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ABSTRACT 
 
 The current quantity, quality, and scope of national energy efficiency data is inadequate 
for energy planning and policymaking.  Without a centralized storehouse of detailed information, 
it is likely that as time goes on there will be fewer opportunities to carefully track the energy-
related performance of national industries or to enact sensible policies that help U.S. industries 
remain competitive in the global economy.  One solution to this dilemma is to create a national 
organization whose purpose will be to collect, organize, disseminate, and archive energy 
efficiency data, particularly those related to public policies and programs.  The organization 
might be named the National Energy Efficiency Data Center (NEEDC). 

Introduction 

 Energy and environmental concerns, from reducing greenhouse gas emissions to 
enhancing national security, are demanding increasingly serious attention and are motivating 
local, national, and international initiatives of ever-widening scope.  To even begin to appreciate 
the consequences of these initiatives, good reliable data is a must.  Data provides an historical 
record and like all records, has many uses.  Sometimes the record speaks plainly for itself, and 
sometimes the record, or the facts in that record, provide feedstock and insights for more 
complex analyses.  In all cases, data are needed to help policymakers anticipate the intended 
consequences, and the side effects, of policy actions or inaction. 
  Unfortunately, energy, environmental, and economics professionals that study energy 
efficiency labor under a significant handicap; while policy discussions are increasing in intensity 
and importance, the data needed for informing decisionmakers about energy efficiency-related 
policies are simply absent.  Although the past three decades have produced thousands of studies 
on the subject of energy efficiency, they come mainly from local utilities and agencies who seem 
to lose interest with their most recent studies as as soon as one funding cycle ends and another 
one begins.  In other words, every year tens of millions of dollars of energy efficiency studies 
end up with shelf lives more befitting pulp fiction than hard science. 
 One of the outcomes of the lack of good data is that the realized, and potential, supply of 
energy efficiency in the United States goes largely unappreciated by much of the public and 
many of our policymakers.  Despite the tremendous increase in energy efficiency and economic 
growth over the last 15 years, energy efficiency is perceived by many to be a negative drag on 
the economy.  Why does this bias exist, when there is no empirical evidence that energy 
efficiency brings harm to national income? 
 The controversy over energy efficiency has many sources, not the least of which is the 
fact that energy savings, unlike energy production, is invisible.  Savings is not seen with the 
naked eye, and its effects are not measurable except by logical inference of what would have 
transpired in its absence.  This means that accepting the benefits of energy efficiency requires, at 
least initially, a leap of faith.  Of course, eventually, to gain full acceptance faith must be 
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replaced by facts.  Unfortunately, the energy savings industry has neglected to develop the 
institutions and mechanisms that produce the kind of data that turns energy efficiency into visible 
fact.   
 Without a centralized storehouse of detailed information, it is likely that as time goes on 
there will be fewer opportunities to carefully track the energy-related performance of national 
industries or to enact sensible policies that help U.S. industries remain competitive in the global 
economy.  As the trends in national manufacturing energy intensity reveal in Figure 1, the U.S. 
has achieved substantial progress in reducing energy intensity in the manufacturing sector, but 
remains somewhat in the middle of the pack compared to other OECD countries.  Energy 
intensity is but one element in total productivity, and yet gains in energy productivity are likely 
to also affect the productivity of labor and capital.  Hence, monitoring and improving energy 
productivity must be part and parcel of an overall national strategy for competing in the global 
economy.  Such monitoring is not possible without high quality energy efficiency data.     
 One solution to this dilemma is to create a national organization whose purpose will be to 
collect, organize, disseminate and archive energy efficiency data, particularly those related to 
public policies and programs.  The organization might be named the National Energy Efficiency 
Data Center (NEEDC).  The aim of NEEDC will be to create databases that permit energy 
efficiency to be studied and understood, thereby placing energy efficiency resources on the same 
footing as other energy supply resources.   
 

Figure 1.  Aggregate Manufacturing Energy Intensity, (13 OECD Countries) 

 
Unander, Fridtjof and Sohbet Karbuz, Lee Schipper, Marta Khrushch and Michael Ting (1999).  

“Manufacturing Energy Use in OECD Countries: Decomposition of Long-Term Trends,”  
Energy Policy, (27)13:745 - 812. 
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National Electricity Data Examples 

 There is no reason why detailed national data on energy efficiency cannot be collected 
alongside all the other energy data that is collected regularly by trade organizations and the 
federal government.  For example, electricity data is extensive and centralized, and yet electricity 
efficiency data is piecemeal and uncoordinated.  These shortcomings are made all the more 
ironic because it now appears that the existing on-line supply of energy efficiency is substantial.  
Based on the findings of a just-published study, I estimate that publicly-funded electricity 
efficiency programs have reduced total retail electricity sales in the U.S. in the treatment period 
from 1992 to 2003 by about 6.8 percent annually.  This estimate is derived from a counterfactual 
analysis using aggregate data.  Some of the findings of this study are displayed in Table 1. 
 

Table 1.  U.S. Electricity Savings in 2006 (due to E.E. Programs beginning in 1992) 

Sector Industrial Commerical Residential 
Factual change since 1991 (n=36) 19.5% 49.6% 41.9%
Counterfactual change (n=36) 52.0% 63.7% 26.1%
Net change since 1991 (n=36) -32.5% -14.2% 15.8%
Impact on 2006 MWh  (n=36) -27.2% -9.5% 11.1%
% Total 2006 MWh
  w/o Programs (n=48) 31.5% 36.5% 31.9%
% Sector 2006 MWh
  w/o Programs (n=36) 80.9% 83.6% 84.1%
% Weighted 2006 Savings (n=48) -6.9% -2.9% 3.0%

2006 Net Impact of Energy Efficiency Programs (3 Sectors, 48 States):
-6.8%

1calculated based on Horowitz, Marvin J. (2007).  “Changes in Electricity Demand in the
United States from the 1970s to 2003,” The Energy Journal , 28(3):87 – 113.

U.S. Electricity Savings in 2006 (due to E.E. Programs beginning in 1992)1

 
 
 Compare this supply of electricity savings to the supply of electricity generated by 
various fuels, as found in Table 2.  According to the statistics, the energy efficiency encouraged 
by public programs exceeded petroleum as a fuel source for electricity, and provides close to the 
same level of electricity generation as hydroelectric dams.  Only coal, nuclear and natural gas 
resources contributed substantially more to U. S. electricity supplies.  Note also in Table 2 that 
fuel proportions have remained roughly the same over the reported years.  Due to the lag times in 
planning and construction, these proportions will change slowly, if at all.  Yet, because a large 
share of energy efficiency is behavior-driven, it is possible for large supplies of energy efficiency 
to come on-line relatively rapidly. 
 Of course, collecting data and measuring the physical volume of a resource is only half 
the story, the other being the cost of the resource.  Naturally, the federal government closely 
monitors the costs of fuels as well as the other variable costs associated with generating 
electricity.  In Table 3, the dollar cost per kilowatthour for the inputs that are required for 
generating electricity are reported, by type of generation. 
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Table 2.  U. S. Electricity Generation, by Fuel Source 
Generation
Fuel GWh Percent GWh Percent GWh Percent
Coal  1,973,737 50.8%  1,978,620 49.8%  2,013,179 49.6%
Nuclear     763,733 19.7%     788,528 19.8%     781,986 19.3%
Natural Gas     649,908 16.7%     708,979 17.8%     757,974 18.7%

6.8%
Hydro     275,806 7.1%     268,417 6.8%     269,587 6.6%
Petroleum     119,406 3.1%     120,646 3.0%     122,522 3.0%
Other Renewables       87,410 2.2%       90,408 2.3%       94,932 2.3%
Other Gases       15,600 0.4%       16,766 0.4%       16,317 0.4%
Other         6,121 0.2%         6,679 0.2%         4,749 0.1%
Total  3,891,721 100% 3,979,043 100% 4,061,246 100%

200520042003

ENERGY EFFICIENCY PROGRAMS 2006:

Source:  EIA, Electric Power Annual  
 

Table 3.  U. S. Electricity Generation Variable Costs (Nominal $/kWh) 
Sectors of the Economy 2003 2004

Residential 1,273,597 1,293,587
Commercial 1,197,199 1,229,045
Industrial 1,011,617 1,018,522
All Sectors 3,489,223 3,548,218

Residential 110,794 116,037
Commercial 95,759 100,255
Industrial 51,794 53,661
All Sectors 258,861 270,456

Residential $0.0870 $0.0897
Commercial $0.0800 $0.0816
Industrial $0.0512 $0.0527
All Sectors $0.0742 $0.0762
Source:  EIA, various forms

Sales to Ultimate Customers (thousand MWh)

Revenue From Ultimate Customers (million $)

Average Retail Price (nominal cents/kWh)

 
  
 As can be seen, the total variable costs associated with nuclear generation are relatively 
small compared to those of fossil steam, gas turbine, and small scale generating plants such as 
photovoltaic and solar.  Only the variable costs for hydroelectric power are less expensive, and 
this is due to the absence of fuel costs.  Further, fuels costs are only a small part of the costs 
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associated with delivering electricity to its end use.  In Table 4, average national retail prices are 
provided, by sector.   
  

Table 4.  U. S. Electricity Retail Sales and Revenues, by Sector 
Plant Type 2004 2005
Operations
Nuclear $0.0083 $0.0084
Fossil Steam $0.0027 $0.0030
Hydroelectric $0.0051 $0.0053
Gas Turbine and Small Scale $0.0027 $0.0030
Maintenance
Nuclear $0.0054 $0.0052
Fossil Steam $0.0030 $0.0030
Hydroelectric $0.0036 $0.0036
Gas Turbine and Small Scale $0.0022 $0.0022
Fuel
Nuclear $0.0046 $0.0045
Fossil Steam $0.0182 $0.0218
Hydroelectric -- --
Gas Turbine and Small Scale $0.0452 $0.0537
Total
Nuclear $0.0183 $0.0182
Fossil Steam $0.0239 $0.0277
Hydroelectric $0.0087 $0.0089
Gas Turbine and Small Scale $0.0501 $0.0589
Source:  EIA, FERC Form 1  

  
 Given that prices are largely regulated, these reflect the average costs of producing and 
delivering electricity.  In 2004, these average prices ranged from a little over 5 cents per 
kilowatthour in the industrial sector to a little less than 9 cents per kilowatthour in the 
commercial sector.  The overall average was 7.6 cents per kilowatthour.  Given the variable cost 
data and the retail sales data, it can be deduced that the combined fixed costs for power plant 
construction, transmission facilities, distribution facilities, and administrative services roughly 
averages about 5 cents per kilowatthour. 
 Most of the data presented in these three tables are available by year and by state.  Were 
comparable kinds of data collected for publicly-funded energy efficiency savings, e.g., by year, 
economic sector, end use, or technology, it would be possible to compare the cost-effectiveness 
of the different energy resources, as well as the cost-effectiveness of energy efficiency vis-à-vis 
conventional fuels.  Moreover, it would be possible to determine where energy efficiency would 
be most cost-effective and could do the most good, and what the cost thresholds might be for 
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adding different energy resources.  Unfortunately, at this time almost no data of this kind exists 
for energy efficiency. 

Modeling Pitfalls 

Inadequate current and historical energy efficiency data affect economic research in 
many different ways, all of which can end up prejudicing future energy policies, investments, 
and behavior.  Three potential problems that arise in statistical models are: (a) missing variables; 
(b) missing observations; and (c) coefficient transformation.  The following is a brief description 
of each problem. 
 
Missing Variables 
 
 The consequences within an econometric model of omitting and important explanatory 
variable are well known; it is equivalent to setting stating that the variable has no effect on the 
outcome variable.  Setting a relevant variable to zero in a conventional regression model violates 
the assumption that the error term is independent.  For illustrative purposes, if a true model of 
energy demand, Y,  is 
 

0 1 1 2 'Y X Xβ β β ε= + + +  
 
where β1 is a parameter associated with a policy-related independent variable X1;  β2 is a 
parameter vector associated with a vector of market-related variables X’; and, ε is a classical 
error term, then omitting X1 will cause the equation to become 
 

0 2 ' *Y Xβ β ε= + +  
 
where the error term of this misspecified equation is now 
 

1 1* Xε β ε= + . 
 
To the extent that X1 is correlated with X’, its absence from the estimated model will 

cause ε*  to be dependent on the movements of the remaining explanatory variables.  
Consequently, all of the model’s estimates will be biased and inconsistent. 

A vivid example of the seriousness of model specification error is provided by an 
analysis contained in a recent study.  In it, a fixed effects model of commercial sector electricity 
intensity was estimated for 42 states over a 13 year period, from 1989 through 2001.  In addition 
to various other market-related determinants, the model contained a national time trend variable, 
referred to as INFOX.  It is the actual Federal Reserve Board market group index of production 
of information processing equipment for businesses.  It is included in the model to account for 
the variations in annual commercial sector electricity intensity caused by the adoption of 
electronic business equipment.  Table 5 contains the commercial sector electricity intensity 
model coefficients related to INFOX as well as two public program variables, referred to as 
DSMX1 and MTX. 

The former is the mnemonic for annual state-level energy savings due to commercial 
sector demand-side management programs, and the latter is the mnemonic for an annual, 
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national-level index representing energy savings from publicly-funded market transformation 
programs.  The columns marked 1, 2, 3, and 4 contain the variables’ coefficients estimated under 
different model specifications, with the standard errors of the coefficients in italics. 

As can be seen, each of the model specifications attain a virtually identical R-squared 
compared to the full, correctly-specified model, designated as model (4).  However, in model (1) 
both public program variables were excluded, and in models (2) and (3) one of the two public 
program variables is excluded.  This suggests that the R-squared statistic is not a reliable 
indication of the quality of the models or of specification error.  What is telling is that the 
coefficient of INFOX -- which measures the impact of electronic equipment on electricity 
intensity – changes dramatically in models (1), (2), and (3) when one or both public policy 
variables is dropped from the full model.  As well as switching signs in two of the three 
abbreviated models, the statistical significance of the coefficient changes back and forth.  
Equally noteworthy, the magnitudes of the public policy coefficients change when one or the 
other is excluded from the model. 

  
Table 5.  Effects of Dropping Key Determinants 

DV:  MWh/GCP
(1) (2) (3) (4)

INFOX -0.006 -0.0037 0.0077 0.0048
-0.003 -0.0033 -0.0041 -0.0046

DSMX1 -- -0.0033 -- -0.0025
-- -0.0006 -- -0.0007

MTX -- -- -0.0076 -0.005
-- -- -0.0014 -0.0018

R 2 0.69 0.68 0.69 0.68
Horowitz, Marvin J. (2004).  “Electricity Intensity in the Commercial Sector:  
Market and Public Program Effects,” The Energy Journal , (25)2:115 – 137.

Specifications

 
 

 Missing Observations 
 

The consequences within an econometric model of dropping a substantial fraction of 
observations in a population, or from a sample, are so well-known that they do not warrant a 
technical exposition in this paper.  The central issue, of course, is one of random versus 
systematic sampling.  Losing observations due to random sampling has, in theory, little effect on 
anything other than the precision of the estimates; however, losing observations based on one or 
more factors that are related to the outcome in question can lead to bias and inconsistency in the 
estimates. 

One of the inadequacies in the current state of energy efficiency data is that units of 
analysis or observation, be they state-level, local, or time-related, tend to go missing.  Depending 
on the dataset that is being used for analyzing energy consumption, there could be years that are 
missing or cross-sections.  A dramatic example of this problem can be found in a recent study 
that used a sample of electric utilities to estimate the impacts of annual demand-side 
management expenditures on changes in total electricity sales.  The central element of this study 
was a time series cross section reduced form model whose specification or sample was altered in 
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five different ways.  As shown in Table 6, alteration in the sample size produced changes in the 
model coefficients, as shown in the rightmost column.   
 The predicted cost per DSM kilowatthour, displayed in the last row of Table 7, is the 
single most important statistic to emerge from the model.  As can be seen, losing observations 
clearly leads to dramatically opposing policy conclusions.  Note that the only difference in the 
two estimated equations is that the sample in model (4) is restricted to those electric utilities with 
positive energy efficiency expenditures in every year in the time frame.  In other words, models 
(1) and (4) are identical save that model (4) has 1,041 fewer observations, or only 42 percent of 
the original sample.   
 

Table 6. Effects of Dropping Many Observations 
DV:  Dt Utility MWh Sales Model Model Change

(1) (4) (t-stat)
DSM_E 0.0003 -0.0027 0.003

-0.001 -0.0018 1.457
DSM_E(-1) -0.0007 0.0016 -0.002

-0.0011 -0.0021 -0.970
DSM_E(-2) -0.0005 -0.0007 0.000

-0.0005 -0.0011 0.166
Dt CUST 0.9691 0.7756 0.194

-0.1493 -0.0926 1.101
Dt MWH_I 0.6784 0.5734 0.105

-0.2021 -0.3436 0.263
Dt MWH_C 0.371 0.3249 0.046

-0.1987 -0.3107 0.125
Dt GSP 0.0322 0.0492 -0.017

-0.0164 -0.0195 -0.667
Dt P_ES -0.1012 -0.1298 0.029

-0.0553 -0.0721 0.315
Dt P_NG -0.0233 -0.0629 0.040

-0.0229 -0.0344 0.958
Dt P_CL -0.0278 0.0143 -0.042

-0.0215 -0.027 -1.220
Dt P_PA 0.0887 0.1493 -0.061

-0.0509 -0.0574 -0.790
Dt CLIMATE 0.1496 0.211 -0.061

-0.0359 -0.0408 -1.130
Year effects x x
n 1,815 774 1,041
R 2 0.54 0.60 -0.06
Predicted $DSM_E /kWh 0.137 0.064 0.073
Loughran, David S. and Jonathan Kulick (2004).  “Demand Side Management and
 Energy Efficiency in the United States.”  The Energy Journal , 25(1):19-43.  

  
  The result is not only that the predicted cost of energy efficiency differs by more than a 

factor of two -- in the model using the larger sample, the predicted cost per kWh is 13.7 cents, 
whereas in the model with the smaller sample the predicted cost per kWh is 6.4 cents – but that, 
as can be seen in the final column of the table, individual coefficients change signs and/or 
magnitudes.  The fact that none of these changes is statistically significant (t-statistics are in 
italics) speaks more to the weakness of the model’s variables than to the similarity of the 
coefficient estimates; four of the twelve variables in either model have statistically significant 
coefficients, as indicated in bold. 
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The divergence in these estimates is another strong argument for creating energy 
efficiency databases that are uniform and complete.  Moreover, before leaving this example it 
should be noted that unlike many studies, in this particular study the smaller sample is actually 
the more valid sample, since the observations that are dropped are ones suspected of having 
substantial data reporting error.  Again, this is a further argument for producing and compiling 
high quality, consistent energy efficiency data.    
 
Coefficient Transformation 
 
 A final example of how inadequate national energy efficiency data handicaps modeling 
efforts and fosters biases against energy efficiency can be drawn from the study cited at the 
beginning of this paper.  In this study I show that changes in the demand for electricity in the 
commercial, industrial, and residential sectors are associated with energy efficiency programs, 
and furthermore, that changes in the behavioral responses to economic variables that drive 
energy demand are associated with energy efficiency programs.  This empirical finding, which I 
refer to as demand transformation, is often overlooked in policy research despite  in-depth 
theoretical explorations of this subject in such studies as Gary S. Becker and Kevin M. Murphy 
(1993), “A Simple Theory of Advertising as a Good or Bad,”  Quarterly Journal of Economics, 
108, No. 4:941-964, and Justin P.  Johnson and David P. Myatt (2006),  “On the Simple 
Economics of Advertising, Marketing, and Product Design,” American Economics Review, Vo. 
96, No. 3, pp. 757-789.  These studies describe the pathways through which government 
programs, advertising, or any form of societal persuasion, can alter price, income, and other 
elasticities by transforming the underlying utility function of consumers. 
 In Table 7 the changes in the coefficients of time series cross section reduced form 
electricity demand equations, with electricity intensity as the dependent variables, are reported.  
These sector-level coefficients are estimated in a base period taken to be 1977 to 1991, and a 
treatment period taken to be 1992 to 2003.  The observations in each sector are the twelve states 
that appear to have shown the strongest commitment to both voluntary and mandatory energy 
efficiency programs since 1992.  The values in italics indicate that the change, based on the t-
test, is statistically significant at the 95 percent level or better.  Inspection of these statistics 
reveal what has happened to demand behavior from one period to the next.  Of particular interest 
is how they have changed for three key economic variables, i.e., electricity price, per capita 
income/GSP, and technology trend. 
 

 
 
 
 
 
 
 
 
 
 
 
 

1-21© 2007 ACEEE Summer Study on Energy Efficiency in Industry



  

Table 7. Changes in Coefficients from Base to Treatment Period 
DV:  MWh Intensity

Residential Commercial Industrial
constant 0.715 -2.043 5.793
Electricity Price -0.283 -0.140 -0.384
Natural Gas Price -0.039 0.068 0.030
Per Capita Inc/GSP -0.310 -0.347 0.462
Technology Trend -0.029 -0.047 -0.151
Heating Degree Days 0.134 0.134 -0.278
Cooling Degree Days 0.034 0.033 -0.033
Horowitz, Marvin J. (2007).  “Changes in Electricity Demand in the United States 
from the 1970s to 2003,” The Energy Journal , 28(3):87 – 113.

Sector of the U. S. Economy (48 States)

 
  

With respect to energy prices, economic theory suggests that if programs intended to 
lower electricity demand are successful, energy price elasticity will increase as consumers 
become more sensitive to the possibility of substituting capital, in the form of more energy 
efficient equipment, for fuel.  Of course, other pathways for increased price elasticity are 
possible, too, such as altered equipment operation.  As can be seen in Table 7, demand has, in 
fact, become more price elastic from the base to the treatment period for across all three sectors, 
and this change is statistically significant in the residential and industrial sector.  The finding of 
an income effect in the expected negative direction is an equally important indicator of demand 
transformation.  Greater income inelasticity will occur if programs encourage consumers with 
rising incomes to substitute higher energy efficiency equipment for existing equipment, thereby 
turning energy use from a superior good into a normal one, all things being equal.  Other 
pathways, such as sophisticated operations and maintenance, are possible too.  As also can be 
seen in Table 7, a statistically significant change in the expected direction, as expressed through 
the GSP/income coefficient, occurs for both the residential sector and the commercial sector.  
The change is in the opposite direction in the industrial sector, however it is not statistically 
different from zero.  Lastly, a third important indicator is the technology growth coefficients.  
This continuous variable varies by sectors and years, but not by state, and it is to be expected that 
successful programs will reduce the elasticity of demand with respect to technology growth.  As 
can be seen in Table 7, demand becomes more inelastic from the base to the treatment period in 
all three sectors, and the changes are statistically significant in all but the commercial sector.  
 The point of this exhibit is to demonstrate that without good reliable energy efficiency 
data series, it is difficult to assess the extent to which behavioral coefficients may have 
transformed, and may transform in the future, due to energy efficiency.  By ignoring this issue, 
models are likely to show statistical bias against energy efficiency, and this bias is likely to affect 
the views of policymakers and the public.   

Conclusion 

Energy data and statistics are feedstock for research that informs the actions of private 
industry, not to mention government legislation and regulation.  With regards to public planning 
and policymaking, the end result of energy research tends to be laws and rules that reward some 
companies or consumers, and punish others.  With regard to privately-owned businesses, the end 
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result of energy research tends to be investment decisions that are intended to optimize their use 
of resources, their competitiveness, and their profits.  In short, energy data and statistics are part 
of the foundation of economic productivity and progress; without good information, it is highly 
unlikely that the best of all energy-related public policies, and business decisions, will be made. 
 It has not been the purpose of this paper to enumerate the multitude of shortcomings in 
the way in which energy efficiency data is collected and analyzed.  Rather, it has been to discuss 
a potential improvement to the status quo.  While there is no magic formula for seeing into the 
future, if the public, the business community, and policymakers are to believe in the value of any 
energy efficiency at all, then the least they ought to do is demand better and more accurate 
energy efficiency data.  NEEDC can meet this demand by providing detailed information on this 
large and cost-effective resource, one that thus far has not received the attention and respect that 
it deserves.  A major reason for this, and for widespread skepticism regarding energy efficiency 
among professional economists, is the dearth of continuous, standardized data with which to 
study this resource.  This oversight has direct implications for industrial competitiveness, not to 
mention environmental management. 
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