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ABSTRACT 
 

Investment casting is frequently the preferred, and sometimes the only manufacturing 
process capable of producing components requiring fine surface finish, complex geometries, 
or tight dimensional tolerances.  Key elements that impact a foundry's costs include: labor 
within the "wax room" operations; energy consumption; scrap rate; and industrial waste. This 
paper describes a successful collaboration focused on reducing all these cost drivers. The 
objective of the project was to automate the welding of wax patterns onto runners to form 
"trees" prior to the forming of ceramic molds. This process is currently performed manually, 
typically by workers using flat knives heated over inefficient open flames until red-hot. This 
process is fraught with problems. As much as 30% of all foundry labor is consumed in the 
wax room. Excessive smoke and heat must be removed via the building's HVAC system, 
consuming additional energy. Inconsistent or defective wax welds frequently result in lost 
patterns or scrapped parts requiring re-processing of the metal (i.e., re-melting) and creating 
excessive waste wax and mold material that must be landfilled. The project described in this 
paper has resulted in a commercially available system that automates the wax tree assembly 
process, thereby reducing energy consumption, improving product quality, reducing scrap 
rates, and reducing labor costs. An added benefit is that it enables precision alignment of 
patterns, which potentially facilitates the automation of other downstream processes, yielding 
added energy savings and economic benefits.  Consultation with over a dozen foundries has 
helped identify the critical required features of this system. This paper describes the 
motivation, justification, planning, execution and results of the project. 
 
Introduction 
 

The investment casting industry in the United States is faced with intense competition 
from foundries located in low labor-cost countries. Slowly but surely we are losing this 
strategic industry as US companies purchase castings offshore to reduce costs. Investment 
casting is used to produce many parts that could not be produced economically with any 
other available manufacturing process.  Among the numerous components manufactured 
with this process are aircraft turbine blades with internal cooling passages, surgical 
instruments, and prosthetic hip and knee implants. The process can handle a very large range 
of materials and geometry�s that would be impossible with other manufacturing processes. 
Figure 1 shows a wax pattern used to cast a typical investment cast part, a small turbine 
impeller. 

Figure 2 below shows the basic steps in the investment casting process. The 
nomenclature of each component of the wax tree assembly is labeled in Figure 3.  MPI�s 
customers, such as Sturm Ruger and the company�s investment casting divisions, use MPI's 
injection molding machines to make wax patterns, one for each and every cast product made, 
and must attach them to wax runners to construct trees. These trees are then used to create a 
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ceramic mold, from which cast parts are produced. In Step 2 of Figure 2 a manual process 
using a hot knife blade passed between the two wax surfaces is used to attach the wax 
patterns to the runners, as shown in Figure 4. Figure 5 shows hot knives being heated over an 
open flame. Alternatively, the pattern gate is dipped in hot �sticky wax� and then placed on 
the runner, which has been heated using a hand held torch as shown in Figure 6. 

 
Figure 1. Wax Pattern of a Turbine Impeller 

 
Source: Trucast, Ltd. 

 
Figure 2. The Basics of the Investment Casting Process 

 
Source: Ludwig 2000 

 
The position and orientation of the wax patterns on the wax tree is critical to 

guarantee that wax flows out of the mold when heated in the autoclave, and to ensure a good 
flow of metal into the mold during the casting process.  This manually formed joint should 
have smooth rounded corners so as not to create inclusions in the cast part.  Inclusions are 
formed as a result of an undercut or sharp corner in the joint between the wax pattern and the 
runner.  The flow of hot metal into the mold breaks off ceramic material from the sharp 
corner and carries these ceramic chips into the mold cavity, resulting in an inclusion and a 
scrapped part. Figure 7 below shows examples of good and bad fillets, as described by the 
numerous foundries surveyed by the research team. According to customer surveys, square 
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corners where the gates meet the runner are undesirable but acceptable.  In contrast, it should 
be noted that if there are any sharp inside corners in the wax tree, then there is a possibility 
that the sharp corner formed in the ceramic shell can break off during pouring and produce a 
void in the cast part.  This void or inclusion of the ceramic material could lead to 
unacceptable parts or unnecessary rework. 

 
Figure 3. Components of Wax Tree Assembly (Step 2 of Figure 2) 

 
Source: Ludwig 2000 

 
Figure 4. Worker Using Hot Knife to Apply a Wax Pattern to a Runner 

 
 Source: Pine Tree Casings 2003 

 
Figure 5. Hot Knives Being Heated Over an Open Flame 

 
 Source: Pine Tree Castings 2003 
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Figure 6. Worker Using "Sticky Wax" and Gas Torch to Apply Patterns to Runner 

 
 Source: Lamothermic Corporation 1999 

 
Figure 7: Examples of Good and Bad Fillets 

 
Source: Ludwig 2000  

 
An added problem with the manual assembly of wax trees is that there is poor 

alignment of the runners and patterns, as seen in Figure 8 below. While this does not cause a 
direct problem with casting, it does present significant challenges in the event one attempts to 
automate the cutoff of the cast parts from the metal tree. The precise alignment of patterns 
resulting from the automation of the wax tree assembly process will then facilitate the 
automated cutoff and grind of the cast parts. 
 

Figure 8. Assembled Wax Tree Showing Crooked Patterns/Runner 

 
 Source: Pine Tree Casting 2003 
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Project Objectives 
 

The objectives of this project were: 
 

• To demonstrate the technical and business feasibility of automating the assembly of 
wax patterns to runners. 

• To develop and demonstrate a commercial prototype machine that will be beta tested 
in an investment casting foundry. 

• To demonstrate the potential labor savings, scrap and waste minimization, and 
reduced energy consumption associated with automated pattern assembly. 

 
Project Motivation 
 

The US investment casting industry is having a very difficult time competing with 
foundries located in low labor cost countries. Foundries are closing as their customers shift 
their sources to these off-shore suppliers. In order to re-gain its competitiveness the industry 
must develop and implement new technologies. The investment casting process is labor 
intensive and parts of it have been automated.  The wax pattern production, ceramic shell 
buildup, and metal pouring process have all been automated, but the wax tree assembly 
process has not yet been successfully automated and has always been a difficult operation to 
mechanize.  This is the most labor-intensive step and requires artistic abilities of the wax tree 
assembler.   

There are in excess of 350 foundries in the United States that perform investment 
casting using the lost wax process, and more than 700 foundries worldwide using this casting 
method. Investment casting is typically preferred over sand casting where there is a 
requirement for high precision, complex geometry, and fine surface finish. Currently, nearly 
all investment wax tree assembly is performed manually, resulting in inconsistent pattern 
placement on runners, inconsistent welds, and lower than optimal volumetric efficiency. 
Also, workers are exposed to vaporized wax fumes from the welding process. As a result, the 
removal of cast metal parts from the casting runners, de-gating, and grinding is performed 
entirely by hand, a labor intensive and dangerous process. Workers are exposed to fumes, hot 
sputter, grinding dust, and risk of physical injury from hot, flying metal and from repetitive 
motion injury. 

The investment casting industry is a very energy intensive industry. It is estimated 
that in 1997 the casting industry in the United States consumed between 200 and 250 trillion 
BTUs of energy (DOE 2003). Investment casting represents approximately 10% of all 
casting processes. Of the energy consumed in the industry an average of 55% is used in the 
melting process, 20% is consumed in mold making and processing, and another 7% is 
consumed in the post casting processes (DOE 2003). It is estimated that approximately 10% 
of investment cast parts are defective, requiring remelt and reprocessing. In certain 
applications where the quality standards are extremely high this number can be even higher. 
Thus, the potential for energy savings resulting from improved process yield may be as high 
as 1.6-2 trillion BTUs. 

Currently there is only one system available for automated tree assembly, the Pattern 
Assembly Machine (PAM) manufactured by Fansteel-Escast in Sarasota, Florida. Fansteel-
Escast claims that their system reduces the time to assemble wax trees by 50%, with greater 
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consistency of pattern spacing and weld (Ellin 1985). However, the Fansteel-Escast machine 
has not been a commercial success due to the system�s cost, complexity and lack of 
flexibility. Additionally, the Fansteel-Escast system requires that an operator individually 
load each wax pattern into the machine for assembly. 

MPI, Inc. believes that the current situation represents a significant business 
opportunity. The automated pattern assembly machine resulting from this project will be an 
important addition to MPI's integrated wax room solutions.  

 
Project Justification 
 

Projects are expected to result in positive impact in three areas; energy, environment, 
and economics. While every project selected does not necessarily need to impact all areas 
equally, the automated pattern assembly project does hold the potential to favorably impact 
all three areas, as described below.  
 
Energy Consumption 

 
The resulting improvement in quality and yield will significantly reduce the down 

stream energy requirements.  Improved yield from higher quality wax patterns means less 
metal heated. Accurate pattern assembly will allow for:  
more patterns to be assembled per tree; a higher yield per metal pour, and part cut off with 
less metal removal during de-gating and final finishing. This project will enable MPI to later 
develop automated cutting and grinding systems where there is potential for significant 
energy savings. Also, a significant energy savings is anticipated from reduced loads on 
HVAC systems due to there being less smoke and fumes generated when compared to the 
manual assembly process, and the elimination of the numerous open flames found in most 
foundry wax rooms. The actual energy savings realized will be evaluated during the beta test 
of the pattern assembly machine developed during this project, anticipated to occur in the 
latter half of 2003. 
 
Environmental-  
 

The primary environmental impact of the proposed project is to reduce worker 
exposure to molten wax fumes that are a health hazard. A reduction of wax fumes released to 
the atmosphere will likely be possible due to better control of the welding process. The hot 
knives found in most foundries are heated to around 1200oF while the process used with the 
automated system employs much lower temperatures. The improved quality and yield of the 
automated process will also result in a significant reduction in the amount of solid waste, 
primarily ceramic mold material, that must be land filled. There will also be a significant 
long-term impact on worker safety and environmental hazards once the cutting and grinding 
processes are also automated. In order to realize this benefit, however, the wax tree assembly 
process must first be automated. 
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Economic-  
 

The long-range vision of MPI, Inc. is to offer complete wax room solutions for its 
customers. Currently, MPI products are in use in 131 foundries in the U.S., and an additional 
100 foundries throughout the rest of the world. These pattern assembly machines will 
become the center of completely automated wax cells that will also include automated 
pattern and runner injection, inspection, and be networked with robotic handling units that 
are all integrated to the company�s MIS system, thus closing the gap in creating the fully 
automatic investment casting foundry. MPI's customers will benefit from the resulting 
automation system. Improved process yield, lower energy and waste disposal costs, and 
enhanced worker safety will translate into improved competitiveness, capacity and market 
share. 

 
Project Planning 

 
Partners in the project include MPI, Inc., the New York State Energy Research and 

Development Authority (NYSERDA), and the Flexible Manufacturing Center (FMC), 
located at Rensselaer Polytechnic Institute (RPI) in Troy, New York. MPI, Inc., located in 
Poughkeepsie, New York, manufactures and sells wax room machinery to the investment 
casting industry. NYSERDA is a public benefit corporation created by the New York State 
Legislature in 1975 with the mission of providing funding to assist New York State 
manufacturers to develop and adopt technological improvements in response to their energy 
challenges. The FMC is an interdisciplinary research center within the Department of 
Mechanical, Aerospace, and Nuclear Engineering. The research team included MPI 
engineers, and the faculty, staff and students within the FMC. 

The greatest technical risk associated with the project was that it might not be 
possible to consistently make strong welds with smooth fillets in an automated process. 
Second, there was uncertainty as to the cost effectiveness of an automated system. That is, 
would the anticipated cost associated with the capacity of the machine be justifiable? Third, 
there was a need to better define exactly what features and capabilities were required from 
the user's perspective. For these reasons, a decision was made to conduct the project in two 
phases. Phase I would address the technical and business feasibility issues, while Phase II 
would focus on the development of a commercial prototype automated pattern assembly 
machine that could be beta tested in a foundry environment. Successful completion of Phase 
I was required in order to proceed with Phase II. Phase I was planned to be completed in six 
months, and Phase II was planned for 30 months. Phase II commenced in January, 2001. 

 
Project Execution 
 

The focus of Phase I of this project was to demonstrate the feasibility of the 
automated pattern assembly concept. In order for automation to be feasible the wax welding 
process must produce strong, repeatable, smooth weld joints, with little or no dripping of 
wax.  Also, the resulting process and machine design must be cost effective and robust for 
automation.  Researchers within the FMC first addressed the automation of the welding 
process. Brainstorming sessions were held to identify several alternative approaches to 
automated welding. A variety of contact and non-contact methods were identified and 
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evaluated for their ability to produce strong welds and smooth fillets. An Instron Universal 
Testing Machine was used to compare the fracture strength of the resulting welds, which 
were compared to those produced by manual welding techniques.  

Experimentation with the preferred process identified an optimal set of process 
parameters that consistently produced a smooth fillet weld when performing a single weld.  
In order to be cost effective, however, a commercial machine would have to weld several 
patterns simultaneously. The research team then developed a concept design for an 
automated machine that we believed would produce multiple welds, of high quality, at a rate 
that would be cost effective. The resulting concept design included seven degrees of 
freedom, a variety of flexible fixturing methods to hold a range of pattern shapes and sizes, 
and a means to secure and manipulate a variety of runner configurations and geometries. In 
order to better define the required features of a commercial machine the MPI/FMC research 
team visited numerous foundries to collect data related to runners, patterns, waxes, and wax 
room labor. Foundry personnel were very helpful in defining what features would be required 
of a successful automated machine.  

During Phase II we turned our attention to demonstrating the feasibility of the 
concept design developed during Phase I. To do this researchers designed and constructed a 
Proof of Principle Model (POPM), or concept prototype, located in the FMC laboratory.  

 
Figure 9.  Example of Smooth Fillet Weld Resulting from Automated Assembly Process 

with the POPM 

Source: Flexible Manufacturing Center 
 

The POPM design incorporated only those critical features needed to demonstrate 
simultaneous welding of multiple patterns, provide a testbed for experimenting with various 
pattern and runner fixturing methods, establish process parameters for the commercial 
machine, and validate the projected cycle time for the preferred wax welding process. 
Control of the POPM was accomplished with a D-Space controller. The POPM was also 
useful in identifying a number of technical challenges that would have to be addressed with 
the design of the commercial prototype machine. We were successful in demonstrating both 
precision alignment of patterns and strong, smooth fillet welds, as shown in figures 9 and 10. 
These welds are far superior to those observed in the foundries that we visited.  
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Once we had learned all that we could from the POPM a demonstration was held for 
NYSERDA and a select number of representatives from foundries that had been helpful in 
defining the system requirements. While there was some skepticism of foundry personnel 
prior to the start of the project the feedback received from the attendees was very 
encouraging, and provided valuable marketing information. 

The project team next proceeded to design the commercial prototype machine, 
designated the model 20-10, capitalizing on the lessons learned from experience with the 
POPM. Among the key design objectives were: ease of integration with other wax room 
systems; either manual or automated loading of patterns; allow for future addition of 
automated load/unload of wax runners; high precision positioning of patterns and runners; 
minimize operator intervention requirements; flexibility for ease of changeover from one 
runner/pattern combination to another; and minimized space requirements. MPI personnel 
took the lead in design of the 20-10, with FMC students, staff and faculty providing design 
and analytical support, and conducting experimentation when needed to validate the detailed 
design approaches. Frequent design reviews were conducted to insure effective 
communications and coordination of efforts. An extensive tradeoff analysis was conducted to 
decide between using commercially available robots or custom built motion systems for 
pattern handling and manipulation of the heated knife used for welding. Key elements of this 
analysis were: development lead time; the architecture of the machine's control system; ease 
of integration and programming; accuracy, repeatability and deflections of motion axes; 
connectivity for remote diagnostics and support; and costs. 

 
Figure 10. Populated Runner Showing Precise Alignment of Patterns 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Flexible Manufacturing Center 
 

Project Results 
 

The project team has succeeded in achieving the goals set forth at the start of the 
project. During Phase I we demonstrated a process with the ability to form superior strength 
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welds with smooth fillets. We also demonstrated that the process cycle time would allow a 
commercial machine to meet the throughput needed if multiple patterns are welded 
simultaneously. With the POPM built during Phase II we demonstrated the ability to make 
multiple welds simultaneously, and to achieve precise alignment of patterns to a degree not 
found with manual tree assembly. 

Figure 11 shows a rendering of the design of the commercial prototype machine, 
designated the model 20-10 being built at MPI. Key features of the machine include: 

 
• Two commercial robots for manipulation of patterns and the electrically heated knife. 
• Servo actuated runner station, designed for future integration with fully automated 

runner load/unload robot. 
• Automated dial and pallet system for pattern loading. 
• Automated knife clean and maintenance station. 
• Quick-change tooling. 
• Integration with MPI 45-12 automated wax injection system. 
• User-friendly touch screen interface and PLC based controls. 

 
Figure 11. MPI Model 20-10 Wax Pattern Assembly Machine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: MPI, Inc. 2003 
 

Figure 12 shows a rendering of the 20-10 wax pattern assembly machine co-located 
with the 45-12 automated wax injection machine. This is the configuration that will be beta 
tested in 2003 at Pine Tree Castings. The 45-12 is an automated machine that molds the 
patterns and transfers them to pallets on the pattern feed station of the 20-10. Initially runners 
will be manually loaded and unloaded in the 20-10, however, the machine has been designed 
for easy integration with a planned load/unload robot system. 
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Figure 12. MPI Model 20-10 Wax Pattern Assembly Machine  
Integrated with Model 45-12 Automated Wax Injection Machine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: MPI, Inc. 2003 
 
Conclusion 
 

This project is an excellent example of effective industry-university-government 
collaboration. Without the support of NYSERDA the project would not have been possible. 
The MPI/FMC team worked effectively together, with each organization contributing their 
unique strengths. Early in the project FMC researchers led the effort to develop and 
demonstrate the viability of the automated wax welding process and to generate the 
conceptual design that would eventually be implemented with the commercial prototype 
machine. The excellent laboratory and experimental facilities, and the analytical skills of the 
FMC faculty and staff contributed valuable information throughout the project. MPI's 
knowledge of foundry operations and the potential market insured that the efforts of the FMC 
researchers remained focused and relevant to industry's needs.  

Later in Phase II MPI assumed a leadership position in the detailed design and 
construction of the prototype machine, with FMC personnel focused on designs for flexibility 
in end-of-arm tooling, and assisting with the architecture of the machine's software and 
controls for maximum flexibility, ease of use and remote connectivity. 

The commercial prototype wax pattern assembly machine will be completed and 
begin beta testing at Pine Tree Castings during the summer of 2003. This important beta 
testing will provide the opportunity to determine the actual improvements in energy 
consumption, labor savings, and waste reduction. We believe this project will advance MPI's 
leadership position in providing integrated wax room systems to the investment casting 
industry, and bring them closer to the goal of a lights-out castings facility. 
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