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End-use load data are increasingly valuable for a wide range of applications from DSM program evaluation to
forecasting and program screening. Despite recent technological advances, end-use metering remains relatively
expensive and time consuming. This paper explores one option for obtaining much of the value of a metering study
through end-use load data transfer from “donor” to “recipient” utilities.

The paper extends previous research in this area by transferring data to recipient utilities for which metered end-
use data are available. It presents results of applying previously developed transfer methods to metered end-use
load data from a donor utility and measuring the validity of the results with the recipient utility’ s metered data.
Two regression-based data transfer methods were applied to refrigeration, water heating and air-conditioning load
data from different regions of the country. The findings from this study have implications about how existing data
transfer methods should be implemented and offer promising directions for future research into novel approaches

to data transfer.

Introduction

End-use load data are increasingly valuable for awide
range of applications from demand side management
(DSM) program evauation, to forecasting and program
screening. However, despite recent technological advanc-
es, end-use metering remains relatively expensive and
time consuming. At present there is a continuum of
methods through which load data needs can be met,
including conditional demand analysis, engineering simula-
tions, disaggregation, data transfer and end-use data
metering. This paper explores the emerging option of
meeting such needs through transferring end-use load data
from “donor” to “recipient” utilities.

Data transfer involves using metered end-use load data for
a purpose other than that for which it was originally
collected. One application of data transfer is to use load
data collected in one region to meet a data need in another
region; for example, developing end-use load shapes for
DSM evaluation or planning purposes. Another application
isto use data collected in one part of a utility’s service
territory to evaluate a targeted DSM program in a differ-
ent sub-region of the same utility’s service territory. The
basic assumption underlying data transfer is that cross
sectional differences in end-use load shapes can be con-
trolled for through a modeling framework that incorpo-
rates data on weather, appliance characteristics, customer
behavior, and other explanatory variables.

The current state of the art of load data transfer, the
frontier, was evaluated by applying existing data transfer
methods under conditions where the “answer” was known.
Thisisanovel feature of our approach which setsit apart
from earlier research on end-use load data transfer.' Two
different data transfer methods were applied to each of
three residential end uses, refrigeration, water-heating,
and air-conditioning. Results for water heating and air
conditioning are presented here.’For each end use,
metered data were available for both the donor and the
recipient utilities. Thus, it was possible to assess the
results of applying these data transfer approaches by
comparing the transferred load data to actual metered |oad
data for the recipient.

A further advantage of this experimental design was that it
afforded the opportunity to investigate explanations for
unsuccessful data transfer efforts. Indeed, as the project
progressed it became evident that the most useful results
would not be whether or not the selected methods
“worked” but rather what advances could be made toward
a better understanding of what drives the particular end-
use load shapes that were transferred. Performing these
data transfer exercises also permitted the researchers to
see the potential scope of what a data transfer method
must be able to address and what issues arise when data
transfer is attempted under different conditions. This
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scope varies by the end use, the distance, and the purpose
of data transfer, where distance can be either a geographic
or a temporal measure.

The remainder of this paper is organized into three sec-
tions. The following section describes the data transfer
methodologies, the next presents the key results for each
end-use, and the final section discusses conclusions and
their implications for ongoing research into data transfer.

Methodology

Selection of Data Transfer Methods

A data transfer methodology must provide a framework
for adjusting the donor’s load data to account for the
effects of differences between the donor’s and the recip-
ient’s service territories. Among the factors which may
cause cross-sectional variation in patterns of end-use
energy consumption are differences in weather, customer
demographics, dwelling characteristics and appliance port-
folios. Different types of variables drive loads for differ-
ent end uses. For example, among the factors which affect
air conditioning loads are weather and dwelling character-
istics (e. g. square footage, insulation, building orientation
and number and size of windows). These factors are rela-
tively unimportant (within a season) for water heating.
Loads for this end use depend in part on ownership of
other appliances (e.g. dishwashers and clothes washers), a
factor which is relatively unimportant for explaining air
conditioning loads.

The effects of the relevant driving variables for an end use
may be captured through engineering models, statistical
approaches or a combination of the two. The first phase of
this project consisted of an extensive survey of existing
data transfer methods and applications of data transfer.’
Following the literature survey, two statistically based
approaches were selected for use in this study. These
methods were selected because of their flexibility and
because they represented the state-of-the-art, having
recently been developed and used in data transfer projects.
Both methods employ a statistical approach in which a
combination of stratification and regression analysis are
used to capture the effects of the variables which drive
end-use load shapes. Stratification is used to control for
the effects of customer behavior, dwelling characteristics
and appliance ownership while the regression component
of the methodology accounts for differences in weather
and residual temporal variation in load shapes.

Because the methods employ regression analysis, they
tend to perform better in predicting average load shapes.
Method 1 consists of estimating 24 hour-by-hour regres-

sions of hourly load on cooling or heating degrees, while
Method 2 involves fitting a single regression equation in
which hourly loads are modeled in terms of harmonic
functions of time and a function of the temperature-
humidity index.‘In principle, characteristic variables may
also be included in both regression specifications to
account for the influence of driving variables other than
weather.’It was determined, however, in preliminary
analysis of the data that these models' implicit assump-
tions regarding daily patterns of end-use loads and weather
responsiveness were valid only for averages across cus-
tomers (air conditioning) or days within a daytype and
season (refrigerators and water heating). Thus, customer-
specific characteristic data could not be incorporated in the
models explicitly, but had to be accounted for through
stratification.

Method 1 may be summarized as follows.

Ly = ay + bHID; + ¢,CDy, + €4y (1)

where:

L, Istheaverage kW load for stratum h at
 timetonday d;
HD,, is heating degrees at time t on day d
' (caculated as the maximum of zero and
the thermostat setpoint minus the dry bulb
temperature);
CD is cooling degrees at time t on day d
™ (calculated as the maximum of zero and
the dry bulb temperature minus the
thermostat setpoint);

a, b,and c, arethe regression coefficients for strata h;
and e, is an independently and identically

distributed error term.

For appliances which are not weather sensitive, Method 1
reduces to computing average hourly loads for each
stratum. This approach offers several advantages. Most
important, it imposes no tempora structure on the average
load shape. It also allows for variation in patterns of
weather response throughout the day. Although it allows
for the realistic possibility that the variance of the error
term is not constant over the course of the day, this
modeling framework also embodies the less realistic
assumption that the error term is independent across hours
of the day.

Method 2 offers a more compact specification at the
expense of making more restrictive assumptions about the
underlying structure of end-use load shapes and their
dependence on the weather. In Method 2 a single regres-
sion equation is estimated for each stratum. This approach
may be summarized as follows:
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L,y = by, + by,;sin(tn/12) + b, cos(tn/12)
+ b, sin(tn/6) + b, cos(tn/6)
+ byssin(tn/3) + b, cos(tn/3)

+ b,,FTHI, + e,,;

where:

L, IstheaveragekW load for stratumhat timet
on day d;

« 1S a transformation of the temperature
humidity index (THI) analogous to cooling
degrees, the maximum of zero and THI minus

FTHI

a switch-point;

b,, b, &€ the regression coefficients for each
stratum;

and e, is an independently and identically distributed
error term.

The periodicity of the average load shapes is captured
through the inclusion of harmonic functions of time. For
weather sensitive end-uses the term based on the Tempera
ture Humidity Index (THI)is included in the model to
control for the dependence of end-use consumption on
weather. The cost of this model’s greater smplicity is that
it implicitly assumes that the both the weather response
and the variance of the error term are constant throughout
the day.

Application of Data Transfer Procedures

A three-step procedure was used to apply these methods to
each end use.

First stratification variables were selected from the set of
characteristic variables for which data were available for
both the donor and recipient. Stratification variables were
chosen based on their ability to explain cross-sectional
variation in end-use load shapes within the donor utility’s
sample. Priority was placed on choosing stratification var-
iables expected to have a structural (e.g. causal) relation-
ship to end-use loads. If no structurally related variables
were available for both utilities, instrumental variables
were explored as an aternative.

The second step of the process involved application of the
regression-based components of Methods 1 and 2 to each
stratum. For weather sensitive end uses, applying Method
1 consisted of fitting Equation 1 to each hour of the day
for each stratum. For the weather-insensitive end uses,
this approach reduced to calculating an average hourly
load for each stratum. Applying Method 2 involved fitting

Equation 2 to each stratum. For both methods, fitting
separate equations for each stratum allowed for differences
in the weather response across strata.

In the last stage of the data transfer process the fitted
models were applied to the recipient utility’s data. For
weather sensitive appliances, transferred average hourly
loads for each stratum were derived by using the recipi-
ent’s weather data as input into the fitted model for each
stratum. For weather-insensitive appliances, the donor’s
average hourly loads for each stratum were transferred
directly to the corresponding strata in the recipient utility.
Average |load shapes for the recipient were then developed
by applying the recipient’s strata weights to the transferred
Stratum loads.

Data and Results

Overview

The end-use metered load data used in this study were
collected from utilities in each of three regions of the
U. S, the West, the Northwest and the Midwest. Refriger-
ation data were transferred between the West and the
Northwest, water heating data were transferred between
the Northwest and the Midwest, and air conditioning data
were transferred between the West and the Midwest. All
of these load data and their accompanying characteristic
data were provided by the Electric Power Research
Institute (EPRI) Center for Electric End-Use Data (CEED)
Data Request Service (DRS.) Some wesather data for these
regions were also available through the DRS. Additional
weather data were obtained from the National Oceanic and
Atmospheric Administration (NOAA).

Water Heating

Water heater load data from the recipient (Northwest) and
the donor (Midwest) were compared to one another before
data transfer was attempted. Figure 1 compares average
metered winter weekday load profiles for water heaters
from these two regions.

The average load profiles from these two regions are very
similar to one another. This is particularly interesting
since the morning peak loads of greater than 1.0 kW are
high in comparison to water heater loads which these
researchers have observed in data from other parts of the
country. The first step of the data transfer process re-
vealed that of the available characteristic variables, the
following were correlated with differences in load for
these data sets:

number of occupants and
ownership of a dishwasher.
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Figure 1. Average Winter Weekday Water Heater Load Shapes, Donor (Midwest) and Recipient (Northwest)

In addition to these variables, the size of the home, the
presence of a clothes washer and the tank size were aso
examined for correlations with the average load data. As
was the case with refrigerators, the data for these vari-
ables were either all missing, all the same or incompatible
between the two regions' data sets.

Both Methods 1 and 2 were applied to the donor’s (Mid-
west) data using household size (1-2 people versus 3 or
more people) and ownership of a dishwasher as stratifica-
tion variables. For all seasons and day-types, Method 1
performed considerably better than Method 2. Figure 2
shows results of using Method 1 to transfer aload shape
for winter weekdays.

As shown in the figure, the transferred load shape match-
es the recipient’s (Northwest) metered data more closely
than the donor’s (Midwest) unadjusted average load shape.
The improvement is limited to the morning peak hour.

The relatively successful application of data transfer to
water heating provides a positive demonstration of the
value of having complete and compatible data for driving
variables. In addition to the stratification variables which
were actually used here, the investigation of potential
stratification variables also yielded insights into other
important driving variables for water heating (severa of
which were mentioned above). Another variable which
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Figure 2. Results of Water Heater Data Transfer, Transferred vs. Metered Recipient (Northwest) and Donor (Midwest)

Load Shapes, Winter Weekdays
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may be important, is the temperature of the intake water.
This factor may vary across seasons and regions (or even
within regions). The implications of the energy require-
ments due to differences in intake water temperature are
2.44 Wh, per gallon of water, per °F. This translates into
a difference of approximately 100 Wh per 40 gallon water
heater full, per °F. Thisvariable should be considered
when transferring water heater data between regions
where the water intake temperatures may be different.

Air Conditioning

The data transfer for air conditioning was implemented
using central air conditioner and heat pump load data
gathered during the summer of 1990. The donor utility
was located in the Western U.S. and the recipient utility
was located in the Midwest. The donor (West) and recipi-
ent (Midwest) samples contained 54 and 39 customers
respectively.

Transferring air-conditioning loads between two distant
and very different regions presented the greatest challenge
of this research project. An indication of the difficulty of
this undertaking is provided by Figure 3, which depicts
average weekday air-conditioning load profiles for the
donor (West) and recipient (Midwest) utilities. During
afternoon and evening hours, the recipient’s (Midwest)
air-conditioning loads were significantly higher than the
donor’s (West). Also, the peak hour was later for the
recipient (Midwest), and following the peak, the recipi-
ent's (Midwest) air-conditioning loads tapered off more
gradually than the donor’'s (West).

Ideally the data transfer approach would make use of both
weather and characteristic data to explain the differences

between patterns of air-conditioning consumption in the
donor’'s (West) and recipient’s (Midwest) samples. Unfor-
tunately very limited characteristic data were available for
the recipient (Midwest) utility. Premise size (measured in
sguare feet) was the only potential stratification variable
common to both data sets. Ex ante air-conditioning con-
sumption could be expected to be positively correlated
with premise size (since larger units and/or more intensive
operation would be required to cool alarger structure).
Premise size was rejected as a stratification variable,
however, because this expected relationship was not
observed for the donor (West) utility (on average larger
homes actually had lower air-conditioning consumption
than medium sized homes)

Two other potential stratification variables were also con-
sidered and rejected. These were total household energy
consumption and the size of the air-conditioning units as
measured by connected load. Total household energy con-
sumption could not be used for stratification purposes
because there was little overlap between the two samples
in the range of this variable: most houses in the donor
(West) sample used more energy than al but the largest
premises in the recipient (Midwest) sample. Connected
load could not be used as a stratification variable because
connected load could not be computed for a high propor-
tion of the houses in the donor sample. The connected
load is usually calculated as the maximum load observed
for an appliance over a season. “However, because many
of the customers in the donor (West) sample appear never
to have operated their air-conditioners, their connected
loads were not observable. Clearly the differences
between the two samples, revealed through the process of
screening potential stratification variables, will play an
important role in understanding the results of the attempt
totransfer air-conditioning load data.

0:00 4:00 8:00
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Donor (West)
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Figure 3. Average Summer Weekday Air Conditioner Load Shapes, Donor (West) and Recipient (Midwest)
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Due to the lack of suitable stratification variables, Meth-
ods 1 and 2 were applied directly to average hourly air
conditioning loads for the entire donor sample (averages
were computed across customers for each day). Thus only
a partial data transfer for air-conditioners was undertaken.
This transfer only took into account the role of differences
in weather between the two regions. Humidity is also an
important determinant of air-conditioning loads. This vari-
able was accounted for in Method 2 through the use of the
THI as aregressor. It could not be included in Method 1
because hourly humidity and dry-bulb temperature read-
ings were highly correlated within each sample. *

The results demonstrated that adjusting for differencesin
weather via these methods can account for only a small
part of the regiona differences in air-conditioning load
profiles. Results for days with comparable weather pro-
vide the best basis for assessing the performance of the
data transfer approaches. In general Method 1 outper-
formed Method 2. Figures 4 and 5 present comparisons
between transferred load shapes (Method 1) and average
load shapes derived from the donor’s (West) and recipi-
ent's (Midwest) metered load data. Results for days with a
maximum temperature of 940 F (the hottest day for which
load data were available for both samples) are shown in
Figure 4, while Figure 5 presents results for days with a
maximum temperature of 88 “F. As suggested by the
figures, Method 1 performs better on less extreme days.
On these days the transferred load shapes generally fit the
recipient's (Midwest) data better than the donor’s unad-
justed data. Neither method yields a transferred load
profile which closely tracks the recipient’s (Midwest)
metered load shape; nor do these methods accurately pre-
dict either the magnitude or the timing of the recipient’s

(Midwest) peak air-conditioning load. Method 1 performs
better than Method 2, especially in capturing the relatively
gradual decline of air-conditioning loads during the early
evening hours.

In addition to providing a basis for assessing the results of
the data transfer, the availability of metered air-
conditioning data for the recipient (Midwest) afforded the
means to explore explanations of why the transfer methods
did not perform better. Several possible explanations were
considered in this investigation. The most important find-
ing was that customers in the two samples demonstrate
different patterns of response to variations in the weather.
Figure 6 illustrates this finding using data from both
utilities. In the figure average air-conditioning loads at
noon on each summer weekday are plotted against coin-
cident dry bulb temperatures. The fitted regression equa-
tions from applying Method 1 to each data set are also
included in each figure. The figure shows that in the
recipient (Midwest) sample customers begin to cool their
homes at lower temperatures (the “ set-point” is lower for
the recipient) and that on average these customers display
greater sensitivity to rising temperatures (the regression
line is steeper for them).

This finding contradicts a central assumption of both
approaches to data transfer employed in this study—that
the same underlying model of the relationship between
end-use loads and weather variables applies to both
utilities.

There are several possible explanations for this finding.
First, there may be important differences between the
customers represented in the two samples which could not
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Figure 4. Results of Air Conditioner Data Transfer Transferred vs. Metered Recipient (Midwest) and Donor (West) Load

Shapes Weekdays with a Maximum Temperature of 94°F
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Figure5. Results of Air Conditioner Data Transfer, Transferred vs. Metered Recipient (Midwest) and Donor (West) Load
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Figure 6. Air Conditioning Load vs. Dry-Bulb Temperature at Noon, Donor (West) and Recipient (Midwest)

be taken into account due to the lack of overlapping char-
acteristic data. That such differences exist was strongly
suggested by the observed differences in the distributions
of total premise energy consumption and air-conditioner
connected loads. Another closely related possibility is that
customers in different regions experience the same
weather differently and therefore respond to it in different
ways. This may be due to different personal experiences
with weather, regional variation in dwelling characteris-
tics, or the inability of these models to adequately account
for the role of humidity.” For the samples used in this

study, differences in dwelling characteristics were
probably of great importance. The donor (West) utility is
located in a state which has very high efficiency standards
for new buildings. Also, over the last decade economic
growth has been much more rapid in the donor’s (West)
service territory than in the region where the recipient
(Northwest) is located. Thus, the customers in the donor
(West) sample are more likely to live in newer homes and
to have more efficient appliances. Both of these explana-
tions should be investigated further in future research on
data transfer.
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Conclusions

This study has yielded several conclusions regarding the
current state of the art of end-use data transfer. These
findings have implications about how existing data transfer
methods should be implemented and offer promising
directions for future research into novel approaches to
data transfer.

This study has underscored the importance of incorporat-
ing appropriate data on customer demographics, dwelling
characteristics and appliance holdings in a data transfer
method. Ideally the characteristic variables employed in
the data transfer process should be causally related to the
load shape to be transferred. This was the case in the rla
tively successful water heater transfer described in this
paper. Data collection to support data transfer should
focus on ensuring the availability of compatible data for
such variables. Surveys and/or audit instruments should be
designed and administered with a view toward obtaining
high response rates for these data elements.

Another key finding is that future research should focus
on developing transfer methods for weather sensitive end
uses which allow for differences in the response of energy
consumption to weather variables. Improved methodolo-
gies may need to draw on engineering models which take
into account dwelling and appliance characteristics, and
can better account for the effects of humidity.

Finally, an important insight acquired through this study is
that flexihility is required in developing and implementing
data transfer methods. In future load data transfer applica-
tions the choice of methodology should be determined
bearing in mind both the nature of the load shape to be
transferred and the purpose for which the transferred data
are to be used. Just as different modeling frameworks
work best for different types of end uses, different meth-
odologies may be appropriate for different applications of
transferred data.
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Endnotes

1. Earlier studies which evaluated the results of residen-
tial and commercial whole-premise data transfer using
metered data were Moe 1992, AEIC 1982, and
Linder and Breese 1984,

2. Moredetailed results for these end uses, aswell as
results for refrigerators, are presented in Ryan et al.
1994.

3. Results of this survey are presented in Chilcott et al.
1993.

4. Method 1 was originally developed to transfer total
premise |oad shapes. See Powers et al. 1992. Method
2 was originally developed to transfer ground source
heatpump load shapes. It is presented in Moe 1992,

5. Indeed, Method 2 was originally conceived as a two
step regression approach. In the first step, coefficients
are estimated for the weather variables and harmonic
functions of time. These coefficients are then re-
gressed on characteristic variables in the second step.

6. THI = 0.55*dry bulb temperature + 0.2* dewpoint
temperature + 17.5

7. An instrumental variable is one which is correlated
with both the dependent variable and the unobserved
driving variable, but is not itself structurally related to
the dependent variable.

8. If the maximum appears to be an extreme outlier then
the 99th or 95th percentile of the appliance’'s load
may be used instead.

9. Theimplication of this multicollinearity was that the
effect of humidity could not be distinguished from
that of dry-bulb temperature. In principle the joint
effect of these two variables could be estimated by
including both in the Method 1 specification.
However, this was not justified because the
relationship between the two variables differed across
regions. Consequently the joint impact measured for
one area would not be transferable.

10. Developing techniques which explicitly account for
the influence of humidity is one way of addressing
this issue.
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