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ABSTRACT 

This paper describes a proof of concept for a method of operational benchmarking.  This 
benchmarking can be done with only daily weather data and the monthly energy bill information 
required for an Energy Star rating calculation, but the result is overtly functional, directed at 
improving operating efficiency. Several derived building attributes are compared with reference 
values to identify the general nature of major building inefficiencies. This “first view” can direct 
further investigation of the problem and potentially result in energy saving corrections.    

The underlying approach builds on past work on inverse modeling and energy signatures, 
discussed in detail herein, which shows useful performance insights proceeding from a monthly, 
temperature-correlated view of energy consumption. This process has produced promising 
anecdotal findings but has been difficult to scale up because it requires review by a reasonably 
experienced engineer or building operator. This new work standardizes and automates an 
enhanced regression process to support wide implementation, with pilot testing on a sample of 
185 buildings across the country. 

The results demonstrate the feasibility of automating an energy balance-based Equivalent 
Analog Building Model that reproduces a building’s monthly energy usage in relation to outside 
temperature.  For gas-heated office buildings, a relatively small set of eight key parameters has 
proved to produce robust and repeatable results.  Automated messages based on indicators 
derived from the parameter values can suggest areas of particularly high efficiency or potential 
future improvement, categorized under broad areas of occupancy-related loads, facility structure 
and systems, and heating and cooling controls. 

 
Introduction 

 
To make dramatic progress toward very low-energy buildings, owners, designers and 

energy program managers need prompt and meaningful feedback on whole-building measured 
performance.  Such high-level insights into performance can come from properly parsed 
information as basic as monthly billed usage by energy type.  However, these high-level 
performance views are not customarily available, for either an owner/operator of a small, simple 
office or an operator of a large complex building with an energy management control system that 
provides a wealth of interval data and other detail.  This paper describes the development of a 
proof-of-concept tool for providing useful first views in a way that could be automated to readily 
scale up to broad availability. 

The approach here rests on the insights available from the monthly billing results, a level 
of information readily available to nearly all buildings but not fully utilized in simpler metrics 
based only on a normalized EUI. Given a building’s physical and occupant characteristics, the 
dominant energy relationship throughout the year is between its energy use and the outside 
temperature.  The actual observed patterns vary widely, and the interpretation of these patterns 
leads to the more useful conclusions than does simple comparison of annual totals. 
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Background 
 
Patterns of energy use relative to outside air temperature, frequently referred to as energy 

signatures, are well known in the engineering community.  These signatures can be derived from 
the data by a variety of curve-fitting techniques.  Common approaches for monthly data include 
PRISM (Fels 1986) and the ASHRAE Inverse Modeling Toolkit (Kissock, Haberl & Claridge 
2003).  They utilize inverse models, which solve for the value of key parameters that reproduce 
an observed pattern of energy usage amounts in relation to outside temperature.  Haberl and Culp 
(2007) summarize and compare a variety of inverse modeling approaches.  Standard engineering 
and evaluation practice fits monthly energy use as a function of temperature, with the primary 
purpose of normalizing for weather differences to estimate achieved savings. To meet this 
purpose, it matters little what sort of model or energy units are used, as long as a good statistical 
fit is achieved.  

Analysis of whole-building patterns has increasingly emphasized interpretation of slopes 
and change points in the resulting signatures.  These graphic parameters are almost always 
indicative of building performance characteristics (Kissock & Mulqueen 2008; Turner & 
Reichmuth 2009; Koran 2010). These energy signatures have produced some promising findings, 
but they have been difficult to scale up because they require review and interpretation by a 
reasonably experienced engineer or building operator.  Interpretations are complicated by the 
fact that the graphic parameters of most of these models do not provide a physical building 
model per se; they are simply slopes and change points that statistically describe the pattern of 
observed data points.  In addition, the analyses are generally done separately for electricity and 
natural gas, obscuring the interplay between the two in total building energy use. 

 
An Extension of Current Practice, the Equivalent Analog Building 

 
The objective of this work is to define an alternate procedure that can automate both data-

fitting and generation of basic interpretive messages, supporting broader implementation.  A first 
view such as this could then easily be incorporated in any monthly bill review system - for 
example, EPA’s Portfolio Manager (EPA 2007) or commercially available energy review 
software - to provide general understanding of not just the current performance level but also the 
general areas to investigate for possible savings.  To accomplish the objective, a generalized 
whole building physical model (instead of a geometric model) is fit to the monthly data. This 
process solves for a set of physical parameters that define the “Equivalent Analog1 Building.” 
Turner and Reichmuth (2009) described the benefits of fitting the observed energy usage pattern 
to a physical energy balance model.  Briefly, this approach incorporates the interplay of 
electricity and gas usage in the total energy balance, more directly identifies areas with likely 
improvement potential, highlights data questions when the observed patterns are not physically 
coherent and forms a basis for estimating the energy impact of various changes.   

The physical model approach has been used successfully by a few experienced engineers 
and building operators, “tuning” results to a model of roughly 30 physical and systems 
parameters (Robison 2009; Robison & Reichmuth, 1999).  However, that approach does not 
scale up well to broad application. 

For automated solutions, the Analog Building Model must necessarily be based on a 
small set of parameters, and it thus reflects many idealized or typical characteristics. The result is 
                                                 
1 Simplified hypothetical building analogous to the actual building in its monthly energy use. 
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not meant to be a complete definition of the real building or to contain parameter values with a 
high degree of precision.  However, the solution set of key aggregate physical parameters that 
reproduce the actual building’s response to temperature does provide a solid basis for the first 
view of translating observed energy use to useful operational insights. This paper summarizes the 
development and structure of this new approach. A more detailed description of the model 
definition and calculations is contained in the full project report to EPA.  (Reichmuth & Turner, 
forthcoming 2010) 

 
Approach 

 
Automating the process of fitting a physical model to the observed energy billing data 

included the following steps. 
 

• Compiling a test bed of real data to use in developing and evaluating the prototype. 
• Defining the model, determining the limited set of aggregate physical variables to use and 

automating the calibration process to simultaneously fit these key physical parameters 
into the overall energy balance of the building. 

• Identifying the practical interpretations associated with various result categories to meet 
the overall objective of imparting greater operational insights. 

 
Test Data Set 

 
The testing data set contained 185 cases, including 37 from earlier New Buildings 

Institute (NBI) performance review projects, for which knowledge of building systems and 
occupancy characteristics helped in validating results, and 148 from EPA’s Portfolio Manager 
database of Energy Star-labeled office buildings, which provided third-party verified data for a 
broadened range of climate, vintage and size. For the initial proof of concept for automated 
solutions, we focused on a coherent subset of 155 of these 185 cases, all of which were offices 
with no other major activity type in the building, with natural gas for nearly all space heating, 
and with Energy Star ratings of at least 75. Future work could extend the approach to other 
situations, as described in the Discussion section below. 

 
 Analog Building Model Definition 

 
The model operates with monthly average temperature as the primary independent 

variable. At this monthly level of energy aggregation, short-term thermal transients are averaged 
out, leaving seasonal temperature changes as the primary driver. A monthly building model that 
can reasonably fit the observed data becomes an algebraically simple linear model for each end 
use.  The model reduces in essence to a set of simultaneous equations in several unknowns. 
Those unknowns are referred to here as the key building parameters, factors related to the 
physics of a building heat balance that can reproduce the observed data. 

The system of equations is not readily solved by conventional linear regression and is 
instead solved by means of an iterative steepest descent algorithm (Fletcher & Powell 1963).  
Briefly, the approach relies on numerically calculated partial derivatives of a goodness-of-fit 
function with respect to each of the modeled parameters.  The choice of the parameters and the 
structuring of the convergence path are critical to obtaining physically accurate results. A 
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successful model requires a small number of fairly orthogonal variables that are reasonably 
robust with respect to data noise.  Ideally, we want the best physically plausible fit to be 
associated with a unique combination of model parameters, and we want to avoid cases in which 
the fit is achieved with wide and physically implausible variations in the solved parameters. 

 
Convergence path.  The convergence path was structured by observing the pattern over a varied 
data set, carefully refining the initial conditions and controlling the iteration steps as necessary. 
At this proof-of-concept stage, the goal is to define a core set of conditions under which the 
approach can work and to begin to identify possible areas for further expansion. The current 
building model has proved to be stable and repeatable for buildings with electric and gas energy, 
as described under Results below. 
 
Key parameters. The choice of parameters was informed by a combination of the basic physics 
of an energy balance, engineering experience in the interplay of building energy use factors, and 
experimentation with several alternative variable sets. In a real building, a purely orthogonal set 
of parameters is not achievable because all are somewhat linked in the total energy balance. 
Nevertheless, this work has led to a small set of minimally correlated variables (the key 
parameters) that has produced robust and repeatable results for gas-heated buildings. 

These key parameters can determine estimates of the building energy end uses. Thus the 
total energy signature for the full Analog Building can be depicted as the sum of the end-use 
components, as shown in Figure 1. This example shows simple linear descriptions of end uses 
that rest on more complex underlying relationships.  For example, the gas heating depends in 
part on the electric internal gain, as does the electric cooling. The heating and cooling also 
depend on the building’s shell and ventilation characteristics, which are usually revealed most 
clearly in the temperature slope of the gas heating. The building parameters that determine these 
end uses are thus constrained with respect to one another by the engineering relationships that 
prevail in the aggregate energy use of a building.  

 
Figure 1.  Equivalent Analog Building End Uses 
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Example derived from a medium-sized Chicago office with an Energy Star rating of 94 
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The fundamental parameters used in this model are listed in Table 1 and discussed below. 
Note that six of the eight listed here are solved for, while two are held constant at this 
development stage for all solutions. 

  
Table 1. Equivalent Analog Building Parameters 

Parameter, symbol Units Notes 
Internal Gain, Qin W/ft2 Solved 
External Energy, Qext W/ft2 Fixed ratio of internal gain 
Aggregate Normalized UA, UAn BTU/deg F-hr-ft2 Solved 
Heating Efficiency, Eh No units Assumed to be 0.75 
Cooling Efficiency, COP No units Solved 
Service Water Heating, SWH Gal/day/ft2 Solved 
Heat Intercept, Ht T deg F Solved 
Cool intercept, Ct T deg F Solved 

 
Internal gain (Qin) and external energy (Qext).  Qin is the portion of the base load, i.e. the 
level energy use that is not dependent on temperature, that plays a role in the net load affecting 
the heating and cooling end uses.  The external energy Qext (outdoor lights and external 
processes) is a part of the base load that plays no role in the heating and cooling loads. In this 
initial model, Qext is assumed to be a small fixed fraction of the Internal Gain, Qin. Later 
refinements may vary the ratio of internal to external gain on the basis of observed results and/or 
additional input information on the building.  The end use calculations use both Qin and Qext 
directly. The model incorporates an idealized treatment of the portion of the internal gain that is 
retained in the heating and cooling balance (White & Reichmuth 1996). 
 
Aggregate normalized UA (UAn).  This is the aggregate heat loss parameter of the building. In 
this discussion, the aggregate normalized UA includes the building thermal losses/gains and the 
ventilation losses/gains, which are also temperature sensitive, all normalized per square foot of 
floor area.  Such an aggregate value would be very difficult to calculate directly by combinations 
of individual measurements.  But in the context of the inverse model, the aggregate effect of all 
these thermal and ventilation factors is relatively straightforward to determine and, as will be 
seen under Results, is useful in characterizing results. This floor-area-normalized temperature 
slope differs from the visible slope in the energy signature because it does not incorporate the 
efficiency of the heating and cooling equipment.  UAn plays a role in estimating both the heating 
and cooling end uses. 
 
Heating efficiency (He).  This is the assumed heating efficiency, which at this stage has been 
fixed at 75% for all cases. In principal it could be a solved-for instead of an assumed variable. 
However it is close to co-linear with the aggregate normalized UA (UAn), and separating it lends 
some instability to the overall regression. While actual heating efficiency may vary from 
building to building, it will typically be in the range of 70-85%, and variations in this range 
would not generally produce material differences in the general conclusions from the aggregate 
model. In the relatively rare cases where actual efficiency is considerably less than assumed, the 
current model will produce an unusually large temperature slope (UAn) and an unreasonably 
high cooling efficiency (COP). 
 
Cooling efficiency (COP).  This is the apparent COP of cooling energy. It assumes that the UAn 
for cooling is the same as for heating. In practice this may not be the case.  For example, there 
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may be more ventilation during cooling season from economizer use, or some other thermal 
characteristic may change seasonally. Therefore, the model’s solved COP value reflects both the 
actual COP of the primary cooling and the effects of seasonal changes in the thermal 
characteristics. 
 
Service water heating (SWH).  For buildings with summer gas use, this is the average of the 
non-space-heat gas energy use in July, expressed in units of heated gallons of water/day.  Those 
units allow scrutiny of this variable relative to a plausible hot water use for the building. For 
most commercial offices reviewed, this summer gas use is a nominal portion of the total building 
energy.  If there is no summer gas use, electric SWH is assumed to be 0.002 gallons/day/ft2, 
based on engineering judgment.  Estimates of the SWH end use are based on a seasonally 
varying inlet water temperature and thus have a very slight seasonal variation. In the cases where 
the solved parameter is much larger than is plausible for typical service water heating uses alone, 
it indicates other process uses or significant summer gas usage such as for distribution loops or 
excessive reheat. 
 
Heating intercept (Ht). This is the highest temperature at which heating is actually observed, 
and the end-use equations assume the heat load will linearly increase at temperatures below this. 
While this temperature is related to and influenced by the interior set temperature (including the 
net effect of temperature set backs during unoccupied hours), it is also affected by the internal 
gain and control errors. In general, Ht will be lower than the interior set temperature when 
internal gain is contributing to the heating, but many cases have also been observed where Ht is 
higher than the interior set temperature. These cases suggest excess heating or excessive re-heat. 
It should be noted that reheat is often a viable control scheme for particular system types or 
locations, but it is usually difficult to detect excess reheat because reheat manifests as very 
comfortable space conditions. This variable is sensitive to the level of reheat, and in cases where 
this variable is much larger than the interior set temperature, the heating intercept temperature is 
a strong indicator of potential design or control errors. 
 
Cooling intercept (Ct). This is the lowest temperature at which cooling is observed, and the 
end-use equations assume the cooling load will linearly increase at temperatures above this. 
While this temperature is influenced by the interior set temperature (including the net effect of 
temperature set ups during unoccupied periods), it also is affected by the internal gain and the 
control errors. In general, Ct will be lower than the interior set temperature when internal gain is 
contributing to the cooling load. 

The model uses this parameter to partition the electric energy between internal gain and 
cooling.  In mild, cooling-dominated climates such as Southern California, there is often no 
visible balance point temperature on the electricity signature indicating when cooling begins; 
cooling appears to increase linearly above the lowest observed temperature. In these ambiguous 
cases, the cooling intercept is not well defined, and Ct is constrained to be no lower than 1 
degree F less than the minimum observed monthly temperature. This constraint allows the 
reasonable maximum internal gain to be applied to the ambiguous cases.    

 

3-330©2010 ACEEE Summer Study on Energy Efficiency in Buildings



Defining Useful Indicators 
 
It would be possible to compare each of the solved parameters to a benchmark, but the 

interpretation of such relationships could be obscure and detract from a holistic view of building 
operation. Therefore, the solved parameters are assembled into three primary performance areas.  
These areas provide useful indications for largely separate aspects of performance, and together 
they form a comprehensive view of all end-use categories. These indicators are described briefly 
here.  The Results section contains examples and further discussion of indicator interpretation.  

 
Occupant energy intensity. Empirically this is the internal gain in the Analog Building as 
solved from the data. This is often very close to the apparent base load of an energy signature. 
But the base load may also include heating and cooling energy. The internal gain indicator is 
useful because the lighting schedule, plug loads and process loads pertain largely to occupant 
activity, an area typically considered outside the control of building designers or facility 
operators.  High intensities here may indicate the specific requirements of the occupants’ 
business and schedule or significant savings opportunities in better management of lights and 
plug loads.  The internal gain is also usually the largest single portion of office building energy 
use, and managing it is fundamental to any comprehensive energy efficiency scheme.     

 
Aggregate shell and systems efficiency.  This indicator pertains to the efficiency of the 
structure and its HVAC components.  It incorporates the model solutions for heating and cooling 
efficiency (Eh and COP) as well as aggregate normalized UAn, which reflects the building 
thermal losses and air change rates. These characteristics all merge into the aggregate 
temperature slope of the data.  

 
Aggregate control effectiveness. This indicator is the least directly derived of the three but is a 
very useful pointer to control issues, distinct from the impact of basic systems efficiencies and 
thermal characteristics. The calculation first uses the slope UAn and the internal gain Qin to 
construct a reference heating and cooling expectation assuming a 65o F neutral temperature. Note 
that the heating and cooling end use estimates for the Analog Building are not dependent on this 
fixed neutral temperature, but are instead derived from the heating and cooling intercepts, Ht and 
Ct, as solved from the data. Thus the Analog Building’s heating and cooling end uses may be 
significantly above the reference heating and cooling expectations (which are based on the 65o F 
neutral temperature).  Such an excess suggests performance areas warranting further 
investigation.  A control effectiveness metric, expressed as the sum of the excess Heating and 
Cooling energy as a percent of the total building energy, is discussed further under Control 
Analysis Plots below. 

 
Results 

 
The automated process created Equivalent Analog Buildings for the entire dataset, 

continuing the convergence iteration for each until the best fit was found to the monthly energy 
use data (12 pairs of monthly energy use and average temperature for each of gas and 
electricity).  The results stored for each case included the Analog Building’s key parameters, 
normalized EUI and other intermediate results.  Several items of descriptive information were 
also retained for each building, including personal computer and occupancy counts per thousand 
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square feet of floor area, operating hours per week and Energy Star rating. This additional 
information played no role in deriving the building model, but may support subsequent analysis 
of results. For each building, a brief summary categorizes comments under the three performance 
areas described above: occupant energy intensity, shell and systems efficiency, and control 
effectiveness. 

Validation of the model included reviewing parameter distributions for reasonability and 
other consistency checks, discussed in the following two sections. 

 
Parameter Distribution 

 
The validity review of results began by creating and examining a wide variety of 

histograms and scatter plots to confirm that logical relationships among variables were emerging 
and that each of the solved-for variables showed a reasonable distribution of values.  The 
distributions for the key parameters of UAn, internal gain and COP are presented in below. 

 
Figure 2. Distribution of UAn Parameter Values 

 
 

Figure 2 shows nearly 60% of the buildings with an aggregate UAn between 0.18 and 
0.28 Btu/deg F-hr-ft2.   To put this in context, in most large buildings the energy associated with 
conditioning the ventilation air is the largest component of the aggregate UA. Expressed in the 
normalized units of UAn in Figure 2, an average of one air change/hour equates to a normalized 
aggregate UAn slope of about 0.17 BTU/ deg F-hr-ft2. 
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Figure 3. Distribution of Internal Gain Parameter Values 

 
2.42.01.61.20.80.4

25

20

15

10

5

0

Internal Gain (W/fts)

P
er

ce
n

t 
of

 c
as

es

Worksheet: V21b-ESOffice; 5/5/2010  
 
Figure 3 shows the distribution of internal gain, expressed in the floor-area-normalized 

average energy/hour units of W/ft2.  The highest incidence of internal gain, 25% of the sample, 
was about 1.4 W/ft2, and over half the results fall between 1.0 and 1.6 W/ft2.  These results are 
consistent with our general experience of the magnitude and range of average internal gain in 
commercial buildings. (While many models assume a higher total connected load for lights and 
plugs, the higher loads apply only for occupied periods.) As noted, the initial model assumes 
external energy at a fixed percentage of internal gain for all cases. Future refinements to 
separately set the external energy factor could result in some shift in the internal gain 
distribution. 

 
Figure 4. Distribution of Building Cooling COP 
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Figure 4 shows the most prevalent cooling COP results clustering around 2.8, with the 

majority falling in a reasonable range between 1.9 and 3.7.  Extreme values in this COP (or other 
solved parameters) may suggest areas to investigate in either the building or reported data.  For 
example, the COP above 8 in the above distribution was an office building from Portfolio 
Manager with minimal increase in summer energy use, which could reflect extremely efficient 
cooling or low summer usage of the building. In other cases, extreme values may suggest  
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classification errors in the automated solving.  For example, several of the higher COPs are 
accompanied by a steep slope (UAn), a combination that suggests the possibility of a 
misclassified external load. 
 
Other Validity Checkpoints 

 
There is an inherent challenge to determining the validity of any analytical tool 

purporting to assess building performance, so several checkpoints were used in the development 
of this project.  The bulk of the cases used in this work came from the Energy Star Portfolio 
Manager, and the only information available beyond the monthly energy usage was from the few 
characteristics required for an Energy Star rating (such as operating hours, staff counts and PC 
counts).  However, about 20% of the total cases were from NBI projects in which more was 
known about the actual building operation and occupancy.  In these cases, the indicators 
generated for the Analog Building were not inconsistent with information gathered from building 
owner/operator interviews.  Some interviews with owners highlighted changes in building 
operation or structure that were directly aligned with the analysis results.  In others, the owner 
was not aware of current operation details.  These latter situations failed to confirm or refute the 
Analog Building results but did clearly point out the need for a tool such as this that points an 
owner to the need for further investigation and suggests broad areas in which to begin. 

Another validity test was provided by sites with multiple years of data and stable EUIs 
from year to year. These provided a check on the repeatability of the solution for building 
parameters given a different set of energy consumption numbers and temperatures. The solution 
algorithm solved for similar, but not identical, parameter values for the years tested. 

A different type of check involved applying the Analog Building Model approach to 
monthly performance generated by a well-specified Energy Plus building model. The U.S. 
Department of Energy (DOE) medium office new construction prototype model was used (DOE, 
2009), which reflects a basic 50,000 square foot office modeled to ASHRAE 90.1-2004 
standards.  In this test of the Analog Building Model, the Energy-Plus modeled monthly electric 
and gas usage and associated TMY2 temperatures were treated as if a case of actual performance 
data.  Figure 5 shows that the Analog Model fits the more detailed Energy Plus model well, as 
would be expected.  This test case is further discussed under Control Analysis Plots. 

 
 Figure 5. Energy Signatures Benchmark Checking 
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Data Review Flags 
 

The review of the full set of results included the use of flags to identify individual cases 
and clusters with unusual circumstances, or other combinations of values that bore further 
analysis. Table 2 gives the primary flags used, grouped by performance area.  These flags form 
the basis of custom messages summarizing the analytical findings for each case. A fourth 
category, “Other Factors,” shows a few situations where the results are more likely to suggest a 
case that is not well-handled by the current model. 

 
Table 2.  Data Review Flags 

Flag Possible Causes Count* 

Occupant Energy Intensity 
High occupant loads Lights, plug/process loads, schedule.  Misclassified 

external load fraction. 
54 

Low occupant loads 27 

Building and Systems Efficiency 
Inefficient shell and 
ventilation Ventilation rate, heating efficiency, thermal 

conductivity of shell, glazing ratio 

34 

Efficient shell and 
ventilation 

38 

Inefficient cooling (COP) Poor cooling performance, higher summer 
ventilation rate than winter 

11 

Control Effectiveness 
Main control inefficiency 
from heating 

High summer gas use or gas process load; 
hysteresis or erratic usage; faulty heat distribution 

54 

Main control inefficiency 
from cooling 

Large internal loads such as solar or metabolic, 
aggressive cooling set point 

14 

Possible solar gain 
Influence 

Less heat than expected and more cooling than 
expected are usually associated with inefficient 
shell or high glazing 

22 

High summer gas use Other gas uses (kitchen, etc); excess circulation 
losses; excessive reheat (if high cooling also 
indicated) 

44 

Excessive reheat Excess cooling that balances for excess heating 11 
Other Factors 
High COP + High slope Heating efficiency lower than the assumed 0.75; 

misclassified external load; solar impact in the 
heating slope 

17 

Poor fit to monthly data  
(R2  < 0.9) 

Estimated bills or bill data entry problems; Control 
problems; Monthly changes in occupant schedule 

18 

* Occurrence count for the flag out of the 155 case set. 

Control Analysis Plots 
 
The DOE benchmark model was also used to check the reasonability of calculated 

heating and cooling excess indicators.  The Control Analysis Plot in Figure 6 displays lines for 
the expected or reference heating and cooling by temperature, based as described earlier on the 
UAn, internal gain, and heating and cooling intercept parameters. The plotted points show the 
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heating and cooling end use energy for the Analog Building. When the points and the lines 
match, the aggregate controls performance appears reasonable.  As seen here, the Analog 
Building for the DOE benchmark check case does not detect excess heating or cooling, a desired 
result for a valid indicator. 

 
Figure 6. Control Analysis Plot for DOE Benchmark Building 
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The relative ease with which the Analog Building was created for the DOE benchmark 

suggests that other benchmark files may be very useful as calibration checks as the analysis 
approach is extended. 

Often the control analysis plots on real buildings in the sample do not show such a 
precise match between applied heating and cooling and the reference lines.  For example, 
Figure 7 displays a Seattle office in which the heating and cooling end use estimates are both 
above the reference lines.  Interviews with the operator of this building confirmed that problems 
in control of the HVAC systems led them to request an energy audit. 

 
Figure 7. Control Analysis Plot for Seattle Office 
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A review of the control analysis results for the whole sample shows the heating and 

cooling results falling into five major performance categories:  
 

• Satisfactory controls performance, about 30% of sample. 
• Excess reheat about 10% of sample, with heating and cooling points both well above the 

reference levels. 
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• High heating excess and no material cooling excess, about 35% of the cases.  This may 
be caused by a relatively high gas base load, such as from the presence of commercial 
kitchens, or by unknown gas processes. 

• High cooling excess and no material heating excess, about 10% of the cases. This may be 
caused by aggressive cooling set points or under-predicted cooling loads such as solar or 
metabolic loads.  

• Apparent solar influence, about 15% of the cases.  This is characterized by less heating 
use than expected and more cooling than expected, usually also with a higher than normal 
UA slope suggesting large glazing areas. 
 

Discussion 
 
This work has demonstrated the feasibility of automating an energy balance-based 

Analog Building Model that reproduces a building’s monthly energy usage in relation to outside 
temperature.  For gas-heated office buildings, a relatively small set of key parameters has proved 
to produce robust and repeatable results.  Automated messages based on indicators derived from 
the parameter values can suggest areas of particularly high efficiency or potential future 
improvement, categorized in the broad performance areas of occupancy-related energy, facility 
structure and systems, and heating and cooling controls. 

Automating this analysis leads to the potential for scaling the application up to provide 
this type of first-view insight for a large percentage of commercial building stock.  Several 
additional steps can help accomplish that goal.  First, additional field validation is essential to 
further confirm that the automated messages are reasonable and relevant to actions a building 
energy manager may take.  This field phase of the project work is just beginning and will help 
refine the interpretation of model results and define the most useful format and wording for 
communicating those results. This experience can also inform future refinements in the area of 
optional additional input items, describing existing building or activity characteristics that could 
result in a significantly better model solution. 

The prototype tool focused on office buildings with typical electricity use plus gas heat, 
one of the easiest situations for a controlled solution.  A tool that applied only to these situations 
would find wide applicability. However, the work underlying this initial proof of concept has 
identified several extensions to other activity types and fuel mixes that would also be quite 
feasible, which will be further defined in future reports. 
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