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We systematically analyze impact evaluation results of three commercia lighting rebate DSM programs. Our
research includes (1) analysis of ex ante and ex post estimates of program performance, broken down into critical
program parameters. hours of operation, watts saved per measure, and measures installed per site; (2) construction
of probability distributions of program performance, both in the aggregate and for these critical program
parameters; and (3) use of these analyses and distributions to draw conclusions about the accuracy of savings

estimates from a variety of evaluation methods.

Our analysis suggests that realization rates (a ratio of metered savings estimates to tracking database savings
estimates) for the sample of participants we examine are subject to tremendous variability, calling into question the
usefulness of a point estimate of the realization rate. Discrepancies in estimates of hours of operation are
responsible for most of the uncertainty in the realization rate. Finally, the impact of shorter measure lifetimes on
savings estimates suggest that persistence studies should be an evaluation priority.

Introduction

The historical record shows wide variation in the perform-
ance of conservation programs, in part because the evalua-
tion of these programs is both difficult and expensive.
Despite the thousands of programs implemented in the last
15 years, no clear methodology exists for benefiting from
the lessons learned in previous programs. Nadel and
Keating’s paper on post-program savings estimates
sparked a debate on the need for evauation (Nadel and
Keating 1991). Our research expands on this debate by
investigating the systematic biases and uncertainty inherent
in tracking database savings estimates (usualy known as
engineering estimates), and measured consumption savings
estimates (usualy known as post-progran  measured
estimates).

Past analyses of tracking database and measured consump-
tion evaluation methods have focused only on the savings
estimates resulting from each method, and then only on
point estimates of these savings estimates. In this study,
we examine the parameters comprising each savings esti-
mate, the underlying variability associated with these
parameters and the precision of the parameters when dif-
ferent evaluation methods are used to estimate them.

We restrict our analysis in this paper to three evaluation
methods. engineering algorithms used in program tracking

databases, engineering algorithms augmented with on-site
inspection data, and end-use metering. All three methods
provide program parameter estimates which can be used to
calculate energy savings. Tracking database estimates of
savings are the simplest, while on-site estimates and end-
use metering estimates successively improve and build
upon the information in the tracking database. Thus, we
are able to compare directly the three methods of esti-
mating energy savings.!

Numerical techniques alow us to examine the results of
evaluation studies in several interesting ways (Morgan and
Henrion 1990):

1. We can compute the effect of changes in parameters
on estimates of savings by conducting a sensitivity
analysis. Because our model of savings is a simple
multiplicative model, model sensitivities are straight-
forward.

2. We can estimate the uncertainty of savings estimates
induced by the uncertainty of the parameters used by
the different evaluation methods, i.e., uncertainty
propagation. We begin by examining the parameters
individually, and then investigate their cumulative
effects on estimates of savings.
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3. We can compare the importance of the parameter
uncertainties in terms of their relative contributions to
uncertainty in the savings estimate, i.e., uncertainty
analysis. This type of analysis reveals which param-
eters' values must be made more accurate in order to
improve the precision of the savings estimate. We also
describe the effects of different measure lifetime
assumptions on savings estimates.

It is useful to distinguish between uncertainty associated
with evaluation performance and uncertainty associated
with program performance:

e FEvaluation Performance. Shortcomings or errors in
the methods used to calculate parameter values are
systematic errors which represent deviations from
“true” parameter values or energy savings. Systematic
bias can be reduced by utilizing more rigorous evalua-
tion methods. In this paper, we examine the system-
atic bias in tracking database and site inspection
evaluation methods. The variation of this systematic
bias across different customer sites is also important:
A systematic bias with a small standard deviation can
be controlled for by adjusting the parameter values
used to calculate savings. A bias with a large standard
deviation is less systematic, and more difficult to
control for by simply adjusting parameter values.

e Program Performance. The “true” parameter values
and resulting energy savings are inherently variable
due to differences in customers, buildings, measures,
program characteristics, and weather. Differences in
savings achieved by different utilities implementing
similar programs are due to this type of variability.
Variability of energy savings estimates can be reduced
by grouping savings estimates by building type, cus-
tomer size, measure, etc. The data set we use in this
paper does not provide measure-level data or results
by building type; thus, we are unable to investigate
the variability of program performance.

An Energy Savings Model for
Evaluation Method Comparison

In order to analyze the parameters used to generate energy
savings estimates, we need to specify an equation for
program savings based on the parameters collected during
evauation. The equation we use is given below.

measures | Watts _ __ Watts
site measure ;, measure,,,

EnergySavings =

x Annual Hours x Economic Measure Life

Lifetime energy savings for a measure, or set of meas
ures, is the product of the change in wattage between the
old, inefficient and new, efficient measures, the annual
hours of operation, and the measure life (weighted by the
change in watts for each measure if evaluating a set of
measures). Our analysis is restricted to the site-level;
given the data available, this is the most disaggregate level
at which distinctions between evaluation methods esti-
mates of savings can be examined.

A peak load savings equation would require the addition
of a diversity factor in order to estimate demand savings
as well. While a probabilistic analysis of demand savings
estimates is crucia for calculating the value of evaluation
results in DSM and capacity planning exercises, this paper
focuses on energy savings estimates.

Evaluation Methods Examined
The following paragraphs describe the evaluation methods

used to collect program information used in our analysis.

Tracking Database Estimates. Tracking database
estimates of savings use estimates of hours of operation
and watts per measure based on building and measure
types. The tracking database provides census information
on the number of program measures installed.

Simple tracking estimates can be augmented with informa-
tion from customers on estimated hours of operation for
their site and the type and efficiency of measures being
replaced with efficient equipment through the program.
Adding this information tailors the savings estimates to
each site, but since the information is compiled through
phone or mail-in surveys with participants, and are not
verified by trained utility personnel, the resulting
parameter estimates are still subject to errors.

On-site Inspection Estimates. On-site inspections
involve visits to customer facilities by trained utility
inspectors who gather information on efficiencies of
equipment to be replaced, hours of equipment operation,
the actual number of measures installed, and the present
condition of program-installed equipment. However, on-
site inspections do not verify the actual rate of equip-
ment’s electricity consumption, relying instead on
engineering tables of equipment consumption. In addition,
hours of operation are deduced from facility hours, from
short term observation of equipment, or from discussions
with building occupants.

End-use Metering Estimates. End-use metering is
usually performed for at least a month prior to and a
month after instalation of efficient equipment. Meters
connected directly to equipment installed by the program
measure actual hours of operation and kW consumption
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over time. Data loggers are not 100% accurate, and
metered results are subject to error. The expense of end-
use metering usually requires that a subset of al measures
installed be meters, which can lead to sampling errors if
the measures metered are not representative of the general
popul ation.

Program Data

While the quality of impact evaluations being performed is
constantly improving, only a small handful of evauation
reports present enough data to examine changes in pro-
gram parameters across evaluation methods. We found
only three programs with the required data in the area of
commercia lighting DSM. All three programs included
similar measures. Evaluation methods used in al three
programs included site inspections and surveys, short
duration metering, and spot watt metering. The three pro-
grams are New England Electric System’'s 1991 Energy
Initiative and Small C&I programs, and Northeast
Utilities 1991 Energy Saver Lighting Rebate program
(RLW Analytics 1992, 1992a, 1992b).

Since this analysis involves an aggregation of information
from several programs, the results are not representative
of these three programs individualy, and should not be
generalized to all commercia lighting programs. Our
analysis of these ~80 customers in three programs should
be used as a case study which demonstrates how to use
mathematical models to investigate uncertainty.
Realization Rates

Recently, some evaluation analysts have begun to use the
term “redlization rate” to explain differences between
tracking estimates of savings and their final savings esti-
mate based on extensive ex post evaluation. We use this
term here with several qualifications:

No single parameter estimation method can provide the
absolute truth in terms of a program's kWh savings.
While tracking databases are most susceptible to misesti-
mation of savings, even end-use metering can misestimate
savings due to sample size or sample representativeness
limitations, and meter mechanical/electronic difficulties.
Thus, no evaluation technique is capable of providing
unqualified estimates of the savings “realized” by a
program.

Similarly, every redlization rate is unique because every
evaluation is unique. If tracking database estimates of
savings (the denominator of the realization rate) include
adjustments for free riders, hours of operation surveys,
etc., then one should expect concomitant changes in the
realization rate. Differences in post-program evaluation
(the numerator of the realization rate) can also ater the

realization rate. Comparing realization rates from different
programs, even if one knows the realization rates with
extraordinary precision, may be like comparing apples and
oranges if differing evaluation methods are used. See Eto
et a. (1994) for some examples of how differences in
evaluation methods affect the resulting realization rates.

The redlization rates, based on the ratio of the point
estimate of end-use metering savings to the point estimate
of tracking savings, are given in Table 1. Note that these
realization rates are obtained using tracking database sav-
ings estimates in tandem with end-use metering, and are
different than those obtained using regression models,
such as an SAE analysis. They are also different than the
realization rates computed by Nadel and Keating, which
compared post-program savings estimates with pre-
program savings estimates.

Table 1. Original Realization Rates

Program Realization Rate
NU ESLR .87
NEES EI 70

NEES Small C&I

While previous studies consider realization rates as an end
result, these realization rates are the starting point for our
more detailed investigation and should not be considered
separate from the paper’s analysis. Forthcoming sections
examine the savings equation parameter values uncer-
tainty in order to understand what the realization rates
represent.

Systematic Errors in Savings
Parameters

End-use metering and site inspections provide site and
measure-level data. These data allows us to compare the
values of parameters used in engineering agorithms with
the parameter values obtained in the field. In this section,
we examine the mean and standard deviations for the
parameters used as inputs to the savings model.

Rather than examine the parameter values themselves, we
chose to examine ratios of the parameter values obtained
using different methods. The ratios describe the extent to
which parameter values differ when different evaluation
methods are used. Table 2 provides estimates of measures
installed per site, hours of operation, and watts per meas-
ure, obtained using end-use metering and site inspections,
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for severa programs. The numbers presented in Table 2
are expressed as a ratio of the parameter value obtained
using metering to the value in the program’s tracking
database. For example, the tracking database underesti-
mated the number of measures per site, on average, by
3% for NEES' Small C&I program.

While the number of measures installed per site are
underestimated slightly in the tracking database, the track-
ing database overestimates every other parameter. All but
one parameter (hours of operation in the Energy Saver
Lighting Rebate program) is overestimated through site
inspections. The tracking database overestimates the actual
savings per site by overestimating the individual parameter
values used in the eguation to calculate savings. Multiply-
ing the parameter level realization rates yields the basic
realization rates presented in Table 1.°

Even though the parameter values in Table 2 suggest the
existence of a systematic bias in the tracking estimates, it
is equally important to examine the variability of this bias.
This is different than simply examining the variability in a
single parameter, such as hours of operation, across sites.
Here we are interested in the variability of the ratio of
tracking database estimates and metered estimates (or site-
inspection estimates) for a parameter. A small variability
would indicate that adjusting parameters in the tracking
database could dramatically improve tracking database
accuracy and subsequent estimates of savings. But a large
variability would suggest that important, extraneous
factors could be missing from the parameter values used
in the tracking database, and deciding on an accurate
adjustment factor for tracking database estimates would be
difficult.

Examining the ratio of savings estimates for the NEES
and NU programs in our sample reveals a significant vari-
ability. We illustrate this variability in Figure 1 by
plotting the ratio of metered parameter values to tracking
parameter values, and of metered parameter values to site
inspection parameter values, along with each ratio’'s
standard deviation.
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Figure 1. Differences Between Parameter Values

The systematic bias described in Table 2 is framed by a
much larger stochastic component, as illustrated in Figure
1. The large variability in parameter values obtained with
different methods may mean that the parameter values
used in the tracking database, while fairly accurate on
average, are inaccurate for a large number of individual
sites and/or measures. The greater the stochastic compo-
nent, the more difficult it is to generalize from the
metered sites to a larger sample of participants, and the
more. difficult it becomes to systematically correct for
error by adjusting tracking database estimates.

Of particular interest are the wide variations in NU’'s
Energy Saver Lighting Rebate program between site
inspection and metered estimates of hours of operation,
and between tracking and metered estimates of the change
in watts per measure. Evaluators found inaccuracies in the
tracking database algorithms used to calculate the change
in watts for optical reflector retrofits and metal halide
retrofits. These errors in the tracking database calculations
can explain the large standard deviation for the change in
watts parameter: savings from metal halide retrofits were
systematically underestimated and savings from optical
reflector retrofits were systematically overestimated.
However, no reason was given in the evaluation reports
for the discrepancy between hours of operation estimates
based on site inspections, and those based on data loggers.

Table 2. Comparison of Parameter Values from Different Evaluation Methods

# Sites  Measures Wails Saved
Metered per Site Hours of Operation per Measure

Ratio of Metered Estimate to: Tracking  Tracking Site Insp Tracking Site Insp
NEES Small C&I 21 92% 96 % 9% 96 %
NEES Energy Initiative 23 80% 89% 86% 93 %
NU Energy Saver Lighting Rebate 30 89% 113% 97% 91%
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In the next section, we describe the distributions we use in
place of each program parameter and perform uncertainty
and sensitivity analyses on the energy savings equation.

A Probabilistic Model of Energy
Savings

Recalling our basic energy savings equation for lighting
measures:

measures y Watts Watts
site measure,,, measure,,,

EnergySavings =

x Annual Hours x Economic Measure Life

we can use probabilistic values based on information
collected in site inspections and end-use metering in place
of the point estimates usually used for A Watts, and Annual
Hours. We can anayticaly specify distributions for
measure lifetimes based on the limited persistence infor-
mation available. Then, using Monte Carlo methods to
estimate the equation, we can obtain a probabilistic esti-
mate of energy savings from the model. The distribution
of the resulting estimate represents the underlying uncer-
tainty associated with energy savings for the program (or
programs) from which the probabilistic estimates of each
parameter were calculated.’

For this part of the analysis, we use the site inspection
and metering data from NEES Small C&I| and Energy
Initiative programs to construct probability distributions
for the number of measures per site, hours of operation,
and watts per measure for the model. We construct three
different sets of input distributions:

The first set of input distributions will be based on the
differences in parameter values obtained using end-use
metering and those in the tracking database. The resulting
outcome distribution will express the extent to which
savings estimates obtained using end-use metering differ
from estimates in the tracking database. If end-use
metering results are assumed to represent actual savings,
then the outcome distribution generated here represents the
degree to which tracking database savings estimates
deviate from this reality.

The second set of input distributions will be based on the
differences in parameter values obtained using site inspec-
tions and those in the tracking database. The outcome
distribution estimated using these parameters will express
the difference between site inspection estimates of savings
and tracking database estimates.

The final set of input distributions will be based on the
differences in parameter values obtained using end-use
metering and those obtained with site inspections. The out-

come distribution estimated using these parameters will
describe the variation of site inspection estimates of sav-
ings from end-use metering estimates, and can be inter-
preted to be the degree to which site inspection estimates
of savings deviate from this reality.

As a first approximation, parameters in our sample can be
approximated with a normal distribution.*For example, a
histogram of the difference between tracking database
estimates of hours of operation and metered estimates of
hours of operation from the NEES programs are plotted in
Figure 2.
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Figure 2. Distribution of Hours of Operation Realization
Rates

Rank transformations were performed on each set of
parameter data to verify the fit of a normal distribution.
Latin Hypercube sampling was used to obtain outcome
distributions, computing 1000 sample points per set of
input distributions.

Uncertainty Propagation

The average and standard deviations of the outcome distri-
butions from all three sets of input distributions are given
in Table 3.

If end-use metering most closely approximates the actual
energy savings for the sample, then tracking estimates of
savings overestimate energy savings, on average, by
approximately 22% and savings estimates based on site
inspection data overestimate energy savings by
approximately 12%.

While one may be tempted to conclude that the 78%
figure in Table 3 is a transferable ‘realization rate’, an
examination of the standard deviation associated with this
estimate of bias should temper this desire. The standard
deviation associated with the model’s outcome distribution
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Ratio of: End-Use Metering
to: Tracking Estimate

Table 3. Annual Savings Realization Rates from Monte Carlo Models

End-Use Metering
Site Inspection

Site Inspection
Tracking Estimate

Average 78%
Stdev. 34%

88% 89%
22% 35%

suggest that the tracking estimate, while biased by only
22% on average, is susceptible to a large degree of
variation. The distribution of tracking estimate bias across
sites, as computed by our Monte Carlo model of annual
savings, is given in Figure 3.
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Figure 3. Distribution of Annual Savings Realization
Rates

Optimally, the distribution shown in Figure 3 would be
sharp and narrow (and centered near 100%), with a mini-
mum of spread across the x-axis. But as the large standard
deviation in Table 3 suggests, the distribution of realiza-
tion rates is subject to a significant amount of uncertainty.
If we assume the distribution is roughly normal, then only
68% of the sites have realization rates between the wide
margin of 44% and 112%. As a result, applying an aver-
age realization rate gleaned from a subset of program par-
ticipants to program participants at large, or to program
participants of a subsequent or previous year, should be
approached with caution. Even small differences between
the sample population and other populations could cause
relatively large differences in the average bias of the
tracking estimates.

The smaller standard deviation for the outcome variable
representing the difference between site inspection esti-
mates of savings and end-use metering estimates indicates
that these two methods provide more similar results.

Uncertainty Analysis

We perform uncertainty analysis by computing the rank
correlation between input variables and annual energy sav-
ings for each model and examining the results. By com-
paring correlations between the outcome distribution and
the input distributions, we can determine which input
parameters contribute the lion’s share of the uncertainty to
the outcome distribution. If we then improve a single
parameter’s precision and compare correlations from dif-
ferent models, we can determine how valuable different
evaluation techniques are in reducing the relative uncer-
tainty of program parameters. This allows program evalu-
ators and planners to trade off evaluation method uncer-
tainty with method cost.

If end-use metering estimates of savings are assumed to
best approximate reality, then we can interpret the rank
correlations in Table 4 to mean that most of the uncer-
tainty in tracking estimates of savings is due to misspecifi-
cations of the hours of operation parameter, and the same
parameter is responsible for most of the uncertainty in site
inspection estimates of savings.

An important issue for evaluation practice involves the
question of whether and when to use more rigorous evalu-
ation techniques. In this case, our analysis suggests both
tracking estimates and site inspection estimates of hours of
operation are subject to significant uncertainty. If data
loggers, or a similar technique, provides hours of opera-
tion parameter estimates that are a significant improve-
ment over those used in tracking estimates and site inspec-
tion estimates of savings, then augmenting tracking
estimates or site inspection estimates with actual hours of
operation information could result in savings estimates
comparable with those obtained using end-use metering,
but at a potentially lower cost.Alternatively, disaggre-
gating hours of operation by measure type or by usage
characteristics may improve tracking estimates of hours of
operation.

Our results would have been dramatically different if we
had included NU's Energy Saver Lighting Rebate data in
our uncertainty analysis. the systematic errors in NU's
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Importance of

Parameter Between: End-Use Metering

Table 4. Correlation of Uncertainty in Parameters to Uncertainty in Savings

Tracking Estimate and Site Inspection and

Tracking Estimate

End-Use Metering  and Site Inspection

Measures per Site .26
Watts per Measure 48
Hours of Operation .82

NA6 27
.59 .55
.78 .78

tracking algorithms would have skewed the results,
suggesting that most of the uncertainty in tracking data-
base estimates of savings was due to the change in watts
per measure parameter. The small sample (of three pro-
grams) which we investigate here does not enable us to
determine if such systematic errors in tracking databases
are a common occurrence. A benefit of the type of analy-
sis performed here, and of the detailed site inspection and
metering work performed and reported for these three
programs in their evaluations, is that it allows tracking
database accuracy to be assessed and improved.

The Effect of Measure Life
Uncertainty on Lifetime Savings
Estimates

The final parameter we examine in our simplified model
of energy savings is the average measure lifetime. While a
smattering of persistence studies exist, DSM evaluation is
simply too young for any persistence studies to have

followed a complete set of lighting measures through their
entire estimated lifetimes. As a compromise, we examine
a multi-year persistence study of lighting measures in the
commercial sector. We extrapolate from this study and
from tracking database estimates from NEES and NU pro-
grams to calculate optimistic and pessimistic estimates of
measure lifetime.

A Long Island Lighting Company (LILCO) persistence
study in 1993 examined program measures at 600 partici-
pant sites two, three, four, and five years after measure
installation (Applied Energy Group 1993). Table 5 lists
the percentage of measures that, as of 1993, were still
functioning or had functioned for their estimated lifetime
(if the utility estimate of average lifetime had already been
exceeded).

Since the LILCO data represents four separate program
years, we cannot make explicit time series comparisons
(e.g., logically, persistence after five years cannot be
higher than persistence after two years). However the data

Table 5. Results of LILCO Persistence Study

Technical persistence of operational life based on inspections in 1993
Year Installed:

Technolagy 1988 1989 1990 1991
Fl. Current Limiters 99% 100% 93% 100%
Fl. Fixture 100% 99% 100% 100%
High Int. Dis. < 200W 92% 98 % 100% 100%
High Int. Dis. > 200W 100% 98 % 98 % 100%
Optical Reflector 100% 100% 100% 100%
CFL 99% 94 % 98% 99%
34W Fl. Tubes 96 % 95% 93% 86%
60W Fl. Tubes 58% 52% 78% 93%
Average 98 % 97% 95% 95%
Stdev 2% 3% 7% 7%
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suggests that for this sample, overall measure persistence
in the first five years is probably around 95%. A study for
NEES' Energy Initiative program also reports that meas-
ure persistence in the first two years is at least 95%.

Based on this short term data, we define two possible
scenarios for measure lifetime.

Measure life is subject to a small level of “infant
mortality” early on, but thereafter stabilizes so that
average measure life is similar to tracking database
estimates. This is the optimistic scenario.

Measure persistence declines rapidly after the first five
years, due to remodeling, tenant changes, and premature
measure failure, so that average measure life is half of
tracking database estimates. This is the pessimistic
scenario.

The tracking database estimates of measure lifetime for
NEES' Energy Initiative and Small C&| programs, and
for NU ESLR program, averaged across al program
measures, are given in Table 6.

Table 6. Measure Lifetimes

Average Measure

Program Lifetime
NU ESLR 17 years
NEES EI 18
NEES Small C&I 15

For the measure lifetime parameter, two separate proba-
bility density functions were custom-specified using
fractiles to represent pessimistic and optimistic scenarios
of measure lifetime. The average life expectancy for the
pessimistic scenario is seven years and the average life
expectancy for the optimistic scenario is 15 years.

In the previous section, we analyzed the uncertainty in
tracking estimates and site inspection estimates of annual
program savings. In this section we compare the magni-
tude of the uncertainties in the annual savings model to
those caused by our estimates of measure lifetimes in the
lifetime savings model. This analysis addresses one aspect
of evaluation resource allocation; the evaluation methods
we've investigated so far are not used to assess equipment
lifetimes. We use hypothetical distributions for the meas-
ure lifetime in combination with results from our model of
annual savings to compute a probabilistic estimate of
lifetime savings. Table 7 presents the results of this
procedure.

The optimistic measure life estimate has only a small
effect on the average ratio between end-use and tracking
estimates, reducing the ratio by 9% (from 78%, as shown
in Table 3, to 70%). As would be expected, the
pessimistic estimate of measure life reduces the ratio of
end-use metering estimate to tracking estimate by almost
half. While this result is somewhat intuitive, it has
profound evaluation policy implications: The large
difference between the average ratios obtained when
optimistic and pessimistic assumptions are made regarding
measure lifetimes suggests that measure life variability
may be more important than other program savings
parameters. As a result, determination of which of these
measure lifetime estimates is most plausible in practice
should be a research priority.

Table 8 presents the uncertainty analysis results for the
lifetime savings model when the two measure lifetime
distributions are used. Regardless of the measure lifetime
variable used, measure lifetime (as we have specified it in
two hypothetical distributions) seems to be responsible for
a considerable amount of the uncertainty in the lifetime
savings estimate.

Conclusions

Our analysis suggests that significant uncertainty exists in
‘realization rates’ generated at the site level using tracking

Table 7. Lifetime Savings Realization Rates From Monte Carlo Model

Optimistic Measure Life

Pessimistic Measure Life

Ratio of: End-Use Metering End-Use Metering

io: Tracking Estimate Tracking Estimate
Average 70% 40%
Stdev. 38% 25%
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Parameter Importance:

Table 8. Correlation of Uncertainty in Input Parameters to Uncertainty in Output Variable

Ontimictic Moacnra T ifa
vl“lllllo‘l\— AVALEIOUWL LV AJILGL

End-Use Metering and
Tracking Estimate

Poaccimictic Mooacrira T ifa
L UOSHIIISUTL IVATASUI © AaIT

End-Use Metering and
Tracking Estimate

Measures per Site 21 .17

Watts per Measure .38 .40

Hours of Operation .66 .64

Measure Lifetime .49 .62
estimates, site inspections, and end-use metering. While Endnotes

an aggregate redlization rate can be computed using statis-
tical standard methods, ignoring the variability in rediza-
tion rates can lead to overconfidence in the generalizabil-
ity and accuracy of aggregate realization rates.

When different parameters in the annual savings equation
are examined, the greatest contributor to variability in
savings readlization rates is the hours of operation param-
eter. Program evaluators interested in obtaining accurate
savings estimates at the lowest possible cost could aug-
ment tracking estimates and site inspection estimates with
more accurate specifications of hours of operation using
data loggers, for example. Evaluators might also improve
tracking database estimates of savings by using different
hours of operation estimates for each measure installed,
depending on measure type, building type, and the area of
the building in which the measure is installed.

Few evauations have attempted to verify the 10-20 year
measure lifetime estimates used by most utilities. Due to
the dramatic impact of shorter measure lifetimes on life-
time savings estimates (vis-&vis the effects of other
parameters on the lifetime savings), it would be prudent to
reallocate some of those resources currently devoted to
traditional impact evaluation to methods which directly
assess persistence of savings in the medium and long
term.

A critical understanding of evaluation method accuracy
requires site-level, and even measure-level, comparisons
of the parameters used to calculate savings and evaluation
method results. Unfortunately, most evaluations only
report aggregated results, averaged across all participants.
The three reports we rely upon in this study represent
what we hope will become the minimum standard for
reporting evaluation results. Without sufficiently detailed
evaluation data, choosing least cost, accurate evaluation
methods will forever remain a matter of opinion, rather
than fact.

1. Comparison of these methods with econometric
models that utilize customer billing data requires
construction of an artificial set of consumption records
for a hypothetical group of customers and will not be
covered in this paper.

2. Multiplying the parameter redlization rates for a
program yields the realization rate for the savings
estimate.

3. This type of analysis would be much more powerful if
end-use metering and site inspection data were readily
available at the measure level. We could then estimate
the uncertainty or variability in savings on a measure
by measure basis. The probabilistic distributions of
savings resulting from such a model would be very
useful from a program planning perspective; rather
than using a point estimate of savings, a probabilistic
estimate could be used for each measure in demand
forecasting and DSM planning and technology screen-
ing exercises.

4. Other distributions, such as a beta distribution, were

found to have an improved fit, but did not affect
significantly the outcome of the analysis.

5. The decision of how much to spend on evauation
should also include an analysis of the need for evalua-
tion precision and accuracy. Some uses of evaluation
information require more precise savings estimates
than others; eg., long-range demand forecast inputs
vs. shared savings calculations.

6. Site inspection savings estimates and end-use metering
savings estimates use the same measure per site
parameter value.
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