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ABSTRACT

The energy consumption in residential buildings is determined by both technical features
and the occupants’ behavior. The quantification of the occupants’ contribution to the energy use is
generally based on models that can be difficult to collect or only loosely associated to the level of
occupant activity. In this paper we report on an investigation of using monitored carbon dioxide
(C02) concentrations as a generalized parameter to predict occupant contribution to the variation
in the energy consumption.

The energy consumption of an occupied single-family building was monitored during a
heating-season. Collected data included indoor and outdoor temperatures, relative humidity,
indoor C02 ratio and energy consumption for space heating, domestic equipment and water
heating. The data were aggregated into daily averages and carefully investigated by a correlation
analysis and a principal component analysis. One cluster of parameters was determined to be
occupancy-related. An important parameter in this cluster was the monitored COZ. Additionally,
the C02 was found to be useable as input in a prediction model, based on a neural network.

We have compared two similar approaches — one approach with and one without access

to the genera.limd C02 measure — for predicting the variation of the energy consumption. This
evaluation indicates that the incorporation of COZ as a measure occupant activity improves the
accuracy of the predicted energy consumption.

Introduction

The energy consumption for an occupied residential building is determined by both
building technical features and occupant behavior. The building technical features can be obtained
from the design stage or from measurements. The occupant-related energy consumption is most
often treated more generally, since it can be difficult to predict. Also in the literature much
attention isn’ t usually devoted to inhabitant influences on the variation of the energy consumption.

A multiple regression analysis indicated that inhabitants caused more than 80% of the
variation in the heating load, of 87 single-family buildings in Sweden (Gaunt 1985). An
investigation of the uncertainties in the energy consumption for Norwegian conditions indicated
that, without knowledge of influences from the inhabitants, the total energy consumption could
not be predicted more accurately than +15-20% (Pettersen 1994). The corresponding uncertainty

for heating demand was HO-25 % for buildings in cold Norwegian climates and +35-40% for
buildings in mild Norwegian climates.

There have also been studies attempted to analyze the predictability of occupancies end-
use patterns. Time-series and standard deviation methods were applied on weekly end-use energy
consumption in a University of Washington project (Emery and Gartland 1996). That model was
based on measured indoor temperatures and energy end-uses patterns of four occupied buildings,
which were measured during 1987-94. Also other methods of modeling these patterns can be
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applied for example simplified functional descriptions. Additional y, backpropagation neural
networks have been applied to model the heating use for residential buildings (Olofsson,
Andersson & Ostin 1998).

Including descriptive parameters related to the occupants’ behavior is important for
modeling the energy consumption. For residential buildings it would be reasonable to expect that
the indoor carbon dioxide (C02) ratio would be a good measure of the occupant’s activity, since
C02 is usually used for assessing outdoor air ventilation rates and indoor air quality in buildings.
In buildings occupants are the main source of C02, which forms the basis for the 1 000 ppm
guideline in (ASHRAE 1989).

In this work the possibility to model the occupancy related energy consumption for
inhabited residential buildings was investigated based on an investigated set of parameters,
including the COZ ratio. The investigated approach was based on principal component analysis
and backpropagation neural networks.

Methodology

Data measurements

A single-family building was monitored during the time period 1995 to 1996 (Olofsson
97). One aim was to make an extensive measurement in order to study a model of the energy
consumption based on the monitored parameter. The monitored building was an inhabited single
story row house, built in 1974 and located in Ume~ (700 km north of Stockholm, Sweden). The
building was ventilated by a mechanical exhaust fan and the space heater and domestic hot water
heater were both electric. The framework was made of wood, and the walls were insulated with
0.120 m mineral wool and the roof with 0.180 m. All windows were double-gkczed with a double
window frame. The floor area was 137 m2 and the total UA-value was 189 W/”C.

The data were measured every 30 seconds and stored as half-hourly mean values. A Data
Taker (DTIOO, version 3.4) data logger, manufactured by Data Electronics (Aust) Pty Ltd.
handled acquisition of data. The Data Taker was running in standalone mode and a telephone
modem was used to transfer data to a personal computer. A combined temperature/humidity
gauge was installed in the kitchen, dining room, bedroom and bathroom. Vaisala Oy
manufactured the gauge of type HMW 30 YB. The temperature sensor was a Pt 100 (1/3 DIN

43760 B) and the relative humidity sensor was an HUMICAP@ HO062. T-type thermocouples
(copper-constantan) were used for measurements of air and surface temperatures in the living
room, the kitchen and outdoors. Measurements concerning supplied space heating demand,
domestic hot water preparation and supply of electricity for domestic equipment, were performed
with Cewe gauges, model Wh 3063/640, class 2 IEC 1036. A COz-ratio gauge, which was
equipped with an IR-detector and manufactured by Mitec Electronic AB as Valtronic model 2089,
was installed in the dining room, which was in the center of the building.

Further, measured data of seven additional single-family buildings in Umeh have been
used in this work. The data were monitored during 1989 and 1990 and compiled in an earlier
project (Jonsson and Ostin 92). All measured buildings were built in the late 1960s and early
1970s. For some buildings the frameworks were made of wood and for the others of concrete.

The floor area varied between 112 to 196 m2, the UA-values varied between 90 to 200 W/°C and
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the total annual energy demand were in the range of 120 to 270 kWh per m2 floor area, while 70
to 160 kWh per m2 were used for space heating. Measured data were outdoor and indoor
temperatures, space heating demand, domestic hot water heating demand and energy demand for
different apparatus.

Artitlcial Neural Networks

Neural networks have drawn attention for their capability to learn complex non-linear
dependencies without any preconceptions of intrinsic relations in the processed data. Instead of
demanding any explicit rules or knowledge the rules are included in the system (Pao 89;
Wasserman 89; Wasserman 93). There are many different neural networks. In this work we

investigated backpropagation networks updated with the generalized delta rule.
The backpropagation algorithm, which represents a training procedure, can be applied to

neural network structures consisting of arranged connected neurones, or processing elements
(PE). In figure 1 an example of a neural network structure is shown. It consists of three layers;
input, hidden and output layer. Input data are fed into the input layer, through the network of
comected PE’s, to the output layer.

Output layer

Hidden layer

Input layer

Figure 1. A schematic neural network structure with processing elements arranged in output,
hidden and input layers.
Each PE in the network receives a signal (S), which is a weighted sum of (k) values of the
transferred fimctions (1’) from the PE’s in the previous layer. The influence I’ from each PE is
handled by the adjustable weighting factor (~ according to

S = ~ykIk (5)

Each obtained output (I) in the output layer is compared with a desired output (D). A correction
of the values of the weights are calculated from the deviation between the desired and the actual
output and the derivative (T’) of the transfer function as

E = T’(S)(D - I) (6)
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The correction E is used to adjust the weights backward through the network. After the correction
process the input values can be transferred again and a new set of outputs is obtained. The
process of adjusting the weights backwards is repeated until the correction value is less than a
pre-defined limit. Then, the weights are fixed and a new set of data is fed through the network.
This final step, called testing, represents the estimation process.

In the literature it can be found that backpropagation neural networks have been applied in
a large number of fields, e.g. signal processing, pattern recognition and classification, but also
for building energy demand predictions. In (Kreider & Wang 91) neural network techniques were
used to model the energy demand for an office building. Neural network applications have also
been used in HVAC-control systems in an office building (Curtiss, Kreider and Brandenmuehl
94) for optimizing the energy demand. In a building energy prediction evaluation organized by
ASHRAE in 1993, called The Great Energy Predictor Shoot-out I, (Kreider & Haberl 94) five of
the six most successful models used different neural network techniques. The winner of the
competition (MacKay 94) used a model based on preprocessing the environmental input data set.

Priicipal Component Analysis

Principal component analysis (PCA) is a method that can be used when there is
intercorrelations among independent multivariate parameters. The PCA obtains a coordinate
transformation of a multivariate data set to a new set of orthogonal parameters. The transformed
dataset describes most of the variation of the original dataset in a smaller number of parameters.
The new set of parameters, or principal components (PC), are defined with a decreasing order of
importance, from the first to the last.

Suppose a p-dimensional variable Xr= (X1,X2,..., h) with mean A and covariance matrix Z. The
transformation of XT can be described as an orthogonal rotation (Chatfield & Collins 92). The
new set of variables Yr= (Y~, Y2,..,, YP)is linear combinations of the Xs according to

~ = aljXl +a2jX2+...+aPjXP = a~X (1)

where the vector of constants ajT= (alj,azj, . . .,apj) is orthonormal, i.e. iijTaj= 1. The principal
components, Y, are uncorrelated with decreasing variance. Thus, the first principal component
YJ, or PC1, can be found by choosing an al that maximizes the variance of E. Using equation (1)

and by introducing Z the variance can be given by

J’ar(lo = Var(a~X) = a; X a, (2)

By applying the method of Lagranges multipliers it can be found that (X-lj)aj =0. Further, it can

be assumed that Z has p eigenvalues, or latent roots, which are defined according to

al>A2> . ..> &_Xl. Thus, equation (2) can be written as

(3)
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The second principal component, PC2, with an eigenvalue equal to 12, is an orthogonal vector to
PC1. PC2 is found with the same method and the procedure can be repeated until the last
orthogonal PC is defined. A scaled vector of the properties of the investigated parameter with
respect to the principal components is given by the component loadings defined as aj*. It is
possible to obtained aj* by scaling aj according to

raj*= l~a~ (4)

If the component loadings are added in a matrix C= (al* ,az*,.., ~a *) the definition of Z is given
by Z=CCT.

PCA has been applied in different fields, see for example (Reddy 95; Ruth 93; Madsen
93) for guidance of how to reduce the number of modeled physical variables and also to describe
the most significant explanation in a fewer number of transformed PC’S. Measured building
performance data are often noisy and PCA has additionally been used in order to reduce the
noise.

Model

The energy consumption for a residential family building can be modeled from factors
related to the technical features and the influences of the occupant’s behavior. A certain interest
in this work concerns a description of the occupants’ influences on the energy consumption.
Based on the monitored building, the supplied electricity for domestic equipment P~/(t) and the
demand for hot water preparation PDmv(t), can be described as occupant related energy
consumption. The sum of these two parameters is defined as the domestic heat load Pdom(f).

The following investigation for describing the occupants’ influences on the energy
consumption is based on daily average values of the parameters of the monitored single-family
building, which were measured during the heating season 1995 and 1996. Based on a preliminary
analysis the following nine parameters were selected for further investigation:

xl:
x2:
x3:
X4:
X5:
x6:
Xz
x8:
x9:

The difference between average TIA and TM, (~.
Measured indoor air COz-ratio, COZ.
The indoor average relative humidity, (RH).
An annual sinusoidal distribution of solar irradiation, (1s).
A typical weekly distribution of inhabitant activity, (Iw).

Supplied load for electrical equipment, P~I(t).
Supplied load for domestic hot water preparation, Pmnv(t).
Supplied domestic load, Pdom(t).

Supplied space-heating load, (P~@)).

The first step in the investigation determined if some groupings were identifiable in the
chosen set of parameters. This identification was based on an analysis of the correlation matrix. If
this analysis indicated on clusters, the next step for eliminating original parameters contributing
relatively little information would be a PCA, The PCA was used to minimize the dimensional lity,
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i.e. the number of variables, since PC1 includes as much as possible of the variation in the

original data set, PC2 as much as possible of the residual variation and so on. It is important to
notice that the elimination of the latter PC’s assumes small variances. This variance can be

indicated by an examination of Aj, which also can give an indication of the effective
dimensionallity of the original data. Based on the PC’s, that have relatively high variances, the
explanation in the original variables can be investigated from the component loadings. Thus, the
examined PC’s can confirm and indicate if certain parameters may be clustered and if the clusters
are related to either influences of technical features or influences of occupants behavior.

The last step in this analysis concerned the cluster describing the occupant-related energy
consumption. Parameters from this cluster were used for predictions, which were based on neural
networks. The investigated models were used to predict Pdom(t). All predictions concerned the
annual variation and were based on access to daily averages of a short time period, typically 3-5
weeks. This test concerns two approaches of models. In the first approach no access were

presumed to the measured C02 for the reference building. In the second approach the measured
C02 parameter was included. For a more detailed description of the implementation of parameters
and the training and testing of the neural networks, see (Olofsson, Andersson & Ostin 98).

Results

Based on the introduced procedure the correlation matrix was calculated for the suggested
nine parameters, in order to get a first indication of eventual groupings of variables. A rather
high correlation is found between xl, x4 and x9, i.e., e , 1s and Ptil(t), see table 1. The relatively
high correlation between x2 and x6, i.e., COZand P~/(t), is also noticeable.

Table 1. The correlation matrix calculated for the investigated nine parameters.

xl

x2
x3
x4
x5
x6
x7
x8
x9

xl
1.000
0.241
-0.671
0.828
-0.032
0.468
-0.185
0.290
0.860

x2

1.000
0.184
0.400
0.415
0.703
-0.013
0.242
0.189

x3 x4 x5 x6 x7 x8 x9

1.000
-0.424 1.000
0.123 0.036 1.000
-0.220 0.494 0.377 1.000
0.199 -0.168 -0.069 -0.024 1.000
-0.201 0.287 0.076 0.365 -0.002 1.000
-0.704 0.770 -0.024 0.451 -0.154 0.319 1.000

Since the correlation matrix indicates some obvious groupings a PCA was carried out both in
order to confirm and to get further indications of eventual patterns in the data set. The result of
the investigation of the principal components is presented in figure 2 as two plots. In the first plot

values of lj are shown in percentage of the total variance minus a noise limit, which is defined at
12.5 %. In the investigated data set two latent roots were found above the limit of noise, defined
at O% in figure 2. This indicates that the first two PC’s can be considered for further
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investigations and the latter PC’s can be excluded, since they contain too little description and too
much noise.
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Figure 2. Results of a PCA for the parameters of the investigated building. Values of Aj minus a
dejlned limit of noise are presented for each PC-in the upper plot, where ‘PC1 is the-jirst root to
the lej? and PC9 is the last root to the right. In the lower plot the component loading is shown for
variable xl to x9, from the lejl to the right on the x-axis.

The second plot in figure 2 presents the component loading, i.e., the properties of each parameter
with respect to the principal components, where PC1 is plotted as a solid line and PC2 as a

dashed line. The first PC, PC1, seems to be rather dependent on xl, x4 and x9, i.e., e , IS and
Ptit(t). This is in agreement with the correlation matrix, see table 1. The second PC, PC2, is
dependent on the parameters x2, x5 and x6, i.e., C02, Iwand P,/(t). Also this is in agreement with

the correlation analysis, although Zw then was less correlated. This analysis shows that PC1

mainly depends on variables that can be grouped as specific for the climate impact on the supplied

heat load. Additionally, it is shown that PC2 depends on variables that reflect influences of the

activities of the inhabitants living in the building.
Based on the indications achieved from both the correlation analysis and the PCA, two

parameters describing occupancy have been distinguished: C02 and P~/(t). A next question would
then be if C02 can be used in order to predict the variation of Pei(t), which in this work was
investigated based on a neural network model. The used neural network, which consisted of two
hidden layers of 2x1O PE:s, was trained using C02 and IW as inputs in order to predict the
variation of P?/(t). The model was trained on daily average data from one month and tested on a
data set including the first six months of 1996. The predicted P,/(t) was well adapted to most of
the short time fluctuations, as seen in figure 3. The RMS for measured and predicted P?/(t) was
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for the investigated periods better than 5%. Thus, one indication from this analysis is that
knowledge of the variation of CO 2 can be useful for predicting P,/(t),

.

Io I
I I [ 1 I I I I I [ I

1 15 29 43 57 71 85 99 113 127 141 155

Day nr

Figure 3. Measured and predicted Pet(t)based on data from May, i.e. day number 100 to 115.

As mentioned earlier Pdom(t) is the sum of Pmnv(t) and P~/(t). From the correlation analysis
and PCA presented above, we noticed that Pd.m(f) is not as strongly correlated to C02 as Pef(t).
However, in order to investigate if the use of a generalized model of C02 would also improve the
annual prediction of pd..(t) two somewhat similar approaches to model the domestic load in
buildings are included in this work. One approach with and one without access to monitored COZ.
For both approaches a neural network model was used, in order to predict the domestic load
based for the set of buildings measured during the heating season 1989/1990.

No access to COZ was included in the first approach. Measured temperatures and Is, were
used as inputs in a neural network model in order to predict Pdom(t) (Andersson, Olofsson & Ostin
1996). The model was based on implanted PC:s of TM, TIA, Is and Pdan(t) of a similar reference

building measured during the same heating time period. Thus, an indirect generalization of the
dependency between the parameters was achieved. From this investigation the deviation between
the predicted supplied heating load pdom(t)NN and the measured supplied heating load pd..(t),

[pdom(t)NN/pdom(t) -~], is shown in the left histogram in figure 4.
The detailed measurements of the new reference building with access to C02 were used as

reference performance data for the second approach. As inputs TEA, TIA, 1s, pd..(t), COZ and IW

were used, transformed to PC’s and implemented in the neural network model (Olofsson,
Andersson & Ostin 1998). This model was tested on buildings without access to the measured
COz-ratio. The results of applying this approach are presented in the right histogram in figure 4.
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Figure 4. The deviation between predicted supplied heating load pdotn(t)NN and measured supplied
heating load Pdom(t), [pdom(t)fWV/pdom (t)-l] is shown on the x-axis and number of periods on the y-
axis.

The distribution of the average accuracy was improved from a maximum deviation of

about M). 3 in the left histogram, figure 4, to M).2 in the right histogram. The more accurate and
stable estimations of the domestic load were obtained from the model based on data including the
generalized model of C02. Although the two approaches are not fully compatible, it is reasonable
to believe that an important part of the improvement is due to the incorporation of a social
activity parameter, in terms of CO 2.

Conclusions

An investigation has been made of measured data based on a daily average of a monitored
residential building. This investigation included a correlation analysis and a PCA. From this
investigation two clusters were identified. One cluster was more related to building technical
features and the other to the occupants’ behavior. From the second cluster it was indicated that
COZ could be a good descriptor of the occupied related energy consumption. This was also
confirmed from a test of prediction with a neural network.

Additionally, two different approaches were investigated in order to predict the annual
variation of Pdom(t) (i.e. the sum of Pmnv(t) and P./(t)), one approach with and one without access
to a general description of COZ. Both approaches were based on neural networks and the aim was
to investigate if using C02 could indicate eventual improvements. The approaches were based on
measurements in different reference buildings and are not fully compatible. However, the
estimations were made on the same measured data sets. In this investigation the range of the
average accuracy was improved from Ml, 3 to Ml. 2 by using the approach including a
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generalization of C02. This we take as an indication that C02 could be used as a measure of the
inhabitant activity.

In the fhture it will be of interest to investigate the model based on a more diverse set of
residential buildings, concerning both building type and climate, which all have access to
monitored COZ In this study the investigated models assumed access to daily averages of COZ.
Thus it is reasonable to expect that the predicted accuracy will be improved based on shorter time
periods than daily averages. An additional matter to consider is that the modeled buildings had a
rather constant ventilation rate. A more random variation of the ventilation rate would adversely
effect the C02 rate as a measure of occupant activity.

Finally, it is of importance to notice that this study was performed on buildings located in
northern Sweden, where the climate is relatively cold. Energy consumption in these buildings is
dominated by the heating demand and the domestic load will represent a minor contribution to the
heating. Conditions are different in warmer climates, where the relative contribution of the

domestic load of buildings to the heating load is larger. Thus, the relevance of studying the
domestic load may be even more important and the use of a generalized model including C02
would be a topic for later studies.
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