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ABSTRACT

Market transformation (MT) programs typically rely on indirect market mechanisms
to achieve their goals.  Thus, connections among program measures, target market changes
and ultimate load/energy effects can be uncertain on many levels.  Uncertainty is daunting.  It
may lead some program designers to rely on intuition and hope for the best, and may lead
some evaluators to be content with measuring effort or intermediate outcomes rather than
ultimate program goal achievement.  These approaches will likely lead to empty outcomes
for MT programs.

Unlike conventional MT efforts, optimal program design does not require us to hide,
ignore, or apologize for uncertainty.  Rather, uncertainty can be treated in a manner similar to
financial portfolio analysis.  Thus, we can select the most cost-effective program measures
using a budget allocation that maximizes the expected net return from MT programs at given
levels of risk.

Risk is, however, modifiable.  It arises from our ignorance about connections among
prospective program measures and the resulting market and energy use changes.  Ignorance
can be reduced by research, and we can design our research/pilot-program portfolio to get the
most useful (risk-reducing) information possible for our research expenditures.

Finally, we can balance expenditures across program measures and research to obtain
optimal combinations of risk and expected net return from MT programs.

Although the innovations in the paper concern theoretical methods, the focus of the
paper is upon showing the techniques and information necessary for applying these methods
to design optimal real-world programs.

Introduction

In this paper, we first describe the most important features of  the market
transformation program environment, and then discuss the implications of this environment
for calculating expected program outcomes.  After this, we consider the role of risk in
program design and analysis.  This is followed by a discussion of the control of program
outcomes and risk using a procedure to optimally balance expenditures on program
implementation and program-related research and pilot programs.  Finally, we offer some
thoughts about extending this procedure.

The Market Transformation Program Environment

We might think of a market for energy-related goods as a network with nodes
representing the major types of market actors.  For example, consider the market for air-

                                                          
1 Thanks are due to the anonymous referee for valuable presentation suggestions.
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conditioners.  This market would typically contain sequential supply nodes such as
manufacturers, distributors, HVAC contractors, and consumers; with each node, except the
last, supplying goods and/or services to the following node in the sequence.
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policy will also affect manufacturers and contractors as well as (ultimately) the equipment
purchase and usage behavior of consumers.  Furthermore, we need to account for any market
feedback effects that may interfere with, or reinforce, the ultimate desired policy outcome.2

Apart from the complexity and interdependence of market responses for such
programs, a market transformation program needs to account for the duration or persistence
of these responses.  In fact, some would restrict the definition of market transformation
programs to those for which a permanent change in the market results from a limited-time
application of program resources.  The optimal energy policies that we discuss in this paper
can function with such restrictions.  Note, however, that we will generally find lower cost
solutions for equivalent program outcomes if we keep open the questions of program time-
limits and the duration of program effects, and allow them to have their unrestricted optimal
values.

Calculating Expected Program Outcomes

Since the linkages among market nodes may be somewhat complex, we need to assure
ourselves that there is a plausible overall connection between MT policy measures and
desirable outcomes.  To do this, program designers need to describe the links that are
expected to connect the policy measures with their outcomes.  This description should be
detailed enough to build an Excel spreadsheet that would allow planners to simulate expected
outcomes from alternative policies.3  It is important to emphasize that if such a simulation
cannot be performed, the MT program will most likely be poorly conceived and extremely
risky.

To show how such a simulation might be specified consider a program design
example based upon the table in the previous section.  If we focus program financial
resources to affect the production plans of manufacturers, we might imagine the methods
they would use to induce distributors to order more of the efficient air-conditioners.  One
such method would be a lowering of the price of efficient air-conditioners relative to the
price of inefficient air-conditioners.  Of course the extent of the price lowering would be
subject to negotiations between the manufacturers and distributors.  If this relative price is
lowered, distributors would have an economic incentive to increase their proportionate
purchases of efficient air-conditioners, and this incentive may very well be transferred to the
actors at subsequent nodes: HVAC contractors and the ultimate consumers.   Thus for each
node, we may imagine a set of market-clearing equations4 in which quantities and relative
prices of efficient v. inefficient air-conditioners are determined.  Furthermore, market
                                                          

2 Consider, for example, a possible perverse short-run price increase that might result from a rebate for
efficient air-conditioners given to HVAC contractors.  Such a rebate may cause a short-run decline in
distributors’ efficient air-conditioner inventories and encourage them temporarily to raise the prices of these
units.

3 The idea of using a spreadsheet for this purpose is only illustrative.  Better alternatives might be to
use a dedicated simulation package, or a high-level programming language such as one of the variants of C or
BASIC.

4 We can think of these nodal market-clearing equations as summarizing a set of negotiations between
buyers and sellers in which the prices and quantities of the goods (and other variables such as delivery times)
are determined.  The right-side variables in these equations would be exogenous variables for the market node,
including any program-related incentive directly applied to each relevant node.  In the formal economic
literature these equations would be referred to as reduced-form equations.  For competitive markets (not a
requirement here) these would be solutions to the supply and demand relationships at each node.
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clearing solutions of prices and quantities at subsequent nodes may cause a renegotiation of
prices and quantities at preceding nodes in the market supply sequence (see figure 1).

Interestingly, the same set of nodal market clearing equations must be at work no
matter which node or nodes are initially selected as the direct targets of an MT program.  The
input variables for these equations would, however, depend on the MT program
configuration.  Of course, the ultimate outcome of the market-clearing prices and quantities
will depend upon the timing and allocation of program resources across the market nodes.

These sequential nodal market-clearing equations can be imbedded in an MT program
simulation to assess the impact of alternative program resource configurations.  Given a
particular application of program resources across market nodes we can compute the solution
to the chain of market clearing equations, and establish a relationship between the program
budget allocated to each market node, and the final net program outcome.  We will call the
net result of the program resource allocation µ.  A general equation for the program outcome
can be written as follows:

1. )(BIµµ = ;

where BI is the budget allocation vector (BI1, … BIN) with each element showing the program
implementation budget for each market node (1 through N).

The use of simulations is common in diverse fields such as weather forecasting and
airplane design.  In each case simulations require estimates of the important parameters
affecting the system linkages.  For the case of MT program simulations, I suggest we begin
with consensus estimates of the required cross-node and within-node market linkage
parameters (price effects, etc.) and plausible estimates of their ranges.5   These ranges reflect
any lack of confidence we have in our consensus estimates.  This issue is important because
greater uncertainty in the consensus estimates of market linkage parameters can be expected
to result in greater uncertainty in the achievement of MT program goals.   We will address
this issue in the next section.

Quantifying Risk In Program Outcomes

Of course, other things equal, we would prefer less uncertainty6 in the outcome of MT
programs, and this preference can be reflected in our choice of programs if we quantify the
uncertainty of our program estimates.   We can build this type of calculation into our analysis
by performing a number of simulation runs in which we calculate the expected benefits from
a program using values of the parameters selected at random7  from their plausible ranges.
This type of analysis will result in a distribution of values of program outcomes that reflect
the uncertainty in the market linkage parameters, and we can compute measures of dispersion
(e.g., the variance) of program outcomes due to this uncertainty.   These measures of
dispersion can be viewed as indicators of the risk associated with each program.

In the modern analysis of financial assets it is common to discuss trade-offs between
risk and expected return.  There is a similar issue in the current context since we can expect
alternative MT programs to differ in risk and expected net benefits.  The rules for trading off
                                                          

5 We might think of these ranges as estimates of 99% confidence intervals for the parameters.
6 Analysts may want to limit this to downside uncertainty.
7 Analysts can decide upon the appropriate distributions for each application.
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MT program risk against the expected net benefits are political decisions that, probably, can
be best determined in a public regulatory environment.8  Once we have set down these rules,
we can define a score for each program alternative given its expected net outcome and its
expected level of risk.  As noted, the policy makers’ score for each program will rise with its
expected net benefits and fall with its level of risk.  This benefit/risk program ranking
approach is important for choosing among competing programs and can also be of use in
helping to determine an optimal program research strategy.

Following a typical approach in the asset allocation literature, we might write such a
ranking function as

2.  ),( σµRR =

where R represents an MT program score or rank,  as above, µ represents the expected net
program benefit, and σ is a measure of program risk.  In general we suppose that benefits are
good and risk is bad; i.e.,

3. ;0>
∂
∂
µ
R  and

4. .0<
∂
∂
σ
R 9

Equation 3 expresses the idea that we would expect policy makers to give higher scores to
programs with greater net benefits (energy/peak savings), other things equal.  Equation 4
expresses the idea that we would expect policy makers to give lower scores to programs that
are more risky, other things equal.

It should be stressed that this approach does not rely on a simple hit-or-miss
diversification of program elements to minimize risk.  Rather, the current approach relies on
optimized program and research/pilot-program expenditure allocation to enhance the risk-
reducing benefits of diversified program design.

Controlling Outcomes and Risk: An Integrated Design/Research Strategy
For MT Programs

Conservation program research is generally performed to confirm or deny assertions
about program effectiveness.  In the current context, however, we take a somewhat more

                                                          
8 We might think of a point system for ranking MT programs.  The idea here is that the program would

receive more points if it had higher net benefits and fewer points if it were more risky.  Note that the net
benefits would probably be measured as a net present value for most programs, since this would allow us to
compare differing time streams of costs and benefits for alternative programs.  In addition, we can also consider
program ranking procedures that would take into account possible program goals such as longevity and
privatization.  Note, however, that adding these particular goals would duplicate, somewhat, the functioning of
the net present value ranking criterion, since this criterion would already take into account the length of the
benefit streams as well as the magnitude of the stream of public costs.

9 In the asset allocation literature, there are also generally assumptions about the sign of the second
derivative of R with respect to σ.
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general approach and view MT program research as a means to reduce the overall uncertainty
attached to the program.  For many research projects the projected reduction in the range of
error will depend upon the size, and therefore the cost, of the research sample.  Of course, the
research projects can take many forms ranging from estimation of simple means of market
characteristics from surveys to analysis of full-program pilot projects.10 Since the resources
for program research may be viewed as competing with program implementation, it seems
appropriate to find an optimal resource allocation for research.  In this setting, the total costs
for a program are treated as the sum of the implementation costs and the research costs.

The solution of any optimal resource allocation problem requires a careful
specification of means and ends, and optimal resource allocation for social policy is no
exception to this rule.  In the current setting, the resource allocation optimization problem
might be phrased as follows: find the allocation of expenditures on MT program
implementation activities and research that maximizes the benefit/risk ranking score
obtainable from a given budget.  Solving this optimization problem will likely require the use
of iterative numerical techniques that take account of the benefit/risk scoring method
described above, the market simulation model described above, estimates of the relationships
between research elements and uncertainty reductions, and the unit costs of alternative
program and research elements.

To show how such a joint program implementation/research optimization procedure
would take place, it may be useful to cast this the problem in a simple analytical setting.
Consider a one-node conservation-program example.  In this case there is only one element
in the program implementation budget vector BI; but how do we allocate our total budget, B,
between program implementation, BI, and research, BR.  For this example we will suppose
that both the expected savings from the program and its riskiness rise with increasing
program implementation expenditures. In addition, suppose that program riskiness falls with
increasing program research expenditures.  Then we can write,

5.     0);( >
∂
∂=
BI

BI µµµ  ;

6. 0;0);,( <
∂
∂>

∂
∂=

BRBI
BRBI σσσσ ;

and,

7.  BRBIB +=

where B represents the total program-related budget, BI represents the budget component
allocated to program implementation, and BR represents the budget component allocated to
program-related research.  In general, the information necessary to specify the relationship
between expected program savings and the implementation budget (equation 5) will be
obtained from the market clearing equations discussed in section III above and any technical

                                                          
10 The latter might be particularly useful for uncovering market characteristics which might have been

overlooked by program designers.
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(engineering/empirical) information that relates program elements to ultimate goals. The
relationship between program riskiness and the implementation and research budgets
(equation 6) can be obtained from the simulation studies in section IV above, and from
statistical studies relating sample size to parameter variances.

Given these relationships, we can find the allocation of budget elements BI and BR
(i.e., the program implementation and research budget components) that will maximize the
program’s ranking score (see equation 2) for a given total budget B.  One way to carry out
such an optimization procedure is optimize the relevant Lagrangian function, L, as follows:

8.  [ ]BRBIBRL −−⋅+= λσµ ),(

or substituting equations 5 and 6 into the R portion of the Lagrangian equation, we have.

8a.  [ ] [ ]BRBIBBRBIBIRL −−⋅+= λσµ ),(),(

where λ is an undetermined Lagrangian multiplier.  We can find the optimal budget
allocation for program implementation and research (BI and BR) by setting the first
derivatives of equation 8a. with respect to BI, BR and  λ equal to zero and solving these
derivative equations for BI and BR.11

It should be understood that the optimal allocation of expenditures on program
implementation activities would very likely result in program actions and measures directed
at a combination (portfolio) of market nodes rather than at one market node.  Furthermore,
we may want to consider several types of program implementation activities for each market
node.12  In the same way, it should be understood that the optimal allocation of research
expenditures would very likely be directed at a combination (portfolio) of studies of market
linkage parameters, rather than at one market linkage or one parameter.  This diversification
of program resources would be viewed as optimal in this sense: it allows us to obtain the
optimal combinations of program return and risk levels for any given budget.  Without such
an approach it would be difficult to know how much in the way of resources to devote to each
program and research element.

To carry out this more general type of optimization procedure we would write a more
detailed version of equation 8a as follows:

9.  
[ ]
[ ])...()...(

),...,;,...,(),,...,(

,1,1,1,1

,1,1,1,1,1,1

KJMN

KJMNMN

BRBRBIBIB
BRBRBIBIBIBIRL

++−++−⋅+
=

λ
σµ

where mnBI ,  (n=1,…,N; m=1,…,M) is the budget devoted to program implementation
element m directed at market node n; and kjBR ,  (j=1,…,J; k=1,…,K) is the budget devoted to
research element k of market-clearing or technical relationship j.

                                                          
11 A second derivative test is also necessary here to assure that these BI and BR values will yield a

maximum R and not a minimum R or a saddle point.
12 See, for example, the alternatives listed in the table in section II.
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Other things equal, the optimization procedure can be expected to favor program
implementation or research elements that are relatively inexpensive and/or relatively
productive in increasing program returns or decreasing risk.

Extensions

The analytical approach in this paper has thus far cast the optimization problem in a
simple static setting.  If, however, we take the timing of each program element and benefit
into account, we will be solving for optimal trajectories of program elements rather than their
optimal static values.  For such an optimization procedure we would find it useful to use a
related optimal control approach rather than the static Lagrangian approach presented above.

In addition, note that the optimization problem is phrased in terms of a given budget;
i.e., the size of the budget is an input, not an output, of the optimization procedure.  This
approach, however, does allow us to solve for the most effective combination of program
elements that can be obtained from any budget size.  This, in turn, would allow us to
calculate a ranking increment for every expenditure level.  Thus, the budget size is
determined politically, although the public debate over efficient use of budgets can be
informed by the current simulation framework.

A more general optimization framework, in which the budget size itself is determined
by the optimization procedure, can be constructed if we are explicit about the social ends to
be served by the MT policy.  For example, we may wish to use MT energy policies to help
solve air-pollution problems or to reduce vulnerability to collusion by foreign oil producers.
If we can establish a comparable valuation rule for such social ends (e.g., express these
problems/issues in dollar terms), we can include them in our benefit/risk program ranking
approach.  In this case we would be able to solve for the socially optimal level of total MT
program expenditures as well as the allocation of expenditures across program measures and
parameter research.

Finally, another very general optimization approach would be to embed the
simulation model and the benefit/risk scoring method in an adaptive control loop.  This
approach would allow us to optimally adjust data collection, research and program measure
implementation over time as we acquire more information and as the state of the market
changes.
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