0.0602 
Space heating energy price 1 <0.0001 

+: Type of housing is also considered as a socio-demographic variable5   *: HDH is a calculated variable          
**: Surface heat loss is a calculated variable  ***: Global T°C management is a global mark that reflect the fact 
that the household is reducing the temperature during nights and vacancies (half-days, week-ends and weeks). 

 
Table 4 provides details about the magnitude and the sign of the effect the different 

variables have on space heating useful energy consumption. 

                                                 
4Some variables are relevant only for individual houses, others only for apartments; we have thus added 
respectively the term IH or CH in the variable definition. 
5Type of housing implies thermal characteristics but it also implies a certain way of life and it is linked to the 
type of urban area. 
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Table 4. Effect of the Variables in the Model 2 

Variable definition Estimate Pr > |t| 
Intercept -15.80 <0.0001 
Useful living area (m2) 0.048 <0.0001 
Construction year    < 1914 1.27 <0.0001 
Construction year    1915-1948 0.64 0.0673 
Construction year    1949-1974 0.83 0.0039 
Construction year    1975-1988 -0.33 0.2576 
Construction year    1989-2000 -0.71 0.0603 
Type of housing   -   Individual house 0.79 <0.0001 
Number of rooms 0.62 <0.0001 
Existence of thermostat   -0.34 0.0087 
Heating degree hours *   (K.h) 0.000061 <0.0001 
Surface heat loss**   (W/Km2) 1.08 0.0002 
Efficiency of heating system -0.58 0.0070 
T°C in the main room   (°C) 0.40 <0.0001 
Global T°C management*** 0.14 0.0001 
Length of ventilation per week   (min) 0.0028 0.1785 
Part of house not heated   -1.39 0.1091 
Days spent outside home    -0.19 0.0344 
Income  (keuros) 0.024 0.0195 
Age of head of household  -  <30 y.o 0.10 0.6967 
Age of head of household   -  30-45 y.o -0.34 0.1708 
Age of head of household   -  46-60 y.o -0.26 0.2376 
Size of family    -    1 person 1.95 0.0128 
Size of family    -    2 persons 1.49 0.0373 
Size of family    -    3 persons 0.81 0.2706 
Size of family    -    4 persons 0.89 0.2218 
Size of family    -    5 persons 0.90 0.3193 
Size of family    -    >5 persons 3.01 0.1061 
Space heating energy price  (euros/kWh) 0.20 <0.0001 

 
Figure 2. Space Heating Energy Consumption Predicted by the Two Models 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
We also crossed regressions that include only technical variables or only socio-

demographic and practices variables to show the relative relevance of these variables groups 
in explaining the variance in space heating consumption. 
 

Model 1 R2adj=0.57 Model 2 R2adj=0.50 
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Table 5. Importance of the Different Types of Variables in Space Heating Consumption 
 
 

 
 
 
 
 
 

We found that technical variables seem to explain 33% of total consumption variance 
in the second model and 37% in the first one. This is quite in line with what Santin, Itard and 
Visscher (2009) found7 in a similar exercise conducted with data on German households.  But 
unlike them we also found that socio-demographic attributes and behavior play a strong role 
in space heating energy consumption: an additional 17% of the variance is explained (21% in 
the first model). Afterwards we analyzed separately the role of explicit practices and socio-
demographic variables. It may be surprising to note that the role played by explicit energy 
practices seems quite modest (4% of the total 17%). In fact socio-demographic attributes such 
as age, income or size of family are relevant variables to draw social classes that are 
consistent with a certain way of life. These ways of life imply different arbitrations between 
budget items, different kinds of practices and different levels of intensity in these practices 
[Bartiaux 2006, Moussaoui 2005]. This demonstrates why these general socio-demographic 
attributes play such a great role in space heating energy consumption: they are excellent 
proxy variables for the intensity of space heating practices that are very difficult to capture 
with a paper survey. Indeed it is difficult to ask households about more than their habits. It 
would have required us to have them fill in a logbook with such data as how long they reduce 
temperature, by how much, in which room, and for how many days.  
 
Thermal Simulation Engineering Model Including Behavioral Components 
 

As we have previously seen a lot of classical engineering models can be found, but 
they often predict biased energy consumption, as only a few of them include behavioral 
components. Moreover with the regressions we have seen that variables such as temperature 
of the main room, space (between rooms) and time (during vacancies and nights) 
management of the temperature in the home, or else duration of manual ventilation during the 
week are far from negligible. But even if such a behavior module were to be designed, 
modelers would often face a dramatic lack of data to cross building shell characteristics and 
household practices. 

In our study we are able to provide data about main space heating consumption 
practices and to include them in the SimFast model, a dynamic thermal simulation model 
developed by EDF R&D [Deque et al., 2000]. We shall present here the results obtained with 
SimFast, which we will then compare to actual household space heating energy consumption. 
In order to assess the importance of the behavioral part in one case we ran simulations 
considering the practices declared by the respondents in the survey, and in the other case we 
took into account a normative and uniform behavior. 

 
 
 
                                                 
6 Socio-demographic variables also includes economic variables as income and energy price. 
7 In their paper Santin & alii [2009] found R2=0.42 for technical attributes and an additional R2=0.04 for 
sociodemographic and practices variables. 

Type of variables  R2 adjusted  Part 
Total 0.50 100%
Technical + Environment 0.33          66% 
Socio-demographic6 + Practices 0.17          33% 

     of which socio-demographic 0.13             75% 
of which practices 0.04             25% 

Technical + Environment + Practices 0.37          74% 
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Figure 3. Results with SimFast Model 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
The values predicted by SimFast improve slightly when we include some behavioral 

components, as the R2 is better. The technical, meteorological and practices variables 
together seem to explain 37% (and 42% in the first model) of the variance in space heating 
consumption according to Table 5. As our model reaches R2=0.3 we consider ourselves to 
have succeeded in capturing most of the actual weight of these variables in the engineering 
model. The quality of the thermal model and its behavior module are confirmed by the 
experimental values. In the context of prospective studies multi-linear regression models 
would not be very helpful as we do not know how the different coefficients would change 
over time. In fact these statistical models are generally used to predict energy consumption in 
the short-term. This is why this engineering model would be very useful in quantifying the 
impact of different behavior scenarios: with an engineering model we know how 
consumption would vary with different inputs. 

 
Impact of Uncertainties on the Results of Prospective Models  

What Are the Uncertainty Sources in Our Models? 

As presented in Section 3 only 57% of space heating energy consumption variance in 
the sample is explained with the statistical model using all the variables, which is built to fit 
best with the data. The unexplained variance is due to various sources of uncertainty, 
including the inputs and the statistical method. Since the data were collected via a self-
administrated paper survey we may of course face a declarative bias as people might not have 
actually acted as they declare and this is especially true of qualitative items and practices. 
Thus people may not be able to answer particular items; for instance, a respondent may not 
be able to know the thickness and the type of insulation material of his walls or he may not 
remember the amount of time and the exact number of rooms that are heated less than the rest 
of the house during the cold season. Note that it is normal for even a statistical model to not 
provide a perfect explanation of individual energy consumption. This is due to the human 
dimension of the observed phenomenon: even if a household is characterized by numerous 
attributes (income, professional activity, age, etc) its behavior is not totally determined by 
them. The engineering model fits less with actual space heating energy consumption 
(R2=0.3), which is due to the same input uncertainties, but also to the physical database 
quality that is a bias specific to engineering models. In fact, engineering models use physical 
variables that are not directly mentioned in the questionnaire. The values of these attributes 
come from the model database that indicates the values corresponding to attributes that can 
be indicated by households (for example, the shell performance can depend on the 
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localization and the age of a building). Thus, the quality of an engineering model strongly 
depends on the quality of its database. 

We present here four types of uncertainty that affect our statistical and engineering 
models.  

 
Table 6: Uncertainties and Their Impact on the Models 

Type of uncertainty Statistical model Engineering model 

Questionnaire bias  
Declared values can be false or approximate averages (e.g. length and frequency 

of windows opening, internal temperature). Errors on actual energy 
consumption affect only the statistical model. 

Database quality 
Not concerned 

(No database is used) 

Physical database values based on 
regulation or expert judgment may 

be unrealistic (e.g. actual ventilation 
rates [APUR, 2007]) 

Heterogeneity of real 
values for the same answer 

(intra-segment 
heterogeneity) 

If there is heterogeneity in values for a same attribute or combination of 
attributes (e.g. for the same dwelling age and region, many different thermal 

resistances are observed [Cantin et al., 2010]; or for the same income and 
activity, many different behaviors are observed), then the regression will be 

mathematically weaker. 

End-use extraction 

Heating is one of the many end-uses in a 
household. Its amount is deduced from 
the energy bill thanks to an algorithm 

that induces errors at an individual scale 
(and then a weaker R2 than with end-use 

metering) 

Not concerned 
(end-use “heating” is the direct 

output of the model) 

 
Impact of Behavioral Uncertainties on Long-Term Energy Prospective Studies Using an 
Engineering Model 

In a long-term prospective study based on an engineering model dedicated to space 
heating, the following parameters are crucial and require an adequate modeling of behaviors: 

 
• Maximum and minimum levels of heating intensity. These boundaries are chosen 

by the modeler and considered as stable in time. The upper value should correspond 
to the maximum internal temperature without conservation behavior and the lower 
value should correspond to the lower internal temperature with all conservation 
behaviors considered in the model. They provide part of the physical realism of the 
engineering model as they introduce limits of energy consumption results that are due 
to behavioral considerations. This kind of realism is absent in a linear regression 
model. For instance, a very strong income growth will lead to very high energy 
consumption in a linear regression model. When converting this consumption into 
physical values, it can lead to internal temperatures higher than the maximum 
temperature observed today in homes where the service level is considered as 
saturated by the modeler. A realistic choice of extreme levels of heating intensity is 
then necessary to avoid such incoherent results. Thus, model results are very sensitive 
to the modeler’s choice of these values, especially in the context of extreme scenario 
simulations. 

• Technical infrastructure performance for the reference year. Performance 
estimates have a direct impact on the technical potential but also on the conservation 
potential of energy consumption reduction. In fact the impact of a practice can vary 
greatly depending on the building’s technical performance. Moreover, the magnitude 
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of the rebound effect (an increase in service heating intensity after an improvement of 
building performance) seems to be correlated to initial building performance [Haas et 
Biermayr, 2000]. Thus, a good estimate of the initial dwelling stock technical 
performance is needed to correctly estimate the impact of behavioral changes. As 
explained previously, the technical performance of a dwelling is given in the 
engineering model database that is based on expert judgment, norms or 
measurements. However, thermal performance of the shell of buildings, and 
especially for old ones, is very heterogeneous and very few field assessments are 
available [Cantin et al, 2010]. Thus, an easy way to estimate their performance is to 
calculate their thermal performance empirically from their heating energy 
consumption, environment variables and declared behavior if data are available 
(Schüler, Weber and Fahl (2000) had a similar approach but they did not take 
comprehensive behaviors into account). If old building performance is estimated in 
this way, the quality of the estimate depends directly on the quality of the behavioral 
impact estimate. 

• Energy Efficiency Market Heterogeneity. The heterogeneity of the heating 
equipment and shell insulation markets is a fundamental parameter of prospective 
models in the residential sector [Jaccard and Dennis, 2006] because of its crucial 
influence on the evolution of dwelling stock performance. This heterogeneity is 
formed by demand and supply heterogeneities. The demand for energy efficient 
improvements is basically determined by the current dwelling stock performance, 
space heating intensity and energy price. As heating intensity depends directly on 
households heating behavior then market heterogeneity depends on a correct estimate 
of this behavior.  

• Number and type of behaviors considered. Almost every potential study dedicated 
to behavioral changes considers a different portfolio of conservation behaviors.  This 
choice is not trivial as it reveals the opinion of the modeler on the kind of behavior 
that can change over time. Note that curtailment behaviors (which substantially 
reduce energy service, e.g., reducing internal temperature during the occupants’ 
presence) can be voluntarily ignored (e.g., in BC Hydro Conservation Potential 
Review). As a consequence of the modeler’s choice regarding the number and type of 
behaviors considered in the study, the difference between behaviorally contrasted 
scenarios in terms of energy consumption can vary greatly. As the impact of these 
behaviors depends on the building performance, the accuracy of the calculation is 
partly determined by the quality of the engineering model database. Moreover, the 
savings potential of a practice depends on the initial number of household that already 
do it. A bias in the questionnaire regarding the declaration of a certain practice has a 
direct impact on the energy saving potential estimate regarding this practice. 

• Behavior status. Behaviors can be modeled as independent or influenced by other 
variables. Various significant relationships between certain behaviors and other 
variables can be found in literature but there is no case where a behavior is fully 
determined by another variable or a group of variables. Thus, the modeler has to 
decide what type of status he wants to give to the modeled behavior, based on his 
understanding of this behavior and the available data. Depending on this status the 
most appropriate type of prospective model will differ. If behaviors are considered as 
independent of other variables then the prospective study can be exploratory (the 
proportion of households that will adopt a certain behavior and the magnitude of this 
behavior are left to the modeler’s choice). On the contrary, if they are considered as  
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linked to other variables then future behavioral changes can be seen as a result of the 
other variables’ evolution in the prospective study. In this case, the range of 
behavioral changes will be smaller than in an exploratory study. 

 
Conclusion 

First we have been able to statistically explain almost 60% of the residential space 
heating energy consumption, the remaining unexplained consumption may be due to many 
factors. As the data were collected via a self-administrated paper survey we may of course 
face a declarative bias as people do not act in reality as they declare, and this is especially 
true for qualitative items and practices. This has therefore led us to ask rather technically 
basic and general questions that may encompass only a part of the useful information needed 
about space heating. This statistical study shows that technical attributes are responsible for 
almost 2/3 of the explained variance in space heating energy consumption while attributes 
linked to the household explain the remaining 1/3 of the explained variance. 

Furthermore, thanks to our engineering model and its behavior module we have been 
able to explicitly explain the impact of the technical, weather and practices variables on space 
heating energy consumption. In other words, we are able to estimate more accurately the 
energy efficiency potential and to quantify the impact of technical and behavioral scenarios. 
Both are very useful for prospective studies. But we can see that the explicit energy practices 
in our survey do very little to explain the observed variance. For instance the impact of socio-
demographic attributes is four times higher as shown by Table 4. This means that further 
work is needed in order to better capture the diversity and complexity of the energy practices 
in the different household segments and to be able to better link socio-demographic attributes 
with explicit energy practices. It also means that the behavioral potential of energy 
consumption reduction in the residential sector could be far greater than that calculated only 
with explicit practices. 
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