
Measuring Plant Level Energy Efficiency When Production Activities Are Not 
Homogeneous: The ENERGY STAR Energy Performance Indicator 

Gale A. Boyd,1 Argonne National Laboratory 

ABSTRACT 

Energy efficiency is the comparison of actual energy used to the lowest amount of energy 
required to perform some level of service or produce some amount of product.  Energy intensity, 
also called specific energy consumption (SEC), is the simple normalization of energy use to a 
measure of service or production.  This energy intensity can then be compared to the “best 
practice.”  This simple description belies the complexities that lie in industrial activity.  When 
there is no single measure of activity for the denominator, the energy intensity may not be well 
defined.  There is a substantial literature that examines what the “best measure” of production to 
use for various sectors; physical volumes, market value, value-added, etc.   Creating aggregate 
measures of activity, e.g. total dollars, is often an inadequate approach. When sectors are 
aggregated, the changing mix of production in various sectors influences the aggregate energy 
intensity index. The difference between the observed and “best practice” is the level of 
(in)efficiency. The estimate of “best practice” can be an optimum configuration derived from 
engineering, possibly a notion of the theoretical minimum, or comparison to a real world 
application with the lowest observed energy intensity, i.e. “best observed practice.”  Since 
production/activity mix can be quite varied, it may be difficult to find a real world application 
that is sufficiently similar to the observed plant to conduct the needed comparison.  This reflects 
an oft-expressed view that “every plant is unique.” 

A statistical model which provides a functional relationship between the level of energy 
use and the level and type of various production activities, material inputs quality, and external 
factors, e.g. climate, is one solution to these problems.  The stochastic frontier regression 
estimates the lowest observed plant energy use, given these factors.  This statistical model also 
provides a distribution of (in)efficiency across the industry, which allows the user to answer the 
hypothetical but very practical question, “How would my plant compare to everyone else in my 
industry, if all other plants were similar to mine?”  The result is a tool that can be used by 
corporate and plant energy managers to estimate the energy efficiency of their portfolio of plants.  
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This paper presents recent empirical results prepared for ENERGY STAR for corn refining.  
This sector typifies the issue of product mix impact on plant energy use.  Accounting for these 
factors allows construction of a normalized distribution of energy efficiency for the entire sector 
and a percentile performance score, for any individual plant.  The results of the analysis can be 
used by energy managers in these various sectors to assess plant energy performance, set targets, 
and track progress. 

Introduction 

Energy efficiency is the comparison of actual energy used to the lowest amount of energy 
required to perform some level of service or produce some amount of product.  Energy intensity, 
also called specific energy consumption (SEC), is the simple normalization of energy use to a 
measure of service or production in the form of a ratio of energy use to a measurable service or 
product output.  This energy/output measure of energy intensity can then be compared to the 
“best practice” measure of energy intensity.  The estimate of “best practice” can be an optimum 
configuration derived from engineering, possibly a notion of the theoretical minimum, or 
comparison to a real world application with the lowest observed energy intensity, i.e. “best 
observed practice.”  The difference between the observed and “best practice” is the level of 
(in)efficiency.   

This simple description belies the complexities that lie in industrial activity.  While at the 
process level it may be feasible to define the specific energy service or production activity, 
modern manufacturing plants encompass many type of activities and possibly different products.  
If there is no single measure of activity for the denominator, the energy intensity may not be well 
defined.  In addition production/activity mix can be quite varied, so it may be difficult to find a 
real world application that is sufficiently similar to the observed plant to conduct the needed 
comparison.  This reflects an oft-expressed view that “every plant is unique.”  

Battles (1996) provides an overview of the literature that examines what the “best 
measure” of production to use for various sectors; physical volumes, market value, value-added, 
etc.  Freeman, Niefer et al. (1997) argue that creating aggregate measures of activity, e.g. total 
dollars, is often an inadequate approach and that physical units are often preferred.  Differences 
between plants that produce a variety of products make the goal of a single meaningful measure 
of physical production difficult to achieve. A statistical model which provides a functional 
relationship between the level of energy use and the level and type of various production 
activities is one solution to these problems.  The statistical model can be conceptualized as a 
method of estimating weights that are appropriate for aggregating various production activities 
into an overall production index appropriate for energy analysis.  While most statistical model 
are based on estimating averages, stochastic frontier regression is statistical tool that estimates 
the lowest observed plant energy use, given these factors.   

This paper explains this proposed statistical approach and presents recent empirical 
results, prepared for ENERGY STAR, using stochastic frontier analysis on plant level data for 
corn refining.  This sector typifies the issue of product mix impact on plant energy use.  
Accounting for these factors allows construction of a normalized distribution of energy 
efficiency for the entire sector and a percentile performance score, for any individual plant.  The 
results of the analysis can be used by energy managers in these various sectors to assess plant 
energy performance, set targets, and track progress. 



Stochastic Frontier Approach 

The concept of the stochastic frontier analysis can be easily described in terms of the 
standard linear regression model.  A more detailed and complete discussion of stochastic frontier 
analysis may be found in Green (1993). Consider at first, the simple example of a production 
process that has a fixed energy component and a variable energy component.  A simple linear 
equation for this can be written as, 

 
, ,t i y t iE yα β= +   (1) 

where 
t is the smallest time period of interest, 
i is the ith plant, and 
y is production. 
 

Given data on energy use and production the parameters α  and yβ  can be fit via a linear 
regression model.  Since the actual data may not be perfectly measured and this simple 
relationship between energy and production may only be an approximation of the “true” 
relationship, linear regression estimates of the parameters relies on the proposition that any 
departures in the plant data from equation (1) are “random.”  This implies that the actual 
relationship includes a random error term that is follows a normal (bell shaped) distribution with 
a mean of zero and variance of 2σ , i.e. that about half of the actual values of energy use are less 
than what (1) would predict and half are greater.   
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, , , , (0, )t i y t i t iE y Nα β ε ε σ= + +   (2) 
 

The linear regression gives the average relationship between production and energy use.  
If the departures from the average, particularly those that are above the average, are due to 
energy inefficiency we would be interested in a version of (1) that gives the “best” or lowest 
observed energy use.  One way to do this is to shift the line downward so that all the actual data 
points are on or above the line (see Figure 1).  This “corrected” regression is one way to 
represent the frontier. 



Figure 1. Average and Corrected Linear Regression of Production and Energy 

While the corrected regression has its appeal in terms of simplicity, a more realistic view 
is that not all the differences between the actual data and the frontier are due to efficiency.  Since 
we recognize that there may still be errors in data collection/reporting, effects that are 
unaccounted for in the analysis, and that a linear equation is an approximation of the complex 
factors that determine manufacturing energy use we still wish to include the statistical noise. or 
“random error.” term in the analysis, vt,i, but also add an second random component, ut,i, to 
reflect energy inefficiency.  If we expand the simple example of energy use and production to 
include a range of potential effects we can write the more general version of the stochastic 
frontier model as 

 
( , , ; )i i i i iE f Y X Z β ε= +   (3) 

i ii u vε = −  v  ∼ [ ]2,0 vN σ ,   
where  

E is energy use, either electricity, non-electric energy, or total primary energy, 
Y is production, measured by either physical production or total value  
X includes systematic economic decision variables, 
Z includes systematic external factors, and 
β includes all the parameters to be estimated. 
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We assume that energy (in)efficiency, u, is distributed according to some one-sided 
statistical distribution2, for example gamma, exponential, truncated normal, etc.   It is then 
possible to estimate the parameters of equation (3), along with the distribution parameters of u.   
The approach that is used to estimate these parameters depends on the type of distribution that is 
used to represent inefficiency.  Gamma is a very flexible distribution, but also generates a model 
that is very difficult to estimate.  Exponential and truncated normal frontier models can be 
estimated using relatively conventional techniques available in most modern statistical packages. 

The role of the function, f(*) in the EPI is to normalize for exogenous effects, i.e. it 
controls for factors that influence energy use but are not decided on the basis of energy use 
alone.  As was noted above, the types of production activities and structural factors that are 
included in the function f(*), are industry specific.  However, there are a number of common 
factors that any industry analysis will likely consider.  For simplicity we continue to assume that 
the function, f(*), is a linear function of the parameters, β , but it may include non-linear forms 
for the Y, X, and Z.  This means that f(*) may be log linear or include second order (quadratic) 
terms.   There is no guidance on what mathematical form that f(*) should take so an substantial 
amount of judgment, as well as trial and error is exercised.    

What variables to include (or exclude) for a given industry is driven by some prior 
knowledge and expectations about what factors will have significant influence on energy use in 
that sector.  This choice for Y may be the value of total plant production, a physical production 
measure, or several physical production measures if an industry produces different products.  
The flexibility to choose the latter is important for many applications, in particular when there 
are a wide range of products produced at any given plant.  In the case of corn refining there are a 
range of products that may be produced, some of which are byproducts that are always produced.  
Some products may or may not be produced in a given plant, resulting in a very non-
homogeneous mix of plants to compare.  

X may include quantity and types of materials purchased, labor, or plant capacity. In the 
case of corn refining, total corn processed and total plant capacity are obvious choices.   Z may 
include a variety of external factors like energy prices, weather variables, e.g. heating degree 
days (HDD) and cooling degree days (CDD), capacity utilization, regulatory factors, etc.  Since 
the statistical formulation allows us to estimate the standard error of the estimated parameters, 
the decision to include any of these variables can be driven by the data and model estimates.  For 
example, one can test whether weather variables have a statistically significant impact on energy 
use.  This is likely to be the case for fabrication and assembly industries, like automobile 
manufacturing where the building HVAC is a large percentage of the total energy consumed, but 
is less likely to be the case for process industries, like steel or cement.  Conventional statistical 
tests can determine which factors to include the model, so if HDD and CDD do not have a 
measurable influence in corn refining then these variables need not be included in the final 
version. Conventional statistical tests provide confidence intervals for any effect in the model.  
The next section presents an application of this approach to corn refining and discuses the choice 
of variables in more detail. 

                                                 

2 We also assume that the two types of errors are uncorrelated, σu,v = 0. 



Corn Refining3 

Wet corn milling (SIC 2046 or NAICS 311221), which is also referred to as corn 
refining, is a relatively sophisticated process producing a variety of products for the paper, food, 
beverage and other industries. Wet corn milling plants require a large capital investment and are 
bound by large economies of scale. Typical plants in the US process at least 100,000 bushels per 
day (bu/day, or 2,500 tonne/day) and operate continuously for nearly 365 days per year.  

The most important outputs of wet corn milling are corn sweeteners and ethanol. Both 
corn sweeteners and ethanol are made from the starch in the corn. Sweeteners fall into three 
major categories: corn syrup, dextrose and fructose, often called glucose syrup. Ethanol is an 
increasingly important component of the U.S. fuel supply. About 60% of the ethanol produced in 
the U.S. currently comes from wet corn milling4, generally produced in the refining factories 
along with starches and syrups.5 Corn starch is another important corn refining product, with 
both food and industrial applications, such as the paper and corrugating industries. Corn oil, 
produced from the germ component, is the other main high value product. Corn refining also 
produces many byproducts that are used in animal feed.  Table 1 gives an overview of the output 
from wet corn milling industries on a physical output basis and value basis for the last year 
information is available.    

Table 1. Wet Corn Milling Product Output 
 Million tons, 20016 $Billion, 1997 7 

Corn Sweeteners 16.4 $3.1 

Starch Products 2.9 $1.5 

Corn Oil 0.6 $1.0 

Byproducts 7.2 $1.6 

Ethanol N/A $1.4 
Source: Galitsky 2003 

Version 09.09.04 of the corn refining EPI is based on total primary energy, defined as the 
total Btus of purchased/transferred fuels, steam, and hot water plus the total amount of 
purchased/transferred electricity converted from kWh to Btu at roughly the average rate of 
conversion efficiency for the entire U.S. electric grid, 10,236 Btu /kWh.   

The data are taken from the Census of Manufacturing for 1992 and 1997 from NAICS 
code 311221, this means that plant that only produce ethanol were excluded.  Only those plants 
                                                 
3 This background discussion of the corn refining industry is taken from Galitsky (2003). 
4 This percentage is based on value of output. The remaining amount is made mostly through ‘dry corn milling’, a 
similar process, which produces ethanol and animal feed byproducts, but not the other high-value products that wet 
corn milling produces. 
5 The production of ethanol falls under a different industrial classification within the Chemicals industry. Wet corn 
milling falls into SIC 2046 and NAICS 311221. Ethanol production in the SIC system fall into the broad category 
2869 Industry Organic Chemicals, Not Elsewhere Classified, but is separately classified in NAICS 325193, as ethyl 
alcohol. 
6 These values are from the Corn Refining Association, reporting on the output from its member companies. 
7 These values are from the Census and are reported based on product output, not industry output. 



with capacity estimates either identified by Galitsky et al (2003) or though private 
communication, which could be matched to the CM data, were included in the analysis.   Plants 
that produced products in this NAICS category, but did not purchase corn as the primary input 
were assumed to be germ and corn oil processors and were not included in the analysis.  Other 
plants may have been dropped from the analysis due to irreconcilable discrepancies in the data.   
The result is that 37 observations (plant years) were included in the analysis.  Since there are 29 
plants identified in Galitsky et al (2003), one of which is now closed, these number of plants-
years in two years of data this sample seems fairly representative of this industry. 

The variables included in f(*) are: 
 

Corn  Total corn processed in a year, in billions of pounds, 
YMod Starch Total modified starch produced in a year, in billions of pounds, 
YMADextros Total monohydrate and anhydrous dextrose, in billions of pounds, 
YGlucose  Total Glucose syrup sweeteners and solids, in billions of pounds, 
YAlcohol  Total alcohol, in billions of gallons, 
CU  Capacity utilization (total corn processed divided by annual capacity), and 
E  Total Primary Energy (defined above), in trillion Btus. 
 

The choice of variables to include in the model are based on a combination of 
understanding of the production process (see Figure 2) and statistical test conducted at earlier 
stages of the model development.  All plants produce feed products as a result of the basic 
separation stage with little variation in yields.  This means that these products need not be 
include in the output mix variable, so long as the amount of corn processed is included in the 
model.  Starch is produced either as a final product or as a feedstock to the saccharification.  
Starch may be unmodified or have additional processing for specialty products.  Our model 
implicitly assumes that some combination of unmodified starch or HFCS is produced at the 
plant.  The impact on energy use resulting from a departure from this “default” product mix is 
represented by the other four product variables. 



Figure 2. Corn Refining Process Flow Diagram 

Source: Galitsky 2003 

Sample means for selected variables are shown in Table 2.  Confidentiality restrictions 
prevent disclosure of means for production mix variables, but the total value of shipments is 
shown. 

Equation (4) gives the linear equation model for corn refining.  A truncated normal 
distribution is used to represent inefficiency.    
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The estimated coefficients are given in Table 3. 
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Table 2. Sample Means for Selected Variables 
 

 
Table 3. Parameter Estimates for the Total Primary Energy Frontier in the Wet Corn 

Refining Industry 
 Coefficient Standard Error z-test 

Constant 2.70 0.667   4.1 

Corn 2.89 0.230 12.5 

Y Modified starch 3.31 0.935   3.5 

Y Monohydrate and anhydrous  3.64 0.521   7.0 

Y Glucose -0.66 0.019 -34.1 

Y Alcohol 14.49 0.357 40.6 

Capacity Utilization -11.15 3.389 -3.3 

Capacity Utilization 2 5.13 2.006 2.6 

vσ  7.51E-07 6.74E-05 0.01 

uσ   (truncated normal) 2.17 0.252 8.6 

 
The last two variables in Table 1 are the standard deviation of random error term, v, and 

the inefficiency term, u, the latter of which is assumed to be normally distributed and truncated at 
zero.  The z test indicates the confidence with which the variable is estimated.  A z test of greater 

Variable name Sample Mean 

Corn 2.644 

E 7.506 

E (from fuels) 5.327 

E (from electricity) 2.014 

CU 0.757 

Total Value of Shipments (million dollars) 289.9 



than 2.0 indicates confidence of 99% or higher.  A value of z less than 1.2 indicate confidence of 
90% or lower.8  Our estimates have extremely low error variance (0.000000075), essentially 
attributing all of the variation from the fitted regression model to differences in efficiency.  

The major effects in the corn refining model are total corn processed, the mix of 
products, and capacity utilization.  Animal feed products, e.g. gluten, fiber, etc., are byproducts 
of the initial stage of processing and do not vary significantly across plants, so these outputs can 
be omitted from the analysis.  Non-modified starch and high fructose corn syrup are also not 
included in the equation so we interpret all of the other product variables relative to a plant 
producing either of these two products.  For example, modified starch, alcohol, and anhydrous 
dextrose all have higher energy requirements relative to a given level of corn processed into 
either starch or high fructose corn syrup.   Glucose sweeteners would have relatively lower 
energy requirements. 

Translating Energy Efficiency into a Percentile Score 

In addition to accommodating a range of products, the frontier approach allows us to 
translate the absolute energy efficiency, i.e. the difference between actual observed energy use 
and the predicted best practice energy use, into a percentile score.  This is possible since we 
estimate the underlying statistical distribution of energy efficiency.  Absolute inefficiency of 
energy use is estimated to follow a truncated normal distribution, so we can also translate the 
absolute level of inefficiency into a percentile score, or ranking, by using equation (5). 

 
Pr( ( , , ; ))i i i iEPI inefficiency E f Y X Z β= ≤ −   (5) 

 
This probability can be computed directly by equation (6), where F is the cumulative 

distribution function for a normal distribution with mean zero and variance σu
2 .  This measure is 

a percentile ranking of the energy efficiency of the plant. 
 

21 2* ( ( , , ; ),0, ) 0.5i i i i uEPI F E f Y X Z β σ = − − −    (6) 
 

To illustrate how this may be applied we show a hypothetical plant with the following 
production values. 

 
 Total Grind:     2,644.5 
 Maximum Grind Rate (Bushels/Day): 131,176 
 Capacity Utilization:    100% 
 HFCS Sweeteners:    300 million lbs 
 Crystaline and anhydrous glucose:  none  
 Other non-HFCS Sweeteners:   500 million lbs 
 Modified Starch:    743 million lbs 
 Non-Modified Starch:    200 million lbs 
 Total Primary Energy    7,469,527 mMBtu  
 

                                                 
8 More precisely, the z test provides the probability that the variable is significantly different from zero. 



Figure 3 shows that this plant would have a percentile score of 52, which is slightly 
above the median performance.  However, if that plant produced all HFCS and no glucose, i.e. 
800 million lbs HFCS, and used the same level of energy its percentile energy efficiency would 
be 17 points higher, since HFCS has higher energy requirements.   

 
Figure 3. Comparison of Percentile (EPI) for Plants Producing a Mix of Products 
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Summary 

This paper presents an approach to statistically measure plant specific energy efficiency 
when there are multiple outputs, making the choice of a single normalizing factor to measure 
energy efficiency difficult.  The stochastic frontier predicts the lowest energy use for any plant, 
given information on the capacity and amount of total corn processed with the mix of final 
products produced.  The difference between the actual energy use and the predicted “best 
observed practice” is the level on inefficiency.   

The model presented extends the notion of energy efficiency, commonly measured by the 
specific energy consumption or ratio of energy to unit product, to the case where there are 
multiple products that are produced in a variety of quantities and may have different energy 
requirements.  Economic models may aggregate products based on their market value, but the 
approach here is more flexible and specific to the question at hand, since the weights are based 
on best practice energy.  Market values are the result of a variety of economic drivers.  The 
approach presented here also translates the estimated inefficiency into a percentile score which 
can be interpreted as a plant level ranking. 

Since this ranking is based on distribution of inefficiency for the entire industry, but 
normalized to the specific systematic factors of the given plant, this statistical model allows the 
user to answer the hypothetical but very practical question, “How does my plant compare to 



everyone else’s in my industry, if all other plants were similar to mine?”  The results of this 
analysis have been provided by ENERGY STAR to representatives of the corn refining industry 
in a series of workshops to test and provide comments.  The final version of this model can be 
used by the industry to benchmark industrial energy performance within there industry and to set 
goals for improvement. 
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