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ABSTRACT  
 

This paper presents a multilevel fault detection method. Two key features of the proposed 
method are 1) an energy description of all the units in a HVAC system and 2) a spatial-temporal 
partition approach, which allows us to apply the FDD strategy to the entire building in a uniform 
manner. Energy flow models for HVAC units at all levels are presented. The concept of absolute 
and relative references for monitoring the energy performance is introduced. A numerical 
example of cross-level fault detection involving an upper level AHU and lower level VAVs is 
presented where a fault from the AHU is detected. With the limited real time data, we discuss the 
threshold for detecting this AHU fault. More measurements and extensive studies are needed to 
establish thresholds for various faults at different levels. 
 
Nomenclature 
 
E  energy flow density 

EΔ  energy flow density change across 
HVAC units 

AHE  energy consumption of AHU 

VSE  sum of energy consumption of VAVs 

vC  specific heat capacity of flow at constant 
volume 

T  flow temperature in degree K 

ST  supply flow temperature  

DT  discharge flow temperature  

ET  exhaust flow temperature 

RT  return flow temperature 

OT  outside air temperature 

 
ρ  flow density 
v  flow velocity 

Sv  supply air velocity 

Ev  exhaust air velocity 

Rv  return air velocity 

Ov  outside air velocity 

SV  supply air volumetric velocity 

EV  exhaust air volumetric velocity 

RV  return air volumetric velocity 

OV  outside air volumetric velocity 
A  cross section area of the AHU terminal 

ED  damper position of the exhaust air duct 

RD  damper position of the return air duct 

 
Introduction  
 

Buildings represents one of the fastest growing energy consuming facilities on the earth. 
According to the U.S. Department of Energy 2009 Building Energy Data Book, buildings use 
72% of nation’s electricity, 54% of natural gas and 38.9% of nation’s total energy consumption, 
valued at $392 billion (U.S. Department of Energy 2009). Heating, ventilating, and air 
conditioning (HVAC) system is an indoor environmental technology which has been widely 
equipped in modern buildings. The three central functions of heating, ventilating, and air-
conditioning are interrelated, providing human comfort and acceptable indoor air quality. 
Currently, HVAC accounts for 57% of the energy used (valued at $223 billion) in U.S. 
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commercial and residential buildings, and the industry employs around 1.1 million people. 
Unfortunately, HVAC may fail to meet the performance expectations due to various faults, poor 
controls and improper commissioning, thus wasting more than 20% energy it consumes (Roth et 
al. 2005). Therefore, it is of great potential to develop automatic, quick-responding, accurate and 
reliable fault detection and diagnosis (FDD) schemes to ensure the normal operations of HVAC 
in order to save energy. According to the National Institute of Standards and Technology (NIST), 
FDD methods have a potential to save 10-40% of HVAC energy consumption (Schein et al. 
2006). A FDD package for HVAC can help to establish construction and renovation standards 
for new and existing buildings. In light of the worldwide energy crisis and increasing 
environmental awareness, and the current limited usage of renewable energy in buildings, FDD 
for HVAC is critical to increase the energy efficiency in buildings. 

Existing FDD methods can be divided into two categories: statistical method and 
computational model based approaches. The statistical methods implement fault detection 
algorithms to analyze current conditions in comparison with past normal conditions. Schein et al. 
developed 28 rules to detect 5 typical faults in the air handling unit (Schein et al. 2006). Seem 
used robust estimates of the mean and standard deviation to detect abnormal energy consumption 
in buildings (Seem 2007). Wang and Xiao applied principal component analysis (PCA) to detect 
sensor fault in AHU (Wang and Xiao 2004; Xiao and Wang 2009). By setting proper threshold 
learned from trainings, Du et al. detected flow sensor fault in air dampers and VAV terminals 
(Du et al. 2009). Hoyle studied the PCA dimension selection for high dimensional data and small 
sample sizes (Hoyle 2008). 

The computational model based approach calculates and predicts the normal operations 
based on computational simulation of the HVAC system. The prediction forms the basis for fault 
detection. Clarke et al. developed a simulation-assisted control to simulate and test the response 
of building energy management systems (BEMS) (Clarke et al. 2002). Pedrini et al. applied the 
EnergyPlus simulation tool to develop a methodology for monitoring the energy performance of 
a commercial building in Brazil (Pedrini et al. 2002). Researchers from Lawrence Berkeley 
National Laboratory have been working on Modelica and EnergyPlus simulation tools for years 
(Wetter 2009). Djuric et al. reviewed the possibilities and necessities for building lifetime 
commissioning and estimated the heating system performance using optimization tool and 
BEMS data (Djuric and Novakovic 2009). Namburu et al. developed a generic FDD scheme for 
centrifugal chillers and a nominal data-driven model of the chiller to predict system response 
(Namburu et al. 2007). Haves et al. investigated the model-based performance monitoring in 
chillers (Haves and Khalsa 2000). 

All the existing classical FDD methods are level or hardware dependent. There is room 
for improvement to achieve a system level FDD. In particular, there is a need to develop methods 
for detecting faults across different levels of the HVAC system with a focus on energy 
consumption of the system. The proposed method should be computational efficient and less 
onerous from a calibration perspective compared to most computational model based 
approaches. This paper develops a FDD method with these features. 

The rest of the paper is organized as follows. In Section 2, we present the basic idea of 
the proposed multilevel FDD method with the direct consideration of energy consumption. In 
Section 3, we use PCA as an example of the methods of analysis to demonstrate how to apply the 
proposed method. Section 4 presents a numerical example of the FDD with the real monitored 
data from a building on campus of the University of California at Merced. 
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Multilevel FDD Algorithm 
 

Two key elements of the proposed method are 1) an energy description of all the units in 
a HVAC system, and 2) a spatial-temporal partition strategy. A uniform model to describe 
dynamics of units at different levels is a starting point of the multilevel FDD algorithm. Since the 
ultimate goal is to reduce energy consumption, we choose energy flow density across a unit to 
describe its dynamics. The energy model is certainly applicable to all the units. We can use the 
monitored sensor data to estimate energy performances of all HVAC units at different levels. 
These signals are the input to the FDD algorithm. In this work, we shall investigate if the energy 
model can capture hardware faults within the HVAC system. 

Environmental factors of rooms in a building such as sun exposure and local wind 
direction strongly influence the energy needs for cooling and heating. Human and architectural 
factors, such as floor level, room function, and occupancy conditions also demand different 
levels of energy consumption. Temporal factors, such as seasonal changes and day and night 
switch, change the control sequences and setpoints, thus impacting the energy consumption. All 
of these factors form a basis for dividing rooms as well as VAVs into subgroups. The units in a 
subgroup share more common factors, have stronger correlations, and may be monitored with a 
same set of thresholds for fault detection. FDD studies make use of a high dimensional matrix 
consisting of real-time measurements of the HVAC components, interior and exterior 
temperatures, occupation sensors, etc. The spatial and temporal grouping of the units essentially 
provides a physics-based partition of the matrix for more effective analysis. 
 
Energy Flow Model 
 

We consider energy transfer and consumption of hardware units at different levels. The 
boiler or condenser supplies the building with heating and chilling water. The pump transfers the 
water. The variable frequency drives (VFD) fan produces pressure difference to supply air. The 
energy supplied to the HVAC system is eventually converted to water or air flow with a certain 
temperature and velocity. A HVAC unit can be simplified as a blackbox with input and output 
flows shown in Figure 1. 
 
Figure 1: Units at Different Levels of HVAC can be Treated as Blackboxes with Input and 

Output Flows of Air or Water with Certain Temperatures, Velocities and Densities 

 
 

The energy density of the flow through a blackbox can be written as 

 21    
2vE C T vρ= + .  (1) 

It is reasonable to assume that vC  is a constant, the input flow rate is the same as the 
output air because of the continuity condition. To compute the energy consumption of a unit with 
known geometry, we need five variables: ST , DT , v , vC and ρ . The vC  and ρ are both known 
functions of temperature and pressure. 
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Figure 2: An AHU Unit can be Treated as a Blackbox with Two Inputs and Two Outputs 

 
 
An AHU unit can have two inputs: return air and outside air, and two outputs: supply air 

and exhaust air as illustrated in Figure 2. The energy flow density change across the AHU is 
given by 
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where four temperatures involved are part of the original monitored data. The air velocities Sv , 

Ev , Rv , and Ov  are 
 /i iv V A= .  (3) 

The continuity condition of the flow in AHU leads 
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From these equations, we arrive at 
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+
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The proposed approach directly focuses on the energy consumption of a unit, reduces the 
number of parameters to monitor, and makes it easier to integrate with a FDD algorithm so that 
we can treat all the units in a uniform manner. 

A special case of the AHU is when the return air damper is completely closed such that 
0RD = . The energy consumption density is reduced to 

 21  ( )
2v S O SE C T T VρΔ = − + .  (6) 

The AHU is connected to a number of VAVs. A VAV has only one input: the supply air 
from its upper-level AHU and one output: the discharge air. The supply and discharge air 
velocities as well as the corresponding air duct geometries are the same. The energy flow density 
change across the VAV is 

  ( )v S DE C T TΔ = − .  (7) 
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References for Fault Detection  
 

Under steady-state, since the room temperature is almost constant and the return air 
temperature is nearly the same as the room temperature, the difference between the outside and 
room temperatures is a driving force of energy consumption of the HVAC system. For a certain 
temperature difference, the HVAC units should keep a certain level of energy consumption. An 
unexpected fluctuation above or below this level is considered abnormal. The units with 
abnormal energy consumption in reference to the outside temperature may be faulty. In this 
sense, we call the outside temperature as an absolute reference. 

To confirm the fault, we compare the energy consumption of the possibly faulty unit with 
that of other units at the same level or with a mathematically equivalent measure. This 
comparison provides a relative reference. Specifically, we investigate the correlation between the 
suspicious unit and other units at the same level or the mathematically equivalent measure. An 
example of the mathematically equivalent measure is the energy consumption of an AHU and the 
sum of energy consumption of all its lower-level VAVs. 
 
Principal Component Analysis 
 

There are several methods for analyzing the measurement data for fault detection. In this 
paper, we use the principal component analysis (PCA) as an example to demonstrate the 
application of the proposed multilevel FDD method. The PCA is widely used for dimension 
reduction in pattern recognition. By mapping a set of correlated variables to a smaller set of 
uncorrelated variables known as the principal components, the PCA can approximately 
reconstruct the original data based on a new basis formed by the vectors associated with the 
principal components. The order of the principal components is determined by the variability in 
the original data (Bishop 1995). 

In the analysis, it is more intuitive to keep the data with the same physical attribute 
together in one matrix. Take image processing as an example. The physical attributes of the 
matrix are uniform such as brightness and greyness. For the same reason, we compute the energy 
flow density of HVAC units from the monitored parameters with different physical attributes. 

Let TX be a data matrix where its rows represent samples of the data, and its columns 
normalized to have zero mean are observations of all samples. The PCA transformation is given 
by 

 ,T T= =Y X W VΣ   (8) 
where TVΣW  is the singular value decomposition (SVD) of TX  (Strang 1998). 

The PCA reveals the internal correlation structure of the data. If a multivariate data set is 
considered to represent an object in a high-dimensional space, the PCA provides a low-
dimensional projection of the object with the most informative viewpoints along the principal 
eigen-directions, which are often called “patterns” of the data. We propose to project the 
principal components a sub-space spanned by the measurements of interest. Since the principal 
components are calculated from the whole data set in the higher dimensional space, their 
projections on to the sub-space contain physical interactions with all other measurements. 
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Figure 3: The Projection of the Dominant Principal Component onto the 2-Dimensional 
Plane Spanned by Two Measurements M1 and M2 of Interest 

 
 

As an example, consider a sub-space spanned by two measurements 1M  and 2M . The 
projection of the principal component into the sub-space is illustrated in Figure 3. The 
measurements are related as 

 1 2M k M= ⋅ ,  (9) 
where the slope is tank θ=  and θ  is the projection angle. When 0 / 2θ π≤ ≤ , 1M  and 2M  are 
linearly and positively correlated within the principal component. When / 2π θ π≤ ≤ , 1M  and 

2M  are linearly and negatively correlated. We postulate that the projection angle changes with 
the conditions of the HVAC system, particularly when a fault occurs. 

Let nθ  denote the nominal value of the projection angle between the measurements 1M  
and 2M  when the system is in normal operational condition. How much deviation of θ  from nθ  
would signal the existence of a fault? We need a large number of measurement data and various 
faulty incidents to train an algorithm in order to establish the threshold for θ  statistically. 

Assume that projections of the principal component suggest that the unit associated with 
measurement kM  may be faulty. Since only the energy flow density of a unit is used in the 
analysis, more signals from the unit can be used to further investigate the nature of the fault, 
which can be due to the failure of fan, motor, and other electrical or mechanical components of 
the unit. This can be done with the existing FDD methods as reviewed in Section 1. 
 
A Numerical Example 
 

Let us consider an example to demonstrate the procedure of the proposed FDD strategy. 
We select an AHU (A10) and its 29 lower level VAVs in the HVAC system of the Science and 
Engineering Building on the UC Merced campus. Figure 4 demonstrates a single VAV’s one 
week temporal plot of data from several available sensors. We use data collected from May 1 to 
May 28, and June 15 to July 12 in 2009. We remove the trend and normalize the data as 

 2 2

1 1

1 1, ( ) ,
1

nN N nn n i i
i i i i i i

n n i

x xx x x x x
N N

σ
σ= =

−= = − =
−∑ ∑ ,  (10) 

where n
ix  represents thi  measurement at sample time n . Since the sampling intervals of the 

original data are not uniform, we reconstruct the data matrix by using samples only on the least 
common multiples of all the different sampling intervals. We do not apply any interpolation. 
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Figure 4: One Week Temporal Plot of Sensor Data from a Single VAV Installed on the 
Target Building on UC Merced Campus 

 
 

We consider a matrix consisting of three measurements: the outside temperature OT , the 
AHU energy consumption AHE  and the sum of energy consumption VSE  of the VAVs. We apply 
PCA to this matrix, compute the dominant principal component, and project it onto 2-
dimensional planes formed by two of the three measurements. 

As a temporal partition strategy, we consider the weekly performance of the system. 
Figure 5 - 7 show the results of projections of the principal component for the data in June to 
July. In Figure 5, the projection angles of weeks 1, 2 and 3 are close to each other at nearly 45o . 
The projection angle of week 4 is far away from that of the other three weeks at nearly 160o . The 
projection angles of these four weeks are listed in Table 1. 

 
Table 1: Projection Angles on Planes Created by Selected Measurements 

Projection Angle Week 1 Week 2 Week 3 Week 4 
( , )O AHT Eθ  33.96° 42.66° 43.14° 167.84° 
( , )O VST Eθ  48.88° 49.17° 49.19° 41.09° 

( , )AH VSE Eθ  59.55° 51.48° 51.03° 103.88° 
 

From the physics point of view, every pair of the three measurements OT , AHE  and VSE  
should be linearly and positively correlated. In weeks 1, 2 and 3, the projection angles are near 
45o  indicating a linear and positive correlation. The projection angle of week 4 is 160o  
indicating a negative correlation. Figure 5 suggests that during weeks 1, 2 and 3, the AHU 
behaved normally as its energy consumption is positively correlated with the absolute reference 

OT . However, during week 4, a fault may have occurred, which caused abnormal energy 
consumption. 

Recall that the mathematically equivalent measure of the energy consumption of an AHU 
is the sum of energy consumption of all its lower-level VAVs. Figure 6 shows that the projection 
angles of all four weeks are in the first quadrant around 45o , which verifies that all the VAVs 
were functioning normally because the sum of their energy consumption VSE  correlates 
positively with OT . Hence, the sum of energy consumption of all the VAVs can serve as a 
relative reference for the AHU. This indirectly confirms the fault detected in Figure 5. 
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Figure 5: Projection of the Dominant Principal Component from Weekly Observations 
onto the two Dimensional Plane Spanned by EAH and TO. Weeks 1-3: Magenta Dashed 

Line, Blue Dotted Line and Green Dashdot Line. Week 4: Solid Line 
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Figure 6: Projection of the Dominant Principal Component from Weekly Observations 
onto the Two Dimensional Plane Spanned by TO and EVS. Legends are the same as in 

Figure 5 
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Figure 7: Projection of the Dominant Principal Component from Weekly Observations 
onto the Two Dimensional Plane Spanned by EAH and the Mathematically Equivalent 

Measure EVS. Legends are the same as in Figure 5 
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Figure 7 compares the AHU energy AHE  with the relative reference VSE . It is clear that 

the projection angle of week 4 deviates significantly from that of the other three weeks, and 
confirms the fault occurred in the AHU in week 4. 

We have confirmed with the building manager that the supply fan of the AHU was frozen 
for the entire fourth week in July as shown in Figure 8. Meanwhile the return fan of the AHU 
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was working normally. So it was the frozen supply fan that caused the abnormal energy 
consumption for the AHU in week 4 recorded in the June-July data set. 

Given the knowledge of the fault, let us now try to determine thresholds of the projection 
angle. We use the data of four weeks in May and first three weeks in June-July data set when the 
system was under normal condition. We compute the standard deviation of the projection angle, 
and consider the 90%  probability interval of the projection angle [ 1.644 , 1.644 ]θ θθ σ θ σ− +   

where θ  is the average projection angle and θσ  is the standard deviation. The probability is 
computed based on the Gauss distribution assumption. We propose to use 1.644 θσ±  from the 
average as the threshold for fault detection. 

 
Figure 8: The Supply Fan Speed of the Monitored AHU (blue solid line) Demonstrates that 

it was Frozen for Almost the Entire Last Quarter (The Fourth Week) of the Monitored 
Period in July, While the Return Fan of the AHU (Red Dashed Line) was Functioning 

Normally. This Confirms the Suspicious Fault We Detected in Week 4 of July 
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Figure 9 shows the projection angle of weekly observations. It can be seen from the 

figure that the projection angles of the seven weeks when the system was normal are close to the 
average value, and the projection angle of week 4 in the June-July data set goes out of the lower 
boundary of the threshold. 

To demonstrate the effect of different temporal partition, we present the same analysis 
with daily observations in Figure 10. The figure shows a considerable number of samples going 
beyond the threshold in the last six days, specifically in the first and third subplots where the 
energy consumption of the AHU is compared with the absolute reference OT  and the relative 
reference, i.e. the mathematically equivalent measure VSE . 

It should be noted that the above discussion on the threshold is limited by the availability 
of the measurements with known faults, and should not be generalized. Future effort of this 
research will search for more real time measurements with known faults or generate the data 
with artificially introduced faults, as is commonly done in the literature. 
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Figure 9: Projection Angles of the Principal Component of Weekly Observations of 8 
Weeks in May to July 2009. The 90% Probability Thresholds with 1.644 θσ± are Marked by 
Red Dash-Dot Lines with Triangular Symbols, and the Average Projection Angle by Black 
Dashed Line. Blue Line with Square Symbols Denotes the Actual Projection Angle of the 

Week. The Plot of the Last Week Indicates a Possible Fault During that Time. This Fault is 
Verified as the Frozen Supply Fan Shown in Figure 8 
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Figure 10: Projection Angles of the Principal Component of Daily Observations of 8 Weeks 
in May to July 2009. Legends are the same as in Figure 9. Plots Involving EAH Show that 

the Projection Angles Exceed the Threshold for Three to Four Days in the Last Week 
Indicating a Possible Fault During that Time. This Fault is Verified as the Frozen Supply 

Fan Shown in Figure 8  
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Conclusions 
 

A multilevel fault detection method has been introduced in this paper. Two features of 
the proposed method, i.e. 1) an energy description of all the units in a HVAC system and 2) a 
spatial-temporal partition strategy, allow us to apply the FDD strategy to the entire building in a 
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uniform manner. To this end, we have developed energy flow models for HVAC units at all 
levels. We have discussed the inherent complexity of HVAC systems, and proposed the concept 
of spatial and temporal subgrouping. The concept of absolute and relative references for 
monitoring the energy performance has been introduced. A numerical example of cross-level 
fault detection involving an upper level AHU and lower level VAVs is presented where a fault in 
the AHU is detected. With the limited real time data, we have studied the threshold for detecting 
this AHU fault. More measurements and extensive studies are needed to establish thresholds for 
various faults at different levels. 

In the future, we plan to apply the proposed FDD algorithm to all HVAC units at 
different levels in a building to capture various patterns of energy consumption, and study 
relationship between energy consumption patterns and dominant principal components. In 
addition to PCA, other methods of analysis such as the dynamic model decomposition (DMD), 
correlation analysis, and spectral analysis will be examined in connection to the proposed 
multilevel FDD strategy with a hope to achieve thresholds of higher accuracy and reveal more 
details of the system performance patterns. 
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