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Double ratio estimation is a statistical technique for combining (1) program tracking information in the population,
(2) on-site visits and engineering modeling in a large sample and (3) short-term monitoring in a small sample. The
approach is one way to leverage expensive short-term monitoring with supporting information. This paper
describes the methodology and discusses its use for lighting retrofits in the impact evaluation of PG&E's CIA
program. The paper also discusses the difficulties of collecting pre/post information on a rigorous sampling basis

and recommends severa alternative approaches.

Introduction

Double ratio estimation is one way to leverage expensive
short-term monitoring with supporting information. This
paper describes the methodology and discusses its use for
lighting retrofits in the impact evaluation of Pacific Gas
and Electric’'s (PG&E) Commercial, Industrial and Agri-
cultural (CIA) Energy Efficiency Rebate program for 1992
participants. In the CIA evaluation, double ratio estimation
was used to combine (1) program tracking information in
the population, (2) on-site visits and engineering modeling
in a large sample and (3) short-term before/after moni-
toring in a small sample. The paper discusses both the
foundations of the double ratio methodology and the
difficulties of pre/post sampling.

Double ratio estimation is a blend of double sampling
(sometimes called two-phase sampling) with ratio estima-
tion. The statistical foundations are discussed in several
references (e.g., Cochran 1977, Sarndal et a. 1992, and
Appendix C of Pacific Gas and Electric 1993). The appli-
cation of double ratio estimation to DSM evaluation was
first discussed in Townsley and Wright 1990, A more
in-depth discussion of PG&E's CIA application is in
Pacific Gas and Electric 1993.

The PG&E CIA Rebate Program

The CIA Rebate program, which began in 1990, provides
cash incentives to commercial, industrial and agricultural
customers who install a wide range of energy efficiency
measures. The program covers end uses such as lighting,

HVAC, agricultural measures, motors, refrigeration, and
industrial processes. The CIA program is comprised of
two subprograms. In the Customized program, the cus-
tomer receives a rebate that is directly related to the
calculated energy savings for the retrofit. The Express
program is a direct-rebate program that offers the
customer a set dollar amount for specified equipment.

Motivation for Double Ratio Estimation

Double ratio estimation was used, together with a more
conventional billing analysis, to estimate the gross energy
savings for the CIA program. The anaysis statistically
combined project-specific estimates of participant energy
savings from three sources: (1) the CIA program tracking
system which provided information from each rebate
application, (2) engineering modeling carried out in a
relatively large sample, and (3) short-term end-use meter-
ing in a small sample.

The double-ratio approach reflects the following assump-
tions. First, although program tracking system estimates
of participant savings are essential to operating and moni-
toring DSM programs, their estimates are not, in and of
themselves, sufficiently reliable for broad acceptance by
policy makers. Second, engineering analysis and models
of energy savings can often provide improved engineering
estimates of DSM measure savings and useful information
on the underlying parameters and assumptions used to
plan and evaluate DSM programs. Finaly, end-use and
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appliance monitoring has the potential to provide the most
accurate information on how DSM measures affect energy
consumption.

The goa was to estimate the CIA program’s total gross
savings with adequate reliability. The difficulty with
employing monitoring without supporting information is
that large samples are generally needed. Monitoring must
be timed to measure al the major determinants of DSM
savings in both the pre- and post instalation periods.
Monitoring must be maintained for a period of time repre-
sentative of the conditions under which the DSM measures
will operate over their lifetimes. Moreover, the accuracy
of the measured results can be jeopardized by a host of
other factors including calibration and accuracy problems,
sampling problems among buildings and within buildings,
interaction between the treated end use and other end
uses, and the wide diversity of building types and meas-
ures in the target population of participants. In short, it is
costly and time-consuming to do a good job of monitoring
in a large sample.

For these reasons, monitoring studies traditionally have
been limited to unique situations where it is cost-effective
to collect high resolution data on a small number of cus-
tomers and a narrow range of technologies. For large
scale DSM programs such as CIA, with thousands of par-
ticipants and many qualifying technologies, monitoring is
often thought to be too limited and impractical to be used
to provide reliable evidence of program impacts.

Engineering models come in many forms. Their common
feature is that they combine participant-specific building
equipment and end-use information with engineering algo-
rithms to estimate energy savings from DSM measures.
Engineering-model estimates of energy savings may be
more accurate than program tracking system estimates.
This is because simulations calculate end-use consumption
in a more complex and realistic manner than the stream-
lined, non-interactive formulas that are often used on
program applications, especially for programs such as the
Express program. Also, they often use better site-specific
information, typically requiring one or more surveys or
inspections of each participant site that is modeled.
However, the costs of engineering modeling are generally
significantly lower than monitoring costs, and thus
engineering sample sizes can be substantially larger than
monitoring samples.

The double ratio estimation methodology attempts to
exploit the strengths and avoid the weaknesses of each of
these measurement techniques. It was designed to make
efficient use of costly, high resolution monitoring data in a
small sample by using these data to calibrate less costly,
less precise engineering-model estimates of savings for a
much larger sample of participants. The engineering-

model estimates were used, in turn, to adjust the low cost,
least accurate tracking system estimates of savings
available for the entire population of 1992 program
participants.

The Sample Data

This paper uses the CIA study to illustrate the double ratio
methodology. The samples consisted of 61 program par-
ticipant sites that were monitored during their pre- and
post installation periods and 282 program participant sites
that received on-site inspection and had their energy use
analyzed using an engineering model. The 61 monitored
sites were a subsample of the 282 engineering-model sites
so we could compare the modeled results to the monitored
results for each of these sites. Table 1 shows the break-
down of sites by end use and program. For these sample
sites as well as for the entire 1992 CIA participant popu-
lation of 7,990 sites, tracking system estimates of energy
savings were also available.

Table 1. Sample Sizes
Modeled Monitored

End Use Program Sites Sites
Lighting Expr 96 16

Cust 133 36
HVAC Expr 25 0

Cust 18 9
Refrig Expr 4 0

Cust 6 0
Total 282 61

A two-phase sampling plan was developed for selecting
the monitored and modeled sites from among the popula-
tion of program participants. The sampling plan was
stratified by program type, measure category and the
tracking estimate of savings. Model-based statistical
sampling techniques were used to construct the strata and
alocate the sample optimally given the information that
was available at the time the sampling plan was designed.
The goal was to minimize the overall sampling error of
the combined field monitoring and engineering model
estimates of program energy savings for the available
resources. The methods are described in Sarndal et al.
1992, Wright 1989, Appendix C of Pacific Gas and Elec-
tric 1993, and the next major section of this paper.

In practice, recruiting the samples for pre/post measure-
ment was difficult and expensive. In the Express program
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it was nearly impossible to cost-effectively draw a sample
for pre-retrofit measurement because the program pro-
vided no prenctification of intent to participate prior to the
retrofit. Surprisingly, the recruiting problems were almost
as difficult in the Customized program due to short lead
times and inability to predict when projects would actually
be implemented. The recruiting problems were especialy
serious for the pre-retrofit monitoring. To emphasize, the
problem was not lack of customer cooperation but lack of
information about upcoming projects.

Results from this study were reported in terms of realiza-
tion rates. A redlization rate is the ratio of the measured
savings to the assumed savings in the tracking system.
The double ratio analysis consisted of calculating two
ratios, (1) the ratio between the average modeled savings
and average tracking savings observed in the modeled
sample and (2) the ratio between the average monitored
savings and average modeled savings observed in the
monitored sample. The two ratios were then multiplied to
determine the overall realization rate.

To partially compensate for the recruiting problems, the
fina samples were post stratified and reweighted to the
target populations. These weights were used to calculate
the averages used in each of the ratios. The strength of
association between the estimates of savings was calcu-
lated across the sites within each sample and used to eval-
uate the statistical precision of the double-ratio estimates.

Lighting Results

As Table 1 shows, most of the sample sites were lighting

retrofits so these will be used to illustrate the double ratio
methodology. The period of monitoring varied from one
lighting site to another, but on average, these sites were
monitored for about 5 weeks before the retrofit and about
3 weeks afterwards. Table 2 contains the mean estimates
of program energy and demand savings for lighting meas-
ures that were installed under the Express and Customized
programs. The relative precision of the ratios of the
sample estimates are provided within the table.

Table 2. Intermediate Results for Lighting Measures
1st Phase Modeled to 2nd Phase Monitored to
Tracking Modeled
Expr Cust Expr Cust
CSamnle Size Qf 12 14 24
Sample Size 96 133 16 36
Short-term Monitoring
Mean MWh Savings -- -- 53.3 32.2
Mean kW Savings -- -- 10.5 5.2
Engineering Modeling
Mean MWh Savings 29.1 31.2 42.2 26.2
Mean kW Savings 5.3 5.7 8.1 4.8
Trackino Svctem
Tracking Svstem
Mean MWh Savings 34.4 51.2 -- --
Mean kW Savings 8.2 8.7 -- --
Results
Ratio (MWh) Savings 0.85 0.61 1.26 1.23
Relative Precision +18% +8% +22% +21%
Ratio (MWh) Savings 0.64 0.66 1.29 1.08
Relative Precision +20% +10% +18% +17%
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The first-phase results indicate that the engineering model
estimates in the Express program were 15% and 36%
smaller than the corresponding program tracking estimates
of the energy and demand savings. The relative precision
of these estimates were +18% and *£20%, respectively.
This means, for example, that the 90% confidence interval
for the true ratio between the engineering model estimates
and tracking estimates is 0.85 x (1 + 0.18 ) for energy
savings. The second-phase results indicate that the short-
term monitored estimates were 26% and 29% larger than
the engineering model estimates of the energy and demand
savings. The relative precision of these ratios were similar
to those of the ratios of engineering modeled to program
tracking savings. Analogous results were developed for
the Customized program.

The three estimates of program-related savings were
combined by multiplying together the first and second
phase ratios. The results of these calculations are the
realization rates displayed in Table 3. The error bounds
were calculated at the 90% level of confidence using a
procedure discussed in Appendix C of Pacific Gas and
Electric 1993.

Table 3. Final Realization Rates for Lighting
Measures

Expr Cust Total

Energy (MWh)

Realization Rate 1.07 0.75 0.93
Error Bound +.42 +.09 +.26
Relative Precision  +39% +12% +28%
Demand (kW)

Realization Rate 0.83 0.71 0.8
Error Bound +.26 +.11 +.23

Relative Precision +31% +15% +29%

Caveats

The error bounds reported in Table 3 may underestimate
the true uncertainty in the double-ratio results. Potentially
the most serious problem was the recruiting difficulties in
obtaining the before/after measurements. The double-ratio
results rest strongly on valid sampling in both phases. If
the sampling breaks down, it is difficult to quantify the
extent of any resulting bias or to make an objective allow-
ance for the additional uncertainty. The final section of
this paper offers several suggestions for reducing sampling
problems in future studies.

Other limitations should also be considered in interpreting
these results. The variability from sampling the metered
lighting circuits within the sites was not explicitly taken
into account. However, this source of variation may be
reflected in the total variation and therefore in the final
precision. The process for determining the savings in the
monitored sites may also not be as accurate as desirable.
In particular, it may be appropriate to give additional
attention to interaction effects between lighting and
HVAC.

Planning an Evaluation with Double-
Ratio Estimation

This section will summarize various elements of the
double-ratio methodology in greater detail. The emphasis
is on tools for planning a new study similar to the lighting
component of the CIA study.

The Error Ratio

The error ratio is the key parameter in planning a project
involving ratio estimation with optimal stratification. First
consider the case of a one-phase sample design. The reali-
zation rate is to be estimated by calculating a single ratio
relating the average measured savings to the average value
of the tracking-estimates of savings for the sample.

The central issue is to choose the sample size needed for
the required relative precision with ratio estimation. The
expected relative precision and error bound were derived
following the principles of statistical sampling adopted to
ratio estimation with optimal model-based stratified
sampling. In the one-phase case, the expected relative
precision is primarily determined by the size of the sample
and the variability in the population. For ratio estimation
with a single sample of size n the equation is:

rp = 1.645 &L (@)
n

Here er denotes a measure of population variability called
the error ratio. For example, consider monitoring for
lighting measures in the Customized Program. In this
case, the error ratio was found to be about 37%. Wright
1992 defines the error ratio and describes several
estimation techniques. We use the MBSS™ software for
these calculations.

Given an error ratio of 37% and a sample size of 36, the
expected relative precision would be approximately
+10%:
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In planning a project, the preceding equation can be easily
solved for the required sample size, giving the equation:

n = 1.645 (ﬂ)z (3)
P

The error ratio reflects the strength of the association
between the two measures of savings that make up the
realization rate. If the association is strong, the error ratio
will be small and the relative precision will be correspond-
ingly good. The association is strong if, after adjusting for
the estimated redlization rate, the tracking estimates
generally give accurate project-by-project estimates of the
measured savings observed in the sample.

Figure 1 illustrates an error ratio of 37% similar to that
found in the Customized Lighting monitoring sample. The
X variable is the engineering estimate of savings from the
tracking system, The y variable is the corresponding
savings measured from monitoring. Each point represents
a particular project in the monitoring sample.

1200 .

Figure 1. Example of an Error Ratio of 37%

The solid line is drawn from the origin through the point
that represents the average value of the tracking estimates
and the average value of the measured savings. The slope
of this line is equa to the redlization rate. This line
represents the expected value of the measured savings for
each project.

The measured savings of each project also has a standard
deviation which represents its variability around the
expected value, represented by the dashed lines in Fig-
ure 1. In most cases, the standard deviation increases with
the expected value of the measured savings. In the

simplest case, the standard deviation is directly propor-
tional to the expected value. In this case, the error ratio is
the standard deviation divided by the expected value. For
example, if the standard deviation is equal to 37% of the
expected value, then the error ratio is equal to 37%.

The error ratio, therefore, indicates the strength of
support for the monitoring provided by the engineering
estimates. If the error ratio is small, then the measured
points will generally fall very close to the solid line. In
this case, a small sample will provide a good estimate of
the realization rate. In the extreme case that the error ratio
is zero, even one measured point would be adequate.

Conversely, if the error ratio is large, then a large sample
would be needed. For example, in the Lighting Express
program, the error ratio was 110 %. In this case, a moni-
toring sample of about 200 projects would be needed for
+10% relative precision. In this situation, the monitoring
sample might be reduced by developing improved engi-
neering estimates using modeling in a larger supporting
sample.

Error Ratios in Double Sampling

In the double-sampling case, the expected relative preci-
sion is related to two pairs of parameters. (1) the error
ratio and sample size in the larger first-phase modeled
sample, denoted er,and n, and (2) the error ratio and
sample size in the smaller second-phase monitored sample,
denoted er,and n,.

Here er,reflects the association between the tracking
estimates of savings and the engineering model estimates
of savings, while er,reflects the association between the
engineering model estimates of savings and the monitoring
estimates of savings. Then the expected relative precision
is:

C))

As an example, consider the Lighting Express case. In
this example, the first-phase error ratio is 84% and the
sample size is 96, while the second-phase error ratio is
46% and the sample size is 16. Using an optimally
stratified sample design in each phase, the expected
relative precision would be:

(34%)* , (46%)"
96 16

-+23% O

mw = 1.645\j
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Optimal Design in Double Sampling

A statistical study is said to be optimally designed if it is
expected to provide a specified level of precision at the
least cost. In the context of the CIA study, an optimal
design provides the best alocation of resources within
each phase and also between the first-phase modeling and
the second-phase monitoring.

The preceding section described an equation for estimating
the expected relative precision from estimates of the first-
and second-phase error ratios, together with the sample
sizes selected for the two phases. With some algebraic
manipulation, together with suitable assumptions about the
cost of the modeled and monitored samples, this equation
can be used to design the optimal double-sampling study.
The cost of the best double-sampling study can be com-
pared to the cost of a one-phase approach that achieves the
same expected precision using monitoring alone.

The results of this analysis will depend on the relative cost
per unit for the modeled and monitored samples. The
analysis presented in this section assumes that the
engineering model work can be carried out for $1,000 per
modeled project, while the field monitoring costs $10,000
per monitored project. Of course the actual costs will

depend on the characteristics of each particular program
as well as the approach to the modeling and monitoring
data collection and analysis.

Table 4 is based on the error ratios for the energy savings
(MWh) of lighting measures in the Express Program.
Column four reports the sample sizes for the modeled and
monitored samples under the optima double-sampling
approach. Column four also shows the sample size
required to provide the same relative precision using a
one-phase approach using monitoring alone. These results
show that under the stated assumptions the best double-
sampling experimental design requires 84 modeled and 15
monitored projects, while a one-phase approach giving the
same +25% expected precision requires 53 monitored
projects.

Column five of Table 4 shows the costs. The effectiveness
of the double-sampling strategy can be seen by comparing
the total cost of the modeled and monitored samples with
the total cost of the equivalent one-phase approach, in this
example $234,000 versus $530,000.

The results shown in Table 5 are quite different. This
analysis is based on the error ratios estimated for MWh
savings in the Customized lighting program. In this
situation, the best double-sampling approach is much more

Table 4. Optimal Sample Allocation for the Express Program

Error Ratio Unit Cost Samiple Size Total

Cost
NAA~AAAIAA oAD @~1 NnNnn O MmO a2 Ann
1v10aciea 04 /0 R 834 334,000
Monitored 46 % $10,000 15 $150,000
Total $234,000
One-phase 110% $10,000 53 $530,000

Table 5. Optimal Sample Allocation for the Customized Program

Error Ratis Uiit Cost Samiple Size Total Cost
Modeled 52% $1,000 68 $68,000
Monitored 78% $10,000 32 $320,000
Total $388,000
One-phase 37% $10,000 6 $60,000
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expensive than the one-phase approach using monitoring
alone. This is because the error ratio in the monitored
sample is actually larger than in the one-phase approach.
In other words, the monitored savings were more weakly
associated with the modeled estimates of savings than with
the tracking estimates developed in the program itself.

A comparison of these two examples suggest that double-
ratio estimation may be especially useful when the track-
ing estimates are weak as in the Express program. In the
Customized program, on the other hand, the tracking esti-
mates are strong and a one-phase approach to monitoring
seems to be practical,

Recommendations for Future
Studies

A number of observations and recommendations can be
made based on this experience.

The difficulty of collecting pre/post monitored data should
not be underestimated. It is often hard to predict when a
final decision to proceed with a project will be made. In
many cases the project is implemented very quickly once
the go-ahead is given. In other cases, the project is
delayed beyond the period of the monitoring study. Unless
information about most upcoming projects is available
with adequate lead time and assurance that the projects
will actually be implemented, it will be difficult to follow
a pre/post sample design rigorously. Without valid sam-
pling, the findings will be vulnerable to bias.

When valid pre/post sampling is impractical, aternative
approaches should be considered. One possibility is post-
retrofit monitoring. If post-retrofit information is ade-
guate, most of the sampling problems can usualy be
avoided.

Post-retrofit monitoring should be considered when (1) the
largest source of uncertainty concerns the hours of use of
the new equipment, or (2) there is reliable information
about pre-retrofit conditions, or (3) a standard retrofit is
used as a baselineg, i.e., the savings are calculated as the
difference between the high-efficiency equipment installed
under the program and standard equipment that would
have been installed in the absence of the program. In com-
mercia lighting retrofit programs, in particular, there is
strong evidence that the hours of use are generdly the
same before and after the installation of more efficient
lighting.

In some cases, it may be necessary to collect pre-retrofit
information for a sample of upcoming projects. In this

case it will generally be necessary to strike a baance
between (a) insisting on longer lead times with greater
uncertainty about implementation, and (b) developing a
method to collect data quickly within shorter lead times.
In most cases, it will be necessary to minimize the cost
and duration of the preretrofit data-collection that is
planned. For example, in a commercia lighting retrofit
program, pre/post site inspections and spot wattage
measurements might be combined with post-retrofit moni-
toring of hours of use. Alternatively, pre-retrofit condi-
tions might be measured in a separate sample of upcoming
projects.

Despite these problems, site-specific information about
measure impacts can provide very valuable information,
especially when valid sampling is used. The focus on
realization rates and error ratios can provide more cost-
effective sample designs that reflect the characteristics of
each program. This approach can aso strengthen the
feedback loop between (1) evaluation and (2) program
design and implementation. The double-sampling approach
can add a second feedback loop between monitoring and
modeling. Gradual improvement to the tracking estimates
and models can be expected to yield smaller error ratios,
improved precision, more effective programs, and higher
customer satisfaction.
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