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The treatment of outliers and influential observations in multivariate regression analysis is becoming a pressing
issue as more utilities move to regression-based analysis in the evaluation of DSM programs. Because the treatment
selected for outliers and influential observations can significantly affect the evaluation outcome, this issue has
gained the attention of evaluators and regulators alike. This is a complex issue and is just beginning to be explored
in current evaluation literature. This paper presents an overview of some current problems and a review of some
options available to evaluators seeking to resolve these issues.

The current debate centers around two questions: How to identify outliers and influential observations, and how to
treat outliers and influential observations? The first question can be answered by discussing the various definitions
of outliers—observations out of range, more than a specified number of standard deviations from the mean, or with
pre to post changes in usage greater than a certain limit, and standard regression diagnostics—studentized residuals,
DFBETAS, DFITS, and the hat matrix. The second question is addressed in a discussion of treatment methods—
removing or downweighting outliers with identified data quality problems, removing or downweighting outliers
falling outside predetermined bounds, removing or downweighting observations with calculated regression diagnos-
tics outside a predetermined range, or a combination of several methods. Lastly, we will describe the pros and
cons of robust regression techniques and their ability to mitigate the leverage some observations have under OLS
regression and the use of bootstrapping techniques as an alternative solutions to the removal of observations from
the analysis.

Introduction

In the broadest sense, the term “outlier” describes an
observation that is out of the norm. Bollen and Jackman
(1990) describe outliers as “observations that are distinct
from most of the data points in the sample.” What defines
an outlier as “distinct” in each instance is a function of the
metric used and the context in which the observations are
examined. In a DSM evaluation context, if you were to
examine the distribution of usage levels, scatterplots of
gross energy change vs. predicted savings, or number of
standard deviations from the mean, the observations in a
single sample classified as outliers would vary with each
perspective. 1

Another measure of an observation’s “distinctness” is its
influence on modeled findings. An influential data point is
an observation that “has a demonstrably larger impact on
the calculated values of various estimates (coefficients,
standard errors, t-values, etc.) than is the case for most of
the other observations” (Belsley et al. 1980, p. 11). Since
not all outliers are influential observations, the influential
observation can be considered a special case of outlier.

How to Identify Influential
Observations?

Where the general case of outlier is defined
or statistics generated directly from the

by the values
data—means,

standard deviations, change over time—regression diag-
nostics are used to determine the “influence” of observa-
tions in statistical models. Again, depending upon the
metric used and the context, in this case the functional
form of the model, which observations are determined
influential will vary. In the industry literature, Violette
et al. (1991) presents three diagnostics that can be used to
measure influence-the hat matrix, studentized residuals,
and DFITS. This paper will discuss these three, plus
partial regression plots and DFBETAS. These diagnostics
can be produced by most statistical packages on the
market today. The reader’s attention should be directed to
Violette et al. (1991), Belsley et al. (1980), and Bellman
and Jackson (1990) for detailed descriptions and specific
characteristics of each diagnostic method. This paper will
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focus on the practical aspect of their application. Often a
combination of diagnostics will be used depending upon
the evaluator’s experience and preferences. A brief
description of each diagnostic follows.

Partial Regression Plots

The partial regression plot provides an easy means for the
visual inspection for leverage points in multivariate
specifications. In the case of a single explanatory variable,
a scatter plot of Y against X can be performed to visually
inspect for the presence of outliers. In the event there is
more than one explanatory variable, the use of partial
regression plots can be used in a similar manner.

Consider the regression equation:

(1)

The partial regression plot for X1 is constructed by first
regressing Y on X2 and X l on X2 and graphing the result-
ing two sets of residuals. A similar plot for X 2 i s
constructed by regressing Y on X l and X 2 on X l and
graphing. The examination of these residual plots gives a
visual indication of outliers.

Hat Matrix

Given the general linear regression model:

(2)

where Y is an nx1 vector of values of the dependent
variable, X is an nxp matrix of the explanatory variables,
ß is a pxl vector of parameters to be estimated, and e is
an nx1 vector of disturbances. The ordinary least squares
estimate of ßis:

(3)

The fitted values of the dependent variable are therefore:

(4)

H is referred to as the “hat matrix” because it transforms

The diagonal elements of H, h i, give the “leverage” of Y

it has been shown that the sum of the hi’s are equal to the
number of X variables, p. Therefore, observations asso-
ciated with an hi > 2p/n are often considered suspect.

Studentized Residuals

Another method that can be used to determine influential
observations is to compare the residuals for each observa-
tion. With the equation:

it can be discerned that those observations with the
greatest leverage, hi, have the smallest variance. Thus, it
is best to standardize the residuals to account for these
different variances. The studentized residual is defined as:

(6)

where si

2 is the sample estimate of the disturbance value
when the ith case is removed.

Studentized residuals have uniform variances and in prac-
tical applications are assumed to be distributed close to a
t-distribution. Frequently, a studentized residual above
1.96 indicates an observation with high influence. (It must
be noted that not all observations with high influence will
have a high studentized residual. A highly leveraged
observation that pulls the regression line through it will
have a low studentized residual.)

DFITS

The hat matrix and studentized residuals are designed to
detect observations with high leverage and high residuals,
respectively. However, these measures of influence won’t
always be in agreement. The measure DFITS was
designed to explicitly account for the leverage and residual
magnitude of each observation. The formula for DFITS:

(7)

This explicitly combines the above two methods so that
the DFITS is affected by leverage points and large stu-
dentized residuals. Belsley et al. (1980) suggest that a
rough rule is that observations with a DFITSi greater than

DFITS can be interpreted as the scaled change in the fitted
value when that observation i is removed.
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DFBETAS

Where DFITS i takes into account changes in all of the
regression coefficients that result when a single observa-
tion is removed, DFBETAS provides a measure of how
individual coefficients change when a case is omitted.

The numerator refers to the difference between the regres-
sion coefficient for variable j estimated for the full sample
and the regression coefficient for variable j with observa-
tion i removed. The denominator is the estimated standard
error of the jth regression coefficient.

Large positive and negative values of DFBETASti indicate
observations that lead to large changes in the jth regres-
sion coefficient. Belsley et al. (1980) suggested a size-

. An alternative is to use the
higher cutoff of 1 which will identify observations that
shift the regression coefficient estimate at least one
standard error.

Summary of Diagnostics

Table 1 summarizes cut-off levels for each of these
regression diagnostics. A range of cutoff values is
presented. The low values are the widely accepted cutoff
levels. Bollen and Jackman (1990) recommend also using

the high cutoff levels. If the low cutoff is found to flag a
high percentage of the sample and inspection reveals no
apparent problems with them, then the high cutoff may
then be used.

This section drew heavily upon the work of Belsley et al.
(1980) and Bollen and Jackson (1990), so the reader
should consult the original texts for a more detailed
discussion of the issues related to the application of these
diagnostic measures.

How to Treat Outliers and Influential
Observations?

There is no consensus regarding the “right” diagnostic
methods to use, or the specific cutoffs to use. It would be
difficult if not impossible to create an absolute set of
methods and criteria for outlier analysis that would lend
itself equally to every situation. This section presents the
steps taken in the inspection of outliers, no matter which
diagnostic or set of diagnostics used and contains brief
descriptions of actual evaluation applications of diagnostic
methods.

Research the Observation

In the event that a given observation is flagged as an
outlier, the first step is to verify that the data for that
observation is not in error. In the case of energy con-
sumption, usage levels can be verified by contacting the
customer directly, recalculating bills by hand, checking
that all meters affected by the DSM activity are included,
etc. Similar checks can be made on program participation
data, survey data, or customer information.
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In the event that the customer data are correct, further
investigation into possible reasons for the outlier classi-
fication, in this example, deviant energy usage, are
warranted. An investigation of why a participant is an
outlier may reveal model mispecification. As an example,
a set of residential customers with abnormal energy usage
may be found to have a swimming pool, and the addition
of a variable representing the presence of a swimming
pool to the regression model will contribute to its ability
to explain energy usage for these customers. Bollen and
Jackman (1990) also suggest that the presence of outliers
may indicate the need to transform key variables (e.g., to
lognormal or quadratic terms, etc.) to better model the
activity in question based upon existing knowledge or
research conducted upon the behavior being modeled.

Other Treatment

A thorny debate occurring today centers around the treat-
ment of outliers and influential observations. There are
many who would like to see a priori methods for identify-
ing outliers with clearly defined methods for treating
them—usually removing or downweighting them. In prac-
tice, these methods have been frequently applied with
apparent success. However, as described above, the
established cutoffs are “rough” and are recommended to
be adjusted to fit the needs of each analysis.

Heated discussion arises in situations where different
cutoffs result in significantly different model findings. In
the evaluation context, the magnitude of the final realiza-
tion rate or adjustment factor can have significant revenue
recovery impacts in a shared savings context. Further-
more, the “stability” of the findings as defined by their
sensitivity to the removal of outliers will affect the ease
with which interested parties and regulatory agencies will
accept evaluation results. Another related problem identi-
fied in practice (see Example A) and in the literature
(Bollen and Jackman 1990) is that successive screens of
outliers, where outliers are identified and removed and the
process is repeated on the remaining observations, will
continue to flag observations as outliers. Much like peel-
ing an onion, the removal of each “layer” produces a
different parameter estimate and reveals another layer to
be peeled back until potentially there are no remaining
data—only a trail of disparate parameter estimates.

Another issue discussed in the previous section is that not
all outliers are bad. To mechanically cut out all outliers
beyond set bounds, the evaluator must assume that the
model specification is correct and the outliers do not
represent information that would contribute to the explana-
tory ability of the model. For example, in a model with a
dummy variable for the presence of air conditioning that
is 1 for a handful of observations, these observations will
be flagged as influential observations based upon DFITS

because of their impact on that coefficient. However, they
should not be removed from the model since they enhance
its ability to explain the variation in customer to customer
energy usage.

The debate tends to center around the issues of what
screening diagnostics to use and what cutoffs to use. In
regard to the first question, the evaluators in Example B
use a battery of diagnostics and remove those observations
exceeding the prescribed cutoff levels. As to which cutoffs
to use, the standard cutoffs described can be applied while
keeping in mind that, when faced with high levels of data
attrition, the cutoffs may be adjusted in accordance with
the judgment of the evaluator (whether the observations
flagged are confounding or adding information to the
analysis). However there are often cases where interested
parties cannot agree upon an a priori diagnostic to be used
nor the cutoff levels to be used. Example A is such a
case. In both cases, the interested parties must have a
sound understanding of the potential bias that the selected
diagnostic methods will introduce into modeled findings.
In Example B, the parties involved decided that the appli-
cation of preset diagnostic cutoff levels was appropriate
given the data and regression model, while the parties in
Example A felt that such an approach would not provide
an adequate treatment of the data or modeled process.

Robust Estimation Methods

Some of the potential problems arising from the presence
of influential observations in multivariate statistical models
arise from the manner in which ordinary least squares
(OLS) estimation fits a line through data. OLS is sensitive
to outliers and influential observations.

The discussion of robust regression techniques begins by
asking: If the tool (OLS) is particularly sensitive to the
presence of outliers, why not find another? There are
alternative estimation methods that can be easily
performed with most statistical packages. There are even
more alternative estimation methods than outlier diagnostic
methods, with even less agreement upon a preferred
approach. An introduction to these methods is presented in
Berk (1990). A summary of robust regression methods is
not possible here. Instead, we will present some justifi-
cation an evaluator may have for further researching these
methods. The application of these methods may be par-
ticularly appealing to the evaluator who has reservations
regarding the deletion of observations from the sample.
Or, even if there is no inherent disaffection for the
deletion of observation but interested parties cannot agree
upon the diagnostic nor the cutoff(s) to be used, these
alternative estimation methods may be of interest.
Example C presents a brief description of the application
of a particular robust estimation method in an evaluation.
In general, these methods provide parameter estimates in a
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manner that mitigates the influence of influential obser-
vations. In Example C, this is achieved by performing
iterative regressions on the model that weights each
observation by a function inversely proportional to its
residual. In this manner, for each iteration, the larger the
residual in the previous iteration, the less weight that
observation has in the current regression run. This is but
one example of a multitude of alternative modeling
approaches to OLS. The disadvantages of these methods
are their high complexity, variety, and potential difficulty
in explanation and acceptance. However, since they do
minimize the influence of outliers, they may be applied
without the deletion of sample observations.

Bootstrapping

Like the robust regression methods, bootstrapping allows
the evaluator to estimate parameters without removing
observations from the sample. The premise behind boot-
strapping is that multiple samples from a population
sample will generate parameter estimates that approach
those of the population and that these bootstrapped
estimates have definite statistical properties. These
methods are fairly computationally demanding, and
require programming in most statistical packages. Stine
(1990) presents a good introduction to bootstrapping
methods. The reader is referred there for descriptions of
this method.

In practice, bootstrapping requires the analysis of interest
to be run on B random sub-samples of the population
sample of size n where n < N and calculating an “average”
parameter estimate and variance. Since n is less than the
total sample size, N, the effect of outliers will not be felt
in all B sub-samples. Thus, the overall impact of outliers
will be dampened in the bootstrapped findings. Intuitively,
since you are drawing numerous random subsamples from
the sample in question, the impact of outliers will not be
felt in all versions of a statistical model. In this way, the
bootstrapped findings may better represent the general
trend for the sample. However, if the outliers are caused
by problems with the underlying data, bootstrapping find-
ings will still be affected by these data problems. These
methods do require some assumptions regarding the sam-
pling characteristics of the data. And, as with the robust
regression methods, due to the complexity of this method,
there is added difficulty in explaining such methods. It is
worth noting that Stine (1990) further recommends using
both bootstrapping and robust regression methods to best
deal with outliers and influential cases.

Conclusion

As more and more evaluations are conducted using multi-
variate regression methods, and computing power and

statistical software become widely available, evaluators
and regulators alike need to become conversant with the
issues surrounding regression diagnostics. The industry
needs to develop a sense of what is accepted and reason-
able. This isn’t to say that strict protocols are required
that define which methods and what cutoffs should be
used. But rather, as we hope this paper conveys, emphasis
should be placed on knowledge of and experience with
these methods, and thorough understanding of the evalua-
tion “context.” Unfortunately for those who prefer black
and white demarcations, it is this understanding of context
that in many situations may guide decisions regarding
what is out of the norm and “distinct” for each evaluation.

Examples

Example A. A multivariate statistical billing analysis
was performed for energy savings in a fairly heterogene-
ous customer sector. In the process of performing the
evaluation, it was found that the removal of certain
outliers, as defined by their usage levels, resulted in
changes in estimated realization rate. The examination of
residual plots and DFITS and DFBETA diagnostics indi-
cated the presence of influential observations. However,
the realization rate would fluctuate significantly in
response to small changes in the value of the selected
DFITS or DFBETA cutoff. Furthermore, successive
applications of these diagnostic screens presented more
outliers and equally varying realization rates. The reali-
zation rate estimated did not converge in successive appli-
cations of diagnostic screens. Evaluators and interested
parties could not come to agreement regarding the appro-
priate solution to this issue and continue to research and
debate the appropriate course of action.

Example B. Evaluators applied a battery of diagnostic
screens. Partial regression plots, hat matrix, studentized
residuals, DFBETAS, and DFITS were generated for each
observation. All observations outside of prescribed cutoff
levels for each diagnostic, about 15%, were eliminated
from the analysis and the model was re-run. The re-run
parameters were quite close to those found with all obser-
vations present. The full-sample finding were presented
and the regression minus-outliers model was filed to
present an indication of model stability.

Example C. In a conditional demand model, these evalu-
ators applied robust regression methods to the data to test
the sensitivity of the model to outliers. Iterative weighted
least squares models were run where observations were
weighted by a function of the inverse of their residual and
zero weight for extreme outliers. The results for the
robust regressions were compared to the original model to
test overall sensitivity to outliers.
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Endnote

1. Pigg and Blasnik (1993) make a distinction between
within facility outliers, frequently encountered in the
analysis and aggregation of several months of cus-
tomer billing data, and across facility outliers as
discussed in this paper in the context of comparing
different observations. A discussion of within facility
outliers is essentially a discussion of how to “clean”
and process customer billing data and is not dealt with
here. However, it must be kept in mind that cus-
tomers with within facility outliers can also become
across facility outliers depending upon the methods
selected for aggregation or normalization of usage
data. Thompson (1993) provides an interesting appli-
cation of PRISM to process and screen residential
billing data. This paper assumes that an annualized
and/or normalized usage has been provided as an
input into a statistical analysis.
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