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ABSTRACT

This paper describes a model-based, feedforward control scheme that can detect faults
in the controlled process and improve control performance over traditional PID control. The
tool uses static simulation models of the system under control to generate feed-forward
control action, which acts as areference of correct operation. Faults that occur in the system
cause discrepancies between the feedforward models and the controlled process. The scheme
facilitates detection of faults by monitoring the level of these discrepancies. We present
results from the first phase of tests on a dual-duct air-handling unit installed in a large office
building in San Francisco. We demonstrate the ability of the tool to detect a number of pre-
existing faults in the system and discuss practical issues related to implementation.

I ntroduction

Heating, ventilating, and air-conditioning (HVAC) systems are typically controlled
using proportiona plus integral (and sometimes plus derivative) PI(D) control law. In
practice, HVAC systems exhibit non-linear operating characteristics, which cause control
performance to vary when operating conditions change. Poor control performance can lead
to occupant discomfort in the treated building, greater energy consumption, and increased
wear on controlled elements, such as actuators, valves, and dampers.

In a conventional PI(D) feedback loop, the controller does not contain much
information about the process it is controlling. Faults that lead to performance deterioration,
or a change in system behavior, are often masked within a feedback loop. The control
scheme described in this paper uses a model of the correctly operating system to supplement
a conventional PI(D) feedback loop. The model is part of a feedforward control regime and
acts as a reference of correct behavior, which facilitates the detection of faults that develop in
the controlled system. Incorporation of a system model in the feedforward control scheme
facilitates more consistent control performance as operating conditions change.

Several researchers (e.g. Gertler, 1998; Glass et al., 1994; Isermann, 1995; Patton et
al., 1995) have proposed fault detection and diagnosis schemes based on the use of models.
The main trade-off with model-based schemes is configuration effort versus model accuracy.
Generally, the greater the potential accuracy of the models, the greater the effort required to
configure the models for operation. In the proposed control scheme, we selected models that
are configurable from design and commissioning information in order to reduce
configuration effort. Previous work has shown that despite resultant loss of accuracy through
model simplification, the scheme is capable of detecting a number of important faults and of
improving control performance (Salsbury, 1999).
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The Control and Fault Detection Scheme

Figure 1 shows the control and fault detection scheme. A conventional PI(D)
feedback loop generates control action (up;) based on the error between the setpoint and the
controlled variable. This feedback control action is then supplemented by a control signal
(ugr) generated by a simulation model(s), which is an inverse representation of the system.
An inverse model predicts the inputs to a system based on measured outputs. The model isin
static form and produces a control action appropriate for the current setpoint and measured
disturbances. The control scheme is similar to one proposed by Hepworth and Dexter
(1994), who used an adaptive neural network as the inverse system model.
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Figure 1. The Control and Fault Detection Scheme

The inverse model acting in isolation of the feedback loop would produce responses
according to the open-loop dynamics of the system. Note that because the model is steady-
state, the predicted control signal, ug, will change instantaneoudly for a change in any of the
measured inputs. The feedback loop serves to speed the response time of the controller and
eliminate offsets resulting from model inaccuracies and unmeasured disturbances. Assuming
the effect of unmeasured disturbances is small, the (steady-state) feedback control action
(up) serves as an indication of the model/system mismatch. The control action, up, thus
represents an implicit measure of the difference between the predicted and the actual control
signals for a particular setpoint. By configuring the model to represent a correctly operating
system, the level of up acts as an indication of fault development. Faults occurring in the
system, which change its behavior or performance, thus create a mismatch between the
model and system, leading to an increase in feedback control action.
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The control scheme incorporates fault detection capabilities by monitoring the
magnitudes of two indicator variables. The first indictor variable is the output from the Pl
controller (up) - the “control signa error” and the second is the difference between the
setpoint and the controlled variable — the “ setpoint error”. The controller generates an alarm
if either of these variables exceeds a threshold for a sustained period.

The control signa error reveals changes caused by faults that do not affect the ability
of the controller to maintain the setpoint, e.g., leakage through a control valve. A prolonged
setpoint error that is not accompanied by a control signal error indicates a problem at or near
to the point where the control signal would normally saturate, e.g., a capacity problem when
full load is demanded. Simultaneous control signal and setpoint errors over a sustained period
can indicate poor tuning or problems with the control loop. However, if the control loop is
oscillatory, the errors may periodically return below their respective thresholds within a short
enough time thereby avoiding darm generation. Sensor errors are also detectable by the
control scheme. Those that do not affect the ability of the control scheme to achieve the
setpoint will be detectable through the control signal error. Large errors in the controlled
variable sensor that cause the setpoint to become unattainable would aso be detectable
through the setpoint error.

The proposed control scheme triggers an alarm if the control signal error or setpoint
error continuously exceed a threshold for a predetermined period. Figure 2 shows the fault
detection algorithm. T, is the threshold for the control signal error, Te is the threshold for the
setpoint error, and P is the maximum transgression period before generating an darm. The
fault detection part of the control scheme thus requires three parameters to configure it for
operation: T, Te, and P.

IF |us [>T, OR [error[>T,

P=P+Dt
ELSE

P=0
ENDIF
IFP>P,_,

FAULT=1
ELSE

FAULT=0
ENDIF

Figure 2. Fault Detection Logic

Under a Pl control regime, the setpoint error is supposed to reach zero in steady-state.
Te, can thus be selected heuristically based only on considerations of typical sensor noise and
tolerable tracking errors. The parameter, Pmax, relates to the maximum time between periods
of steady-state. For HVAC applications, it is reasonable to assume that transience does not
normally persist for more than 30 minutes between periods of (quas) steady-state. We thus
selected a value of 30 minutes for P. Selection of the threshold T, is more difficult and
relates to the accuracy of the models and the degree of detection sensitivity required. Ideally,
T, should be established through tests on the correctly operating system. However, as is
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shown later, T, may be also be set heurigtically for preliminary testing in order to detect gross
faultsin the system.

Test System

Figure 3 depicts a schematic of the air-handling unit used in the tests, which is a dua-
duct type having three therma subsystems. mixing box, cooling coil, and heating coil. The
air-handling unit has the capacity to deliver 74kg/s of air and provide 850kW of heating and
1260kW of cooling. The unit isinstalled in alarge federal office building in San Francisco.
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Figure 3. Schematic of the Dual-Duct Air-Handling Unit

Each thermal subsystem has its own controller. The mixing box controller modulates
three sets of dampers in sequence to maintain mixed air conditions. There is a minimum
outside-air requirement based on damper postion (20% minimum outside-air) and a
temperature-based economizer. The hot duct houses a steam-to-air heating coil regulated by
a two-way valve, and there is a water-to-air cooling coil having a three-way vave in the cold
duct. The fan speed varies according to load changes in the zones in a conventiona VAV
arrangement to maintain a constant static pressure in the supply ducts.

Simulation Models Used in the Control Scheme

The controller incorporates three separate models; one in each of the three separate
control-loops in the air-handler: mixing box, heating coil, and cooling coil. Details of the
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model equations can be found in (Salsbury, 1998). We smplified the models used in the
feedforward controller in severa respects. In particular, the models do not treat:

Variationsin coil therma conductance with fluid flow rates;

Dehumidification in the cooling process;

Valve/damper non-linearity.

We make the latter smplification because characterization of this non-linearity requires
parameters that are not easily obtainable or reliable, such as the inherent and installed
characteristics of the valves and dampers. The simplification is reasonable, as one of the
goals of the design and commissioning processes is to linearize the relationship between the
control signal and controlled variable, e.qg., by canceling coil non-linearity with vave non-
linearity. Although the model simplifications reduce potential accuracy and performance of
the scheme, a maor advantage is that the parameter values may be obtained from typically
available information, rather than requiring calibration data and additional tuning effort.

Table 1. Configuration Parameters

PARAMETER/DESIGN SPECIFICATIONS ~ |UNITS
HEATING/COOLING CoIL

Heat transfer rate kw
Cold fluid inlet air temperature °C
Cold fluid mass flow rate kgs®
Hot fluid inlet temperature °C
Hot fluid mass flow rate kgs™®
MIXING BOX

Minimum fractional outside air flow %

Table 1 lists the parameters required by the models in the feedforward controller and
Table 2 lists the required sensor measurements/variables. Note that in the dual-duct air
handling unit, air temperatures and flow rates are required before the coils in both the hot and
cold ducts.

Table 2. Required Sensor Signals/Variables

SENSOR SIGNAL UNITS
Return air temperature °C
Outside air temperature °C
Air flow rates (hot and cold ducts) kgs™®
Pre-coil air temperatures (mixed air) °C
Setpoints (mixed, hot-air, cold-air) °C
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I mplementation

We developed the control and diagnostics algorithms into a stand-alone software
program for testing with the test unit described earlier. We initialy deployed the tool in a
passive mode with the intention of validating the models and establishing thresholds.
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Figure 4. Interaction of Control Software with Pl-Loop When in Passive M ode

Figure 4 depicts how the controller software was set up to interact with a Pl loop in
passive mode. In this mode, the feedforward control signals generated by the models do not
affect the control operation and the system remains under Pl-only control. In terms of fault
detection, instead of using the PI control signal (up) as a measure of the difference between
the predicted and actual control signals, the difference is calculated explicitly, i.e., Up - Ugr.

Softwar e Ar chitectur e and Connection tothe EMCS

We developed the software based on three separate modules, as shown in Figure 5.
The user interface provides diagnostic information to the user and allows the user to change
parameters of the feedforward models, and other configuration information. The central
module contains the control and diagnostics algorithms that function according to
configuration information set by the user and data obtained from the energy management and
control system (EMCS) network. The third module (control system interface) handles
acquisition of data from the EMCS. The building in which we performed the tests was the
subject of a recent large scale EMCS retrofit, which included replacing a large part of the
system with BACnet (ASHRAE, 1995) compliant control devices. We thus developed the
control system interface to use the BACnet communication protocol. Use of this
communication protocol opens the way for testing the control software on any other BACnet
compliant system regardless of the manufacturer.
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Figure 5. Software Module Interaction and Connection to the Control System

Figure 6 shows the user interface, which depicts the dual-duct air-handler used for
the tests. Note that the two fans in the return duct have their speeds tracked to the speed of
the supply fan, which is regulated in order to maintain the average of the hot- and cold-duct

static pressures at a setpoint.
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Figure 6. User Interface Showing the Dual-Duct Test Unit
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Obtaining a Points List

Before we could carry out the tests, we had to obtain a point list of the sensors and
control signals required by the software tool. This task is unavoidable for any application
that needs to poll data from an EMCS network. The devices on the network that relate to the
physical sensor and control-signa measurements required by the application require
identification so they can be mapped onto the variables in the application program. The
process of acquiring the necessary information can be both time consuming and subject to
human error.

Sensor Availability and Accuracy

One problem encountered during the testing of the feedforward controller concerned
sensor availability. In the test system, direct measurements of airflow in the hot and cold
ducts were not available. The feedforward models use these measurements to calculate
temperature rises/drops across the coils and the model predictions are quite sensitive to these
variables. We therefore had to proxy the air flow rates using other sensor measurements that
were available. We applied mass balances and pressure-flow relationships in addition to
simple models to calculate airflow from the supply fan VFD control signal and static pressure
measurements in the hot and cold ducts. The proxy was difficult to assess for accuracy, as
we were only able to obtain point measurements of actual arflow at sporadic operating
points. In addition, assumptions made in the proxy calculations introduced uncertainty into
the predictions of airflow. Uncertainties in any of the measurements affect the performance
of the control scheme and its fault detection sensitivity.

Test Results

The original am of the first phase of testing was to validate the models in order to be
able to establish the threshold values, T,. However, it became apparent in the early stages of
testing that blindly using data from the system in its “norma operation” state to set
thresholds was inappropriate. We found that normal operation did not necessarily mean
“correct operation”. The initial test described in this section therefore entailed detecting pre-
existing faults in the system. We discovered that the tool was useful as a re-commissioning
aid and could be used in thisway by setting T,, heuristically before carrying out the tests.

As explained earlier, the software operated in passive mode and maintained its fault
detection capability by calculating the difference between the feedforward control signal and
the measured Pl control signal explicitly. During the test, the supply fan-speed and static
pressures remained relatively constant, which reduced the potential errors stemming from the
airflow proxy. In addition, the return and ambient air temperatures did not vary significantly
during the tests. The effect on the AHU behavior from variations in measured disturbances
was therefore small during the test period. Figure 7 shows the return and ambient air
temperatures and the airflow rate proxy in the hot and cold ducts.
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Figure 7. Measur ed Distur bances Affecting AHU Performance During I nitial Test

Figure 8 and Figure 9 show the test results. The top graph in Figure 8 shows the
controlled temperatures and their setpoints and the lower graph shows the control signals to
each of the three subsystems. Figure 9 shows the control signal errors and the setpoint
tracking errors in the upper two graphs and the fault detector indicators in the three lower
graphs. The first feature to note from Figure 8 is that the controllers are unable to regulate at
the setpoints very well, despite relatively constant measured disturbances and constant
setpoints.  The source of much of the instability appears to be the mixing box, which is
cycling about its setpoint. This causes the mixed air temperature to vary, which in turn
affects the load on the heating and cooling coails in their respective ducts downstream of the
mixing process. The cooling coil reacts to the cycling in the mixing process with more
extreme variations, causing the cooling valve to vary across its entire range. The
disturbances in the mixing process influence the heating process to a lessor degree. However,
the heating coil controller is still unable to regulate very well the controlled variable at the
setpoint.

In Figure 9, operational problems in the AHU are evident with the indicator variables
exceeding thresholds for sustained periods. Thresholds on the control signals and the
controlled variables were set arbitrarily for this test and were thus not established empirically
from training data. The control signa thresholds were set to 0.25 (25% of range) and the
controlled variable thresholds to 2K. The cycling in the mixing process triggers an alarm due
to the controlled variable being more than 2K outside of the setpoint for more than the half-
hour time limit (Pmax in Figure 2) set for the tests. Inspection of the mixing process revealed
that leakage existed through the return-air dampers and this contributes to the control signal
error exceeding the threshold at certain times, particularly when the controller demanded full
outside-air (u=1).
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Figure 9. Fault Indicator Variables

Whenever the cooling process becomes active (i.e., the control signal is greater than
zero), the error between the predicted and actual thresholds is large, as shown in Figure 8.
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However, these large errors do not lead to an alarm, due to the cycling of the valve bringing
the valve back to its closed position, where there is little prediction error before the half-hour
time limit. The software thus only generates an alarm toward the end of the data when the
coil valve stays open. The reason for the large error between the cooling control signal and
the measured value was determined to be due to the chillers being disabled in the building
during the test period. The cold water inlet temperature to the cooling coil was thus higher
than expected as the cooling effect came only from the cooling towers. Since the cold-water
temperature is a parameter in the controller software and not a variable input, the models
predict a greater degree of cooling than is actually produced. The software therefore
demonstrates a capability for detecting faultsin the primary plant systems.

There are two periods in the test data when the software generates alarms for the
heating coil system. The first darm instance is caused by a sustained error between the
predicted and actual control signals. Examination of Figure 8 shows that in the period
before the alarm, the heating valve is near or at its closed position while there is till a large
difference in temperature across the coil. This behavior is inconsistent with the expectation
of correct operation. The reason for the behavior is uncertain, but operators have reported
leakage problems with the pneumatic valves controlling both the heating and cooling coils.
The discrepancy between the predictions and measurements could thus be due to a large
leakage through the valve. The second aarm instance is caused by simultaneous threshold
transgressions in both the control signal and setpoint errors. The error between the controlled
variable and the setpoint is quite significant as verified in Figure 8. It is possible that the
simultaneous setpoint and control signal errors were due to a de-activation of the control
loop, although we were unable to confirm this. The fact that the controller does not start to
reduce the magnitude of the heating control signal as the setpoint error increases is strong
evidence for a problem with the controller rather than the heating process.

Conclusions

This paper has described how simplified simulation models can be used to improve
control performance and detect faults. Results from the first phase of tests on an AHU
installed in a large office building demonstrated a fault detection capability and served to
highlight practical implementation issues. We carried out an initial validation test of the
controller software with the intention of establishing thresholds for later testing. However,
we found that we could not reliably determine thresholds due to the existence of faults in the
system. We therefore used the tool as a “re-commissioning” aid in order to detect the pre-
existing faults, using thresholds selected heuristically before the tests. We detected the
following problems in the test system:

Poorly tuned economizer controller

L eakage through the return air dampers
De-activation of the chillers

Valve leakage in the heating coil

Heating coil controller deactivation/malfunction

The tests on the AHU demonstrated the difficulty in establishing a baseline of “correct

operation” with which to determine thresholds and validate the models. A decision thus has
to be made at the time of establishing thresholds whether to accept observed behavior as
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being “correct” or to fix/tune the system to improve its performance. In the initia tests, the
software proved useful as a re-commissioning tool allowing us to detect faults such as
leaking valves and dampers. However, if these kind of faults were ignored by setting high
threshold values the overall sensitivity of the tool would be reduced making new faults more
difficult to detect. We therefore recommend that installation and tuning of the controller
software take place following a thorough commissioning of the systems to ensure a fault-free
starting condition.
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