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A perennial concern for electricity demand forecasting is how best to allocate a forecast of total annual
demand to a pattern of daily loads and to 24-hour load profiles for typical and peak-demand days.
Patterns of electricity demand, both long-run seasonal ones and short-run diurnal omes, depend in
complex ways on behavioral and economic variables as well as on regional climatic features and weather
conditions. This paper develops a new way to allocate an annual demand forecast to daily consumption,
and suggests a natural way to extend the method for generating daily load profiles. The idea is first to
estimate a weather-based regression model, called the weather-sensitive (WS) component, that captures
predictable features of energy demand such as the need for lighting, heating and cooling. Such a model
leaves unexplained a serially-correlated residual or non-weather-sensitive (NWS) component which is
modeled using state space time series analysis. In an application using SMUD system load data, the WS
regression models accounted for 71 to 91 percent of the total daily variation, and accurately identified
peak days in out-of-sample prediction. The models generally fell short of extreme values, however,
systematically underpredicting high loads and overpredicting low loads. Addition of the estimated NWS
component models to the WS models reduced the size of but did not eliminate the systematic errors of the

WS regression models.

introduction

Energy planning relies on a variety of forecasting methods
applied at different levels of aggregation over end use,
rate class and time. One perennial concern for electricity
demand forecasting is how best to allocate a total annual
load forecast to a pattern of daily loads and to 24-hour
load profiles for typical and peak-demand days. These
patterns of electricity demand, over the course of the year
and over the course of the day, depend in complex ways
on behavioral variables as well as on regional climatic
features and weather conditions. This paper proposes a
new procedure for allocating an annual demand forecast to
a daily load pattern. The idea is to decompose energy load
into weather-sensitive (WS) and non-weather-sensitive
(NWS) components using multiple linear regression and
multivariate state space time series analysis. Then, given a
prediction E; of total energy consumption for year i, plus
a model of typical or expected weather variation based on
historical data, the WS and NWS component models can
be used to generate a pattern of daily deviations from the
annual mean daily load. Thus, for day t of year i the
estimate E;, of daily load would be

E, = (E/365) + WS, + NWS, M

where WS;; is the deviation from annual mean load due to
weather conditions and day length and is based on an
estimated regression model, and NWS, is the unexplained
pattern of residual variation captured by a state space time
series model.

For any given load series, weather dependence is modeled
first to capture the structure of the WS component. The
modeling technique is multiple linear regression, possibly
including lagged weather variables. Next, the highly auto-
correlated regression residuals for several related load
series (total daily load, and loads at maximum and
minimum hours) are pooled to form a multivariate time
series, which is modeled to capture the structure of the
NWS component. The modeling technique here is the
"state space time series" approach developed by Aoki,
henceforth referred to as Aoki-SSTS (see Aoki [1987] and
Aoki and Havenner [1991]). The Aoki-SSTS approach is
useful in the present context because it exploits the
correlations among related individual series to generate
improved forecasts. In this paper the WS and NWS
models are estimated using daily SMUD system load data
for 1983 to 1988, then tested out-of-sample on forecasts
of 1989 energy loads.
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Analytical Approach

The hourly energy load series for a full year contains at
least two levels of dynamics: long-run dynamics due to
seasonal variation in energy demand, and short-run
dynamics due to diurnal variation in demand. Our
approach is to model the long-run dynamics directly, and
then to extract the short-run dynamics only indirectly via
daily models for each hour of the day. In other words, we
estimate models for 27 series which together describe a
full year’s energy demand: three daily summary models
(total daily load, and load at maximum and minimum
hours) and 24 hourly models for all the hours of the day.
Yearly-to-daily allocation is then accomplished using the
three daily summary models, while 24-hour load profiles
are constructed using the 24 hourly models.! This paper
discusses only the yearly-to-daily allocation procedure.

The Structure of the Model

Let Y}, represent the value of an energy load variable on
day t of year i. For exarnple, Y; may be the total elec-
tricity consumed in each 24-hour period. Following the
forecasting strategy embodied in equation (1) above, the
model to be estimated features energy load expressed as a
deviation from its annual average:

Y,-Y=BX;+v, @

where 0X, represents the WS component, X;, contains the
values of the weather variables, and », is the NWS
component whose structure is characterized in state space
form by the relations

v, =CZ,*e, 3
Z;y,=AZ,+Be, %)

where e, is random white noise, A, B and C are coeffi-
cient matrices to be estimated, and the Z, are the
unobservable states. Equation (3) is called the observation
equation; equation (4) is called the state equation.

For the daily analysis three Y, series are modeled: total
daily load, and load at the maximum and minimum hours.
The regression model of equation (2) is estimated inde-
pendently for each of the load variables using ordinary
least squares.2 As one would expect, each residual series
exhibits a high degree of autocorrelation, as can be seen in
the pattern of residuals shown in Figure 1 below.
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The three residual series are pooled to form the three-
dimensional vector observation v, specified in equation
(3). The function of the states Z;; is to carry the lagged
information on p;, needed for forecasting the NWS
component.> Given estimates of the coefficient matrices
A, B and C we compute the values of Z;, recursively,
using equation (4), in order to generate forecasts of ;.

The Weather-Sensitive (WS) Component
Model: Specification, Interpretation and
Evaluation

Currently accepted practice in energy-load modeling,
augmented by insights gained from a recent study of
weather-energy relationships by one of the present
authors, provided the basis for specifying the WS
component model adopted here.* Since each load variable
Y;, was modeled for the full year, we included weather
variables that capture both the effects of summer weather
on air conditioner use, and the effects of winter weather
on electric heating appliances. In estimating the regression
models the dependent load variable was expressed as a
deviation from annual mean. This specification was used
to avoid having to accommodate long-run demographic
factors in the models.

Summer weather is represented by a variable called
THIDAY, defined by the formula

24
THIDAY,=Y" max (THI,~68,0) ©)
j=1

where THI; is the hourly temperature-humidity index, a
weighted sum of drybulb and dewpoint temperature. Two
models are estimated in this study, one including
THIDAY walues for the current day and two previous
days, the other including only the current day value. The
lag structure of the first model follows the example of
peak models currently used by the California Energy
Commission; see CEC [1991]. The same report also
discusses the use of the 68-degree base. The second
model, with no lagged weather variables, is preferable for
generating residuals to estimate the NWS component,
since the SSTS approach produces superior forecasts when
all the dynamic or lagged information is contained in the
residual term. As we will see, the two models give quite
similar regression results.

Winter weather is represented by a variable called
HDDAY, based on the concept of heating degree days and
defined by the formula
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Figure 1. Residuals from 1989 Out-of-Sample Forecast of WS Component Model - Total Daily Load

24
HDDAY,=Y " max (55-TEMP,,0)
j=1

)

where TEMPitj is the hourly temperature. Again, ome
model includes HDDAY values for the current day and
two previous days, while the other includes only the
current day. The 55-degree base in (6) is a downward
adjustment from the standard 65-degree base, to account
for the increased energy efficiency of buildings
constructed since the standard was first established. The
lower base also reflects the fact that in most commercial
and industrial buildings internal heat is being generated by
pormal activity, thus reducing the need for additional
heating at any given outdoor temperature.

The WS component models contain two other variables
that are not truly weather variables but which capture
predictable aspects of energy demand. One is photoperiod
or day length. This is simply the length of time in hours
from sunrise to sunset, and is obtained by a simple
calculation based on julian date and Ilatitude.® It is
included to capture the seasonal affect of ambient light.
The other non-weather variable is a dummy which equals
one for weekends and holidays.

In constructing the WS component models, we anticipated
that all the weather variables would have positive
coefficients. In the sumumer months the HDDAY values

will be zero or close to zero, and the THIDAY variables
will capture the effects of high temperature and humidity
on air conditioner use. In the winter the roles of the
variables will be reversed: THIDAY values will be zero,
and the HDDAY variables will capture the effects of low
temperatures on demand for heating energy. The only
coefficients expected to be negative are those on the
weekend/holiday dummy and on day length: energy use
will generally decline on weekends and holidays in an
urban/office environment like Sacramento, and demand
for lighting will rise as the daylight hours grow shorter.
Assuming the models contain adequate weather variables,
the day length variable should represent a pure daylight
effect uncontaminated by the effect of high summer
temperatures on air-conditioning demand.

Once the WS component models are estimated, they can
be subjected to some critical evaluation. In particular,
given the motivating problem of how to allocate an annual
load forecast to peak load days, it is important to see how
the models perform in an out-of-sample prediction test.
Once the coefficients are estimated using 1983-88 data,
the models are run on 1989 weather data and used to
predict daily sums, maxima and minima. If the modeling
strategy is working as intended, the models should be able
to identify the peak load days of 1989.
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The Non-Weather Sensitive (NWS)
Component Model

The motivation for state space modeling of a non-weather-
sensitive component arises from three observations. First,
regression models of energy load typically exhibit highly
autocorrelated residuals. Although this fact does not bias
the coefficient estimates, it does mean that forecasts will
systematically be too high at some times of the year and
too low at others. Second, regression models for different
dependent variables yield residuals that are correlated
across series. Since a major problem of autocorrelation is
2 loss of efficiency in estimation, even for large samples,
it is clearly desirable to increase efficiency by exploiting
relationships among the different dependent variables
being modeled. Finally, it is not at all clear how best to
model non-weather-sensitive aspects of energy demand.
Theoretical modeling of the interaction of seasonal cycles
with short-run demographic and economic factors is highly
susceptible to misspecification errors. Thus it becomes
practical to take a "data-based" approach to model specifi-
cation, that is, to let the data itself reveal the implicit
structure by which current observations depend on
previous history.

Results

In what follows we report first on the performance of the
WS models alone, prior to any atterpt to model the time
series properties of the residuals. The W8 component
models perform well in identifying peak load days,
particularly summer peaks. A problem that arises in
identifying winter peaks is that ornamental Christmas
lighting causes a rise in electricity use that is not related to
weather conditions. A general property that becomes
obvious in examining the results of the WS models is their
tendency to underpredict the values of peak loads. The
systematic pattern to these errors is what the NWS state
space model is intended to capture, and these results are
reported in the second subsection.

The W8 Component Models

Estimated regression equations for daily sum and daily
maximum and minimum hourly load are presented in
Table 1. Model A, in the top half of the table, contains
lagged weather variables, while Model B in the bottom
half contains only current weather variables.

The results may be summarized as follows:

(1) Models A and B perform quite similarly.
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(2) The weekend/holiday dummy has a significant
negative effect.

(3) Day length has a significant negative coefficient,
supporting the intuition that this variable shouid
capture a pure daylight effect once the seasonal
weather effects are adequately represented in the
model.

(4) All weather variables have significant positive effects.
(The one exception is the coefficient of HDDAY, , in
the MIN model, which is not significant.)

(5) Adjusted R? values are uniformly quite high.

(6) The Durbin-Watson statistics are small in magnitude
and highly significant, indicating strong positive
autocorrelation in the residual series.

These results are all in accord with the expectations
outlined in the previous section.

Next, the models are evaluated for their ability to predict
peak days. At this point we abandon Model A and use
only Model B for the rest of this paper. As mentioned
above, the dynamics of the process are best left in the
residuals that are input into the state space time series
procedure. Weather data for 1989 are used to generate
forecasts of the three daily load variables, and these
forecasts are compared with actual 1989 load values. Days
are ranked from highest to lowest, separately for summer
(May through September) and winter (November through
March), according to the values of four variables, namely,
actual and forecast daily sum and daily maximum. Table 2
lists the top-ranked days according to actual total and
actual maximum load, by season.

The results may be summarized as follows:

(1) For the summer season, the WS models identify five
of the six top-ranked days, although there are some
disagreements about the order among the top days.

(2) The summer forecast values are consistently below the
actual values, indicating a teandency for the WS
models to underpredict high load values.

(3) The four variables perform less consistently in winter
than in summer. Note, however, that the data itself is
less consistent, as reﬂecged in the different ranks
assigned by the two actual load variables. Still, the
models successfully detect the five top days as ranked
by either of the actual variables.
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(4) The two models tend to underpredict load on peak
days, as was observed for the summer season.

Overall, the WS component models perform well in
detecting peak days in summer and in winter. One
improvement in winter may be to add a Christmas dummy
to capture the effects of ornamental lighting on electricity
consumption. The most obvious shortcoming of the WS
models is the clear tendency to overpredict at certain times
gnd to underpredict at others. We argue, however, that
these tendencies are not so much shortcomings of the WS
models as evidence of a dynamic process that can be
captured by the S8TS model. In other words, the residuals
from the WS regression models follow a pattern which
adversely affects the unaided WS models’ forecasting

ability, but which contains the dynamic structure that the
NWS5S model can capture. A fypical example of the pattern
of residuals is shown in Figure 1, the 1989 residuals from
the out-of-sample forecast of the total daily load W§
component model. This pattern suggests a six-month
cycle, with peaks coming at the beginning and the middle
of the vear.

The NWS Component Model

A broader view of the cyclical pattern in the WS model
residuals is provided by Figure 2, which covers all the
years 1983 through 1589. Daily residuals from the total
daily load model are averaged by month for two reasons.
First, averaging allows a more global view of the
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seven-vear period being modeled, without the distraction
of day-to-day noise. Second, these monthly means are the
actual data to which the Aoki-SSTS procedure is applied
in this phase of the development of our procedure. The
last twelve points in Figure 7 are the monthly residuals
from the 1989 out-of-sample forecast of the WS model.
The NWSE models are estimated on the 1983-88 data, and
then forecast for 1989 as we did with the W5 models.

Mote how the data of Figure 2 repeat the two-peaks-per-
year pattern observed in Figure 1. The presence of a
cyclical pattern in the WS residuals suggests that there are
as yet unexplained dynamics that can be captured by a
well-specified time series model. The details of the Aoki
state space approach will not be discussed here; the reader
is referred to Aoki [1987] and Aoki and Havenner [1991]
for a full treatment that covers both the rationale behind
the state space specification and the mechanics of esti-
mating the coefficient matrices A, B and C of equa-
tions (3) and (4).

The first way to evaluate the success of the NWS models
is through the reduction in variance of the residuals. As

Table 3 indicates, the Aoki-SSTS estimates of the NWS
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component models accounted for 42 to 46 percent of the
variance of the residuals generated by the WS regression
models.

A second evaluation of the NWS state space model is
illustrated in Figure 3, which shows the out-of-sample
forecast for 1989. Actual WS residuals, averaged by
month, are shown beside the corresponding monthly
forecasts of the NWS model. The following observations
should be noted:

(1) In all but one month (February) the NWS estimates
have the correct sign. The state space model is clearly
capturing the six-month cycle that appears in
Figures 1 and 2.

(2) The magnitudes of the NWS model estimates need
improvement. The final residuals, i.e., the differences
between the black and white bars in Figure 3, appear
to be serially correlated but do not seem to
systematically overpredict or underpredict. The
questions raised by these observations will be the
focus of further research.
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Figure 2. 1983-1989 Residuals from WS Component Model of Total Daily Load - Monthly Averages

A final evaluation of the full procedure, an out-of-sample
test of the W8S and NWS components combined, is shown
in Figures 4 and 5. Figure 4 shows total daily load esti-
mates for July 1989, the month of the summer peak, and
Figure 5 shows total daily load estimates for February
1989, the month of the winter peak. In both cases the WS
component is generated by Model B of Table 1. Thisis a
quite severe test of the procedure, for we are trying to
predict actual daily loads for a full year beyond the period
of the data used for estimating the models.

Figures 4 and 5 compare actual daily loads with the daily
forecasts generated by, first, the WS regression model

alone, and second, the sum of the WS component model
and a daily NWS component obtained by interpolating
between the successive monthly forecasts of the Aoki-
S8TS model, i.e., the white bars in Figure 3. For the
month of July (Figure 4), addition of the NWS component
clearly moves the forecast in the right direction and
reduces the severity of the underprediction. For February
(Figure 5), the adjustment provided by adding the NWS
component is slight, but again it is in the right direction.
In the early part of February the NWS component is
positive, thereby reducing the underprediction error of the
WS component. In the latter part of the month the NWS

- Tuble 3
 Aoki-SSTS.
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component is negative, thereby reducing the
overprediction error of the WS component.

Conclusion

The principal contribution of this paper bhas been fo
propose and to initiate development of a new approach to
allocating anmual energy load forecasts to typical daily
patterns and load profiles. The new approach takes into
account both the variation explainable in ferms of weather
and other behavioral influences such as day length and
holidays, and the residual variation that is harder to
explain in causal terms.

At this stage of development the procedure shows
promise, but also indicates clear directions for
improvement. Fven when the WS and NWS components
are combined, there is systematic overprediction and
underprediction. The NWS component does improve upon
the unaided WS component, but the magnitude of the
improvement is not yet large enough.

In summary, the combination of weather-based regression
models with Aoki state space time series analysis appears
to offer a promising approach for modeling and
forecasting the annual pattern of energy demand variation.

It is, therefore the intention of the authors to further
develop and refine the approach, and to investigate ifs
applicability to less aggregated measures of energy
demand, and to more climatically diverse utility service
areas.
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Endnotes

1. The method of generating 24-hour load profiles by
estimating separate hourly models has been
successfully used in other energy-weather studies.
See, for example, the report by Regional Economic
Research, Inc. (1990).

2. The regression technique used is ordinary least
squares (OLS). Although it is well known that OLS is
inefficient in the presence of autocorrelated residuals,
the logic of the WS/NWS decomposition precludes the
use of the standard corrections for autocorrelation.
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More important in the present context are (a) the fact
that OLS estimates of 3 are unbiased and consistent,
and (b) baving series of regression residuals that retain
the autocorrelation structure to be captured in the
NWS component model.

3. The concept of the "state space” originates in systems
theory, a field of applied mathematics that specializes
in modeling and estimating dynamical systems and
which has recently been applied to tifne series analysis
for its strength in forecasting. In building the SSTS
model, the dimension of the state variable Z; is
cruciai, for the states are the minimal sufficient
statistics for the past history of the time series. The
dimension of Z; is determined by numericaily finding
the rank of a Hankel matrix, constructed from the
three-by-three correlation matrices between past and
future observations of the series making up the vestor
v;. The device for finding this rank is the singular
value decomposition, also used to estimate the
matrices A and C in equations (3) and (4). After A
and C are estimated, the matrix B in equation (4) is
estimated by solving & matrix Riccati equation. For
the full details of the procedure, see the paper by
Aoki and Havenner (1991); for a richer theoretical
exposition see Aoki’s (1987) book.

4, See California Energy Commission (June 1991),
particularly chapter 7; also Ignelzi and Way (1989)
and Kristov (1991).

5. See Lunde (1980) pp. 64-75.
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