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This paper presents the results of the impact evaluation of a Midwestern utility’s controllable rates. Under these
rates, customers agree to reduce their demand to a pre-determined level (PDL) upon notification by the utility.

This evaluation assessed both dispatchable and embedded impacts, for 1991. The dispatchable impacts are the relief
realized in response to control notification. The embedded impacts are the result of customer responses to the
controllable rate that affect load even outside of control periods. This evaluation includes the first comprehensive
assessment by a major utility of embedded impacts of load management rates.

The dispatchable impacts are estimated from load research data, by constructing a prediction model for control
days from noncontrolled days. This model is also able to isolate anticipatory effects due to actions taken prior to
control notification on days control periods are likely.

Embedded impacts are estimated from engineering analysis of onsite verification data. These small-sample site-
specific results are expanded to the general population by leveraging a screener survey fielded to all participating
customers. Both the dispatchable and embedded analysis methods appear to work well, and to have broader
applicability.

Introduction

This paper presents the results of the impact evaluation of
a Midwestern utility’s controllable rates. Under these
rates, customers agree to reduce their demand to a pre-
determined level (PDL) upon telephone notification by the
utility. Customers who fail to reduce their load below the
PDL pay a penalty for each kW above the PDL during the
control period. Outside the control periods, customers on
the rate pay a reduced rate for all kW above the PDL.

This evaluation assessed both dispatchable and embedded
impacts, for 1991. The dispatchable impacts are the relief
realized in response to control notification. The embedded
impacts are the result of customer responses to the con-
trollable rate that affect load even outside of control
periods. This evaluation includes the first comprehensive
assessment by a major utility of embedded impacts of load
management rates.

Origins of the Project

The utility’s controllable rates programs began over ten
years ago with the utility’s largest customers. Since that

time, the program has been gradually extended to custom-
ers with smaller and smaller “controllable load,” i.e. the
amount of load above the PDL. In 1991 and 1992, the
program was available to customers with peak controllable
loads as small as 75 kW.

This project was motivated by several concerns regarding
the controllable rates programs. One was the declining
apparent “coincidence factor” as the program was extend-
ed to customers with smaller peak loads. That is, the load
relief realized on control days appeared to be a smaller
fraction of the contracted value of the controllable load.
Understanding and quantifying this pattern is important for
planning and forecasting as the program is extended to
more customers.

Related to the declining coincidence factors was a per-
ceived need to assess the magnitude of “embedded
impacts.” One possible explanation for the declining
coincidence factors is that greater fractions of the
controllable load are actually taken as permanent or
seasonal reductions. These reductions are embedded
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impacts of the program, but are not available as
dispatchable relief when needed. Thus, for planning pur-
poses, quantifying embedded impacts is important to avoid
projecting more dispatchable relief than will actually be
available from future participants. In addition, if embed-
ded impacts of an appreciable magnitude exist, the pro-
gram should be given credit for them.

Another motivating concern was the need for a well
founded method of measuring the dispatchable impacts
that have been achieved. Accurate measures of dispatch-
able impacts are important both for systems operations
purposes, and to quantify the benefits of the program.
Utility staff were generally comfortable with the existing
in-house methods from an operational standpoint. Howev-
er, there was some interest in developing a more rigorous
technical foundation, for these methods.

Overview of Methods Used in this Study

Three sources of data were available for the impact
analysis:

1.

2.

3.

1991 load research data for the approximately 1500
customers who were on controllable rates during that
summer;

screener survey data collected in this study, for the
approximately 70 percent of customers responding to
the survey; and

follow-up audit data collected in this study, for the
130 sites that received follow-up verification, by
onsite visit (122 sites) or by telephone (8 sites).

The load research data are the basis of the dispatchable
impact estimation. The model developed for this estimate
also provides an estimate of short-term embedded impacts.
The load research modeling is described in the Estimation
Methods section.

The embedded analysis is based on engineering and
statistical analysis of the screener survey and follow-up
data.

The data analysis for this study began in the spring of
1993. During the previous summer (1992) there were no
control days because of unusually cool weather in the
midwest. The dispatchable analysis was therefore conduct-
ed for the summer of 1991. For consistency, the embed-
ded analysis was designed to cover the same year.

The different types of impacts for which estimates were
developed in this study are described in the next section
followed by a summary of the estimation approach, and
finally the impact estimates.

Definitions of Impacts

Baselines for Defining Impacts

For any program, impacts are defined relative to a base-
line of what would have occurred in the absence of the
program or of particular program components. The differ-
ent types of impacts correspond to different conceptual
definitions of the baseline. For this study, three different
baselines are of interest for any given day (Figure 1).

The likely-day baseline represents what would be
expected on that day if a control period was likely,
but none actually occurred.

The unlikely-day baseline represents what would be
expected on that day if a control period was unlikely
(and none occurred).

The no-program baseline represents what would have
been expected on that day if the program had never
existed.

These definitions beg the question of how a “likely” day is
defined. That question is addressed below.

Distinct Impacts Relative to Different
Baselines

Three distinct impacts are defined, with respect to the
three baselines. Each of these impacts is illustrated in the
figure.

Dispatchable Impact: On a control day, the difference
between the observed level and the likely-day baseline.
That is, the difference between the actual (observed) level
on a control day and what would have been observed on
that day if the control period had not occurred. Demand
(kW) impacts are defined for each hour of the day,
including non curtailment hours. Energy (kWh) impacts
are the total net difference for the day, including non
curtailment hours. Dispatchable impacts exist only on
control days.

Anticipatory Impacts; On a likely day, the difference
between the likely-day baseline and the unlikely-day
baseline. That is, the difference between the load expected
(or observed) when a control period was likely, and what
would have been expected on that day if a control period
had not been likely. Demand (kW) impacts are defined for
each hour of the day. Energy (kWh) impacts are the total
net difference for the day.

Examples of anticipatory impacts include pre-chilling the
building in the evening or early morning when a control
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Figure 1. Distinct Impacts in Relation to Different Baselines, Hypothetical Control Day

period is anticipated for the next day; or scheduling a shift load is the difference between the observed summer peak
or process to begin early in the morning and finish by
noon. Anticipatory impacts occur both on control days and
on likely but noncontrol days.

Seasonal or Permanent, or Standard Operating Procedure
(SOP) Impacts: The difference between the unlikely-day
baseline and the no-program baseline. That is, the differ-
ence between what would be expected if no control occur-
red or was likely on a particular day, and what would
have been expected that day if the program did not exist.
Demand (kW) impacts are defined for each hour of the
year, but are of especial interest for peak hours. Energy
(kWh) impacts are the total net difference for the year.

Examples of SOP impacts include rescheduling a shift for
the entire summer; turning off certain lines or equipment
for the summer; or installing more efficient equipment
that is used year-round. SOP impacts occur on all days,
control, likely, and unlikely.

In this study, the three distinct impacts, dispatchable,
anticipatory, and SOP, were estimated separately. Esti-
mates were developed of demand impacts by hour, and
were aggregated to seasonal and annual energy impacts.

Coincidence Factors

For purposes of this study, the coincidence factor is
defined as the ratio of the estimated demand impact to the
maximum controllable load. The maximum controllable

for each customer and the customer’s pre-determined level
or PDL. A separate coincidence factor is defined and
computed for each of the three distinct impacts: dispatcha-
ble, anticipatory, and SOP. Since the total program impact
is the sum of these three impacts, the overall program
coincidence factor is the sum of the three corresponding
coincidence factors.

Estimation Methods

Dispatchable Estimation Methods

The investigation of dispatchable impacts focused on the
load research data. These impacts are discernible from the
recorded loads on control days, in comparison with the
noncontrol-day loads. The approach of the analysis was to
use load research data from noncontrol days to construct a
model to predict what the load shape would have been on
the control day if the control period had not been called.

Several different modeling approaches were explored.
These methods started with the in-house methods the
utility has used in the past, and built on these methods in
developing the final models. The success of the different
approaches was assessed through cross-validation, measur-
ing the predictive capability of each method in terms of
the accuracy with which noncontrol days were predicted.

The model selected on the basis of the cross-validation
included an explicit additive term for likely control days.
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This term represents anticipatory impacts. Thus, the load
research analysis provided estimates of both dispatchable
and anticipatory impacts.

Analytic Data Set

Dispatchable and anticipatory impacts were estimated from
the 1991 load research data. The utility provided interval
kW data for participating customers from June through
August of 1991. From this data set, an analytic data set
was developed, containing hourly load data (average of
the 15-minute loads) for each account.

The hourly load data used in the dispatchable impact
model was the average load per account, by rate class.
This approach normalized for changing numbers of
accounts over the summer, and also for occasional missing
values due to data problems.

Weather data, including hourly wetbulb and drybulb
temperature at three hour intervals, were provided by the
utility for weather stations in each major region. The
three-hour data were linearly interpolated to provide
hourly values.

Each rate class, defined by rate type, state, and voltage,
was modeled using data from the weather station in the
same region. Likely days were defined for all customers
based on temperatures from the largest region. Since
control decisions are based on system load, not local
loads, the weather affecting the largest portion of the
system load was taken to be the determining factor.

The Dispatchable Impact Model

Several different models were explored for dispatchable
impact estimation. All of these involved constructing an
estimate of the hypothetical load curve that would have
been seen had the control period not been called on a
particular day. Thus, each estimation method is based on
a prediction model.

Specification of the Load Model. The final model
developed for the dispatchable impact analysis represented
the load Ldh at a given day d and hour h as the sum of the
following terms:

● a basic hourly load shape, corresponding to a different
intercept term for each hour of the day;

● an immediate cooling load, proportional to the current
cooling degree-hours;

● an additional lagged cooling load due to stored heat in
the building, proportional to a weighted average of
cooling degree-hours for the last 48 hours;

a latent heat load for removal of humidity, proportion-
al to the wetbulb temperature for the hour;

an hourly shift in level up or down according to how
different the 9 am load was from the average 9 am
load on unlikely days;

an hourly anticipatory effect, if the day was a likely
day.

The dispatchable model

—

where

is the cooling

is given algebraically as

(1)

degree-hours at hour h on day d
is the weighted average of cooling degree-hours
from hour h-48 to hour h
is the wetbulb temperature at hour h of day d
is the average 9 am load for unlikely days
is a dummy variable equal to 1 if day d is a
likely day, zero otherwise

by the regression.

The terms in the dispatchable model are described further
below.

Hourly Intercept lh: The first term, as noted, is an hourly
intercept term. For an unlikely day (Ad = 0) with no
cooling degree-days, current or lagged (C0dh = 0 and Cdh

= 0), with 9 am load equal to the average unlikely-day 9
am load (Ld9 - LU9 = 0), and with constant wetbulb
temperature (Wdh = W), the hourly intercepts Ah would
define the load shape. Only the level would be shifted
according to the humidity terms ßWW.

Immediate Cooling Load ßOCO

dh: The immediate cooling
load due to sensible heat (air temperature) is assumed
proportional to cooling degree-hours, base 65°F. The
cooling degree-hours at hour h is simply the difference
between the outside temperature at that hour and 65°F, or
zero if that difference is negative. The use of degree-days
or degree-hours base 65°F is a standard, if imperfect,
assumption in cooling load calculations.

Lagged Cooling Load ßCCdh:  The lagged cooling load
term accounts for the fact that heat is stored in a building,
so that the cooling load depends on how hot the last few
days have been, not just on the current temperature. The
lagged cooling degree-hour term Cdh is a weighted aver-
age of cooling degree-hours for the past two days. The
weights decline exponentially, so that the more distant



Exploring Energy and Demand Impacts of a Controllable Rates Program — 2.99

times contribute less. The exponentially declining weights
correspond to an approximation to a simple heat transfer
model accounting for thermal mass (building heat storage
capacity).

The lagged cooling degree-hour term Cdh is defined as

(For k > h, hour h-k of day d is equivalent to hour
h-k+24 of day d-l.)

Humidity ßW Wdh: The air conditioning load depends on
both the sensible heat that must be removed by reducing
the air temperature, and the latent heat that must be
removed in reducing the moisture content of the air. The
sensible cooling load is modeled by the cooling degree-
hour terms. To model the humidity load, American
Society of Heating, Refrigeration, and Air Conditioning
Engineers (ASHRAE) enthalpy charts were reviewed. It
was determined that over the range of interest the latent
cooling load was roughly a linear function of wetbulb
temperature. Rather than introduce a more complicated
model for this component, the wetbulb temperature was
included directly in the model.

Unlike the sensible heat load modeled by the drybulb
temperature, the latent heat load does not include a lag
term for previous hours’ humidity. Standard cooling load
calculations, such as those given in the ASHRAE hand-
books, include lag effects for drybulb temperature, but not
for humidity. These calculation procedures reflect the fact
that heat is stored in buildings to a greater extent than
humidity. Heat is retained in the building structure itself.
Humidity is contained primarily in the air, which is
exchanged several times per day, rather than being stored
over several days.

effects are accounted for, the load may be high or low on
a particular day because of the activity level for the
account that day. The shift up or down to account for how
a particular day is different from a likely-day norm is
proportional to the 9 am difference in load between the
particular day and the unlikely-day average. However, a
different effect of the particular day is allowed for each
hour. The shape of the particular-day shift is the same for
all days, and is given by the coefficients vh.

The magnitude of the shift is determined by the 9 am load
difference. If this difference is positive, the estimated load
at all hours of day d is increased. If the difference is
negative, the estimated load at all hours is decreased. If
the difference is small in absolute terms, the amount of
the hourly load shift is small.

Anticipatory Effect ahAd: The final term in the equation is
the anticipatory effect. On likely days (Ad = 1) the
estimated load at hour h is increased by the amount ah.
The estimated anticipatory effect at a given hour h is the
same for all days d. The estimated model coefficients ah

directly estimate the anticipatory impact.

Comparison with Other Models for Estimating
Impacts of Load Management Programs. Despite
the increasing importance of load management programs
in utilities’ DSM portfolios, relatively few impact evalua-
tions of such programs have been conducted utilizing
observed load data from controlled customers. Joyce et al.
(1993) also analyzed impacts from a set of load man-
agement programs using a degree-hour regression model
to fit hourly loads on noncontrol days. Their model was
fit to individual sites, across multiple years and seasons. It
did not isolate an anticipatory effect.

EPRI (1988) has an impact estimation model that uses
Fourier functions to extract cyclic patterns from load data.
This model also includes temperature effects, is fit across
all seasons, and does not identify anticipatory effects. A
survey of 25 utilities conducted at the outset of the study
described here indicated that the EPRI model has general-
ly not been used even by utilities that own it, because of
the time requirements and complexity of implementation.

The survey also indicated that a common approach to
determining the load that would have occurred if an
interrupt had not been called is to develop an average load
shape from hot noncontrol days, then shift this load shape
up or down to coincide with observed load prior to the
control notification. The effectiveness of this approach as
implemented by the utility sponsoring this study was the
motivation for the inclusion of the particular-day effect in
the load model (l).

Definition of Likely Days

A key to the estimation of the load models is the defini-
tion of reference or likely days. In previous work, the
utility had classified days as high, medium, or low de-
mand. Reference days were then taken as the high days
within the same month, if there were enough, or else as
the high and medium days within the month.

For the present work, all weekdays with an average
outside temperature greater than 70°F were classified as
“likely” control days. This definition resulted in all
control days and nine noncontrol days being classified as
likely days. The nine likely (noncontrol) days were used
as the reference days for estimation of model (1), without
attempting to match by month.
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Other definitions of likely days were explored. These
definitions included some based on the temperature-
humidity index, and others based on the maximum outside
temperature for the day. A maximum outdoor temperature
above 90°F turned out to be a near perfect predictor of
control days. However, this basis for classifying days was
not useful for defining reference or likely days. For one
thing, the likely days are intended to be days when
customers would have anticipated a likely control period.
The maximum temperature for the day is not determined
until after the anticipatory action, if any, would have
occurred. More importantly, an index that nearly perfectly
predicts control days does not provide any noncontrol
likely days for comparison.

The “average daily temperature” used to define likely days
is actually computed, per convention, as the mean of the
minimum and the maximum dry bulb temperatures for the
day. This mean reflects conditions prior to any notification
period. The cut-off of 70°F correctly captured all true
control days, and provided a roughly equal number of
likely days as comparison. Classifications based on a
temperature-humidity index did no better.

Impact Findings from the Load Model

The load model was applied to each rate type. As noted,
this model provided both dispatchable and anticipatory
impacts.

Dispatchable Impacts. Once the model was fit to the
1991 hourly load data for a particular rate type, dispatch-
able impacts were estimated for each 1991 control day in
two steps:

1. The fitted model was used to predict load for each
hour of the control day, substituting the actual weather
variables for that day and setting the likely-day
dummy Ad to 1.

2. Impacts were computed for each hour as the differ-
ence between the predicted and actual loads. With this
definition, positive impacts correspond to demand
reductions, and negative impacts to increases.

Impacts for all customers on controllable rates were
estimated by summing the estimates of total impact across
the separately estimated rate types. This method was
expected to be more accurate than fitting a single model
for all customers combined.

Impacts were estimated for each hour of each 1991 con-
trol day, by rate type. For the controllable population as a
whole, the analysis showed a mean coincidence factor at
the hour of the system peak (4 p.m.) of 47.1 percent,

averaged over all control days, and a maximum of
49.8 percent (Table 1).

The standard error of the program-wide coincidence factor
was 3 percentage points, or about 6 percent of the estimat-
ed dispatchable impact. For most individual rate types, the
relative standard error was on the order of 20 to 30
percent. For the largest single rate type (Rate Class A),
the relative error was also 6 percent. For a few rate types,
however, the standard errors were fairly large compared
to the mean loads. For these rate types, the model fit was
poor, and the resulting estimates of dispatchable impacts
of low accuracy.

The Rate Class A had the most accounts and largest total
controllable load of any single rate type. However, the
average controllable load for this group was fairly low.
The mean coincidence factor for this group was 36 per-
cent, somewhat lower than for the total population. This
finding is consistent with previous estimates that indicate
lower coincidence factors for customers with smaller
controllable loads. As further corroboration of that tenden-
cy, all rate classes with mean controllable load below 200
kW had coincidence factors below 40 percent.

The utility has also been concerned that primary and
secondary schools tend to have lower coincidence factors,
because they tend not to operate during the time control
periods than are likely. Applying the load model to
aggregates defined by SIC, rather then rate type, yielded a
coincidence factor of only 22 percent for a group of
primary and secondary schools. For a group of colleges
and universities, by contrast, the coincidence factor was
59 percent.

For non controlled hours, control-day impacts were
generally negative, reflecting some prior and subsequent
compensation for the reduced load during control periods.
However, not all the load reduction was made up at other
times. Summing positive and negative impacts over the
control day yielded a positive balance of energy savings.
Averaged over all hours, the control-day energy savings
was equivalent to a 24-hour load reduction equal to about
10 percent of the total controllable load.

Anticipatory Impacts. The estimated model yields
anticipatory impacts as the coefficient ah of the likely-day
dummy variable Ad for each hour h. That is, the coeffi-
cients ah estimated by the model are themselves the
estimates of anticipatory impacts for each hour h. The
accuracy of the estimated anticipatory impact is indicated
by its t-statistic, which is the ratio of the coefficient to its
standard error. This ratio is the inverse of the relative
error. As for dispatchable impacts, the anticipatory
impacts for all customers combined was estimated by
summing the estimates of total impact across rate types.
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For all customers combined, the anticipatory impact was Embedded Impacts from Survey and
negative, though by less than 1 percent. This result for the Onsite Data
whole group was driven mainly by extremely large nega-
tive impacts for two rate types. These two rate types had
2 and 1 customer, respectively, but they were very large
customers. For both these rate types, the load model had
relatively poor fits, with relative standard errors of the
regression of 31 percent and 43 percent (Rate Class C in
Table 1). With the two most extreme rate types removed,
accounting for 16 percent of the total controllable load,
the overall anticipatory coincidence factor was
2.6 percent.

Adding this estimate to the dispatchable coincidence factor
gives a mean actual coincidence factor of 49.7 percent,
and a maximum of 52.4 percent. The latter estimate
coincides with the utility’s previous in-house estimate,
which also combined dispatchable and anticipatory
impacts.

The analysis of embedded impacts addressed both antici-
patory impacts and long-term embedded impacts. Each of
these impacts was assessed by using the screener survey
to determine the prevalence of the type of effect, and
using the analysis of the follow-up verification to quantify
the magnitude of the effect for accounts that had it.
Impacts were estimated separately by rate class and by
SIC group. However, because of the relatively small
number of follow-up verifications completed with each
type of effect, some factors were estimated only for the
population as a whole, then applied to individual rate
types or SIC’s.

Estimation Methods

Each of the impacts (anticipatory and SOP) was assessed

The anticipatory impact for the total program was not in the following major steps:

significantly different from zero (t-statistic = -0.5).
However with the two extreme rate types removed, the 1.

coincidence factor for the remaining customers had a
t-statistic of 4.0 percent, indicating good evidence of
anticipatory impacts for the bulk of the program.

In summary, while the load research data shows evidence
of anticipatory impacts, these impacts are not large over-
all, and are difficult to identify with confidence. The
anticipatory impacts is explored further below, through the
analysis of the survey and onsite data.

The proportion of accounts reported to have any
anticipatory (SOP) impacts was determined from the
screener survey. This proportion PAC (PsC) was mea-
sured for each rate class c in terms of the fraction of
controllable load represented by these accounts. That
is,
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where

2.

Cj is the controllable load for account;
Aj (Sj)    is a 0/1 dummy indicating that account j

reported anticipatory (SOP) impacts on the
screener survey.

The anticipatory (SOP) embedded impact per kW of
controllable load for those accounts that reported this
type of impact was estimated from the follow-up
verification analysis as

where
F A ( Fs) denotes the follow-up sample for customers

reporting anticipatory (SOP) impacts
D Aj ( DSj) denotes the anticipatory (SOP) impact (kW)

based on the verification for customer j.

For customers who reported an embedded effect but were
determined not to during the follow-up verification, the
customer’s controllable load Cj is included in the denomi-
nator of V, and the corresponding impact Dj in the numer-
ator is zero. Thus, the verification ratio V reflects the
proportion of survey-reported embedded effects that were
verified in the field, as well as quantifying the magnitude
of the effects that were found.

3. Multiplying the proportion of controllable load that
reported an effect by the impact per kW for accounts
that reported effects gave the anticipatory embedded
coincidence factor for each rate type C. That is,

(5)

In the formula for the embedded coincidence factor, only
the reported proportion PAC varies by rate type c. The
ratio VA (Vs) was computed across all sites that had
follow-ups. Separate ratios were not computed by rate
type because of the limited number of sites with verified
impacts within any single rate type.

This approach leverages the screener survey data collected
for a majority of accounts with the more limited follow-up
data. Follow-ups were conducted with only 130 of the
roughly 1,000 accounts that had completed surveys. Of
those that did receive follow-ups, only about half had
verified anticipatory effects. Roughly one-fifth had veri-
fied SOP effects. The use of the anticipatory and SOP
ratio estimators VA and VS allows the verified results from
relatively few sites to be projected to the population as a
whole.

Screener Survey Questions on Embedded
Impacts. To identify accounts that have embedded
impacts, the screener survey asked customers whether
they have anticipatory or SOP effects, and what types of
equipment is affected. For anticipatory effects, customers
were asked:

On those days when you believe a control period to be
likely, but have not yet been notified of a control
period, do you take any special actions as precautions
in case a control period is called?

Customers who answered yes were then asked which of a
list of types of anticipatory actions are taken. The list
included changing operating schedules; turning on back-up
generation; switching to alternate fuels; reducing use or
turning off equipment; and pre-chilling the building.

To identify SOP effects, customers were asked:

On a seasonal or permanent basis, would any of your
equipment or operating practices be different if you
weren’t on the controllable rate? This could include
different operating schedules, types of equipment, or
how it’s used.

Customers who answered “Yes” were then asked which of
a list of operating practices would be different seasonally
or permanently if they were not on the controllable rate.
The list included operating schedules, fuels used, and use
of different types of equipment.

Customers on peak-controlled time-of-use rates were
specifically asked what they would be doing differently if
they still had the time-of-use feature, but did not have the
possibility of control periods.

Computation of Embedded Impacts for Verified
Sites. For a substantial fraction of the accounts that
received follow-up visits or calls, it turned out that there
was no anticipatory or SOP impact, even though such an
impact was reported on the screener. The follow-up spent
more time with the customer clarifying the types of
impacts that were being asked about. The impacts deter-
mined to be present during the follow-up are considered to
be “verified.” These impacts should be much more reli-
able than those reported on the screener originally.

For each follow-up site with a verified embedded impact,
the magnitude of the impact was estimated using a spread-
sheet designed especially for this purpose. Copies of the
spreadsheet input screens were used as data collection
forms.

The spreadsheet inputs included equipment capacity and
loadings at each hour of the day. For anticipatory impacts,
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hourly loadings were determined by the auditors for both
likely and unlikely days. For SOP impacts, current prac-
tice and the hypothetical practice if the program had not
existed were recorded.

The spreadsheet calculation consisted of multiplying
capacity by part-load to determine the load contributed by
the equipment under study, for each hour the equipment
was scheduled to be on. The loadings and schedules were
determined for two conditions, for which the auditors
entered the necessary data on the input screens. These
conditions were likely versus unlikely days for anticipato-
ry effects, and current operation versus hypothetical
operation if the program did not exist for SOP effects. For
the SOP effects, current and hypothetical conditions were
determined for each day type. After the loads for the
particular equipment under the two alternate conditions
were calculated for each hour, the difference between
these loads gave the impact, also by hour.

The outputs from the spreadsheet were hourly SOP or
anticipatory kW impacts for each of seven day types:
summer likely day, unlikely day, and weekend; winter
weekday and weekend; and shoulder weekday and week-
end. The impacts were computed in the spreadsheet using
engineering models, with the input loading and schedule
data. The kW impacts were aggregated to daily kWh im-
pacts for each day type. Multiplying daily energy impacts
by the assumed number of each day type per year gave
the total annual energy impact. Anticipatory and SOP im-
pacts were input and estimated on separate spreadsheets.

Results of the Embedded Impact Analysis

The survey and follow-up analysis yielded a 3 percent
anticipatory coincidence factor at 4 p.m., similar to that
found in the load research data excluding two extreme
accounts. The SOP impacts estimated from this analysis
were much smaller. The total program SOP impact had a
coincidence factor of less than 1 percent. The utility’s
previous work had indicated larger (SOP) embedded
effects. That preliminary finding was one of the motiva-
tions for the present study.

One difference from the previous work is that long-term
embedded impacts were defined in this study according to
very tight criteria. In the audits that formed the basis for
quantifying embedded impacts, customers were probed to
be sure the effect described could be unambiguously
attributed to the controllable rate. This approach was
adopted so that evidence of these impacts would not be
subject to question.

Another difference is that the impacts were quantified in
this study by collecting explicit equipment operating
characteristics and schedules, both for current practice and

for hypothetical operations if the customer were not on the
controllable rates. This information was used systematical-
ly to calculate changes in demand by hour and day types.
The utility’s previous estimates were based on impacts
reported directly by customers or their marketing repre-
sentatives in an impromptu phone survey.

A limitation of the information on long-term embedded
impacts collected for this study is that, for logistical
reasons, the information was collected nearly two years
after the last control period. As a result, customers may
have had difficulty recalling how the program affected
their operations.

Summed over hours of the day, and totaled across likely
days, the anticipatory energy impact was negative. How-
ever, in magnitude it was only 10 percent as large as the
positive dispatchable savings. the annual SOP energy
impact was also negative, but was less than 2 percent as
large as the dispatchable savings.

Conclusions

New methods were developed in this study for the estima-
tion of both dispatchable and embedded impacts. These
methods offer several advantages for future applications.
The software developed for the dispatchable analysis may
be used on a routine basis for this or similar programs.
The method can be applied to any aggregate of interest,
and provides statistical measures of the accuracy of the
resulting estimates.

The method applied to embedded impact estimation has
broad applications to customer research. This method
includes a screener survey to identify customers with
particular characteristics, onsite follow-up to collect
detailed engineering data for custom-designed analysis,
and ratio estimation techniques to expand the follow-up
sample to the general population. This procedure allows
the systematic extension of site- and equipment-specific
engineering studies to a general population.
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