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A crucial requirement to promote and sustain energy conservation measures in buildings is the ability to
perform careful and reliable appraisals of exactly how much energy has been saved. This paper briefly
describes the general issues involved and then focuses on commercial buildings where retrofits are made
in order to reduce energy consumption in hot water, chilled water and in electricity consumed by
air-handler and chilled water pumps. How retrofit energy savings in the framework of the Texas.
LoanSTAR project are estimated is described, and the need to assess the accuracy in these estimates
themselves is highlighted. The various sources of uncertainties in the retrofit savings estimates are
itemized and discussed. We point out the need to consider the strong serial correlations present in daily
(and other types of time series) data and how this impacts the model identification process as well as the
determination of uncertainty. Subsequently, equations to compute the prediction uncertainty associated
with the use of a regression model involving serially correlated data streams and with error in the
measurement data are presented. Use of these equations is illustrated by means of a case study involving
one large commercial LoanSTAR building. Attention has been drawn to areas in which additional work

is needed in order to improve the estimates of retrofit savings.

Introduction

Several large-scale building energy conservation programs
in the United States have been initiated by electric utilities
(Schuster and Tomich 1983), by state agencies (Claridge
et al. 1991), and by federal agencies (Norford et al. 1986)
to demonstrate that substantial reduction in energy use in
residential and commercial buildings is both technically
and economically feasible. These programs are generally
based on one or several of the following: (i) retrofits to
HVAC equipment, and replacement of equipment and
lights, (ii} changes in building operation and schedule (for
example, thermostat night set-back or lowering lights at
night), (iii) modifications to the building shell, and
(iv) continuous monitoring of energy use and analysis and
control thereof (Haberl and Vajda 1988). A crucial
requirement in being able to promote and sustain such
energy comservation measures is the ability to perform
careful and reliable appraisals of exactly how much energy
has been saved. The accuracy with which the energy
savings can or have been estimated is obviously a closely
related and major issue, and is the focus of this paper.

Despite a number of major advances over the last two
decades in analysis methodology and tools development
relating to assessment of energy conservation in buildings
(MacDonald and Wasserman 1988), additional refinements
and extensions are still needed in order for these tech-
niques to reach a level of maturity satisfactory and robust
enough for use by the professional building community. In

this paper, we shall limit ourselves to the issue of energy
savings in commercial buildings, digressing to residential
buildings only when relevant. Moreover, we shall also
confine ourselves to instances when energy savings are
realized as a result of retrofits to equipment, i.e., case (i)
above. The present study has been performed in the
framework of the Texas LoanSTAR program (Claridge et
al. 1991).

This paper is divided into four sections. The first section
describes the methodology for estimating retrofit savings
in the Texas LoanSTAR program; the second section dis-
cusses the sources of errors generally present in the
statistical measurement of savings; the third presents and
discusses equations for determining the uncertainty of the
estimated energy savings and the fourth section illustrates
the approach with actual data from a LoanSTAR building.

Estimation of Retrofit Savings

One way of estimating retrofit savings is to directly
compare the unadjusted pre-retrofit energy use to the
post-retrofit energy use. Though this method may yield a
first-order evaluation, it has generally been found to be
too simplistic because the effects of the retrofit on energy
use may be largely or entirely masked by changes
between the pre- and the post-retrofit periods of certain
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important parameters influencing energy use (the most
important often being the climatic variables) (Greely et al.
1990). Consequently, in order to incorporate the effects of
such changes into the energy savings calculation, a theo-
retical model for building energy use needs to be devei-
oped. There are currently three types of modeling
approaches:

i) Regression model approach (Fels 1986; Claridge et al.
1990; Kissock et al. 1992a, b);

ii) Calibrated mode! approach using existing hourly
building simulation codes, (Hsieh et al. 1988; Bronson
et al. 1992); and

iii) Simplified model approach (Rabl 1988; Subbarao
1988; Reddy 1989; Katipamula and Claridge 1992).

Whenever appropriate, model development using the
regression approach is used because if is generally the
least demanding in effort and user-expertise, yields ade-
quate results and permits uncertainty associated with
savings to be quantified using accepted statistical
procedures. The calibrated simulation model approach is
more tedious and requires knowledge of how the mechani-
cal gysterns of the building are operated and a certain
proficiency in using the particular building energy simu-
lation code. It is typically resorted to only when the
quality or length of the data period is not adequate to
enable proper regression model identification. The simpli-
fied model approach (developed until recently essentially
for residential building energy use) falls between the two
approaches both in the level of user-expertise and length
of data period.

A unique feature of the Texas LoanSTAR program, which
is a program funding energy conservation retrofits in state,
county and municipal government buildings and schools in
Texas, is that data acquisition equipment to monitor
building energy use be installed for a suitable period
before the retrofits are carried out and remain in the
building, possibly throughout the retrofit life (Claridge et
al. 1991). Consequently, estimates of the retrofit energy
savings can be based on the regression model approach.
There are, however, buildings for which, due to a variety
of reasons, the pre-retrofit data is either too short or even
entirely uoreliable. Only in such instances are the cali-
brated and simplified model approaches considered for use
in the LoanSTAR program (Bronson et al. 1992;
Katipamula and Claridge 1992). These have yet to reach a
stage of maturity in methodology development where they
can be used routinely with confidence. Consequently the
rest of the paper pertains exclusively to the regression
model approach.

3.226 - Reddy et al.

As of October 1991, energy savings in eight LoanSTAR
buildings are being reported (Kissock et al. 1992a). This
number has increased to 14 buildings as of March 1992.
These buildings are all located on university campuses and
vary in size from 49,000 ft2 to 484,000 ft2 and house
classrooms, offices, laboratories, computer facilities, audi-
toriums, workshops and a major campus library. All the
buildings are provided with electricity, chilled water, and
steam (or hot water) from campus utility plants that are
separate from the buildings. The primary retrofit in all
these buildings was the coaversion of constant volume air
handling units to variable air volume air handling units.
The resulting energy savings in whole building chilled
water use, whole building hot water use and electricity use
of air handlers and chilled water pumps are individually
estimated and reported. Thus, in general, a minimum of
three regression models need to be developed for each
building.

The methodology currently used to report retrofit savings
in LoanSTAR buildings basically involves the following
steps (Kissock et al. 1992a, b):

1) Identification of the pre-retrofit, construction and
post retrofit periods. This is dope both from log
books and inspection of the hourly time series plots of
air handler electricity use. Changes in consumption
patterns are very distinct during these three stages and
consequently there is little ambiguity at this stage.

2} Preliminary data handling. The entire data set from
each building is composed of hourly averaged or
summed observations of chilied water energy use, hot
water energy use, whole-building electricity, air
handler electricity use, chilled/hot water pump
electricity use, and climatic variables (ambient dry
bulb temperature, relative humidity, wind speed and
global horizontal solar radiation). Each of these
channels is screened and converted into daily averaged
data (Lopez and Haberl 1992). This is the time scale
presumed in all subsequent steps.

3) Regression model identification. Daily data from
the pre-retrofit periods are used to develop regression
models for daily chilled water, hot water, and air-
handler electricity use. The single most important
predictor variable for chilled water and hot water
energy use is the ambient dry bulb temperature.
Electricity consumed by lights and appliances, which
is deduced from whole-building use and from air
handler and chilled water pump use, is a secondary
influential predictor variable because it is repre-
sentative of the internal building loads. The
importance of other variables is uncertain, and an



on-going effort in the LoanSTAR analysis group is to
refine current model identification methodology so that
the influence of additional variables can be rationally
and systematically ascertained and inciuded in the
model if deemed necessary.

4) Predicting energy use. The regression model (identi-
fied using daily data) is used to predict daily energy
consumption of the non-retrofitted building under
building operation and weather conditions correspond-
ing to each day of the post-retrofit period. Because the
building has already undergone retrofits, the use of a
model is unavoidable and leads to model prediction
uncertainties which subsequently impact retrofit
savings estimates.

5) Estimation of savings. Finally, the savings over a
certain number of post-retrofit days are estimated by
subtracting the daily measured energy consumption
from the daily energy consumption predicted by the
pre-retrofit model and summing the daily savings.

The entire procedure for computing total savings of either
chilled water, hot water or electricity can be summarized
by:

3 i m
b Bgave = 2 “predj X:Emas,j (L2)
=t = =1
or
ESave,'Ibt = EPred,Tm - EMeas,Tot (1b)
where
i = subscript representing a particular day over
the post-retrofit period
m = pumber of post-retrofit days over which
savings are estimated
Egave, = energy savings over day j,
Epreq,; = model predicted pre-retrofit daily energy
use
Eieas,j = measured post-retrofit daily energy use
Tot = subscript for "total” over the entire m days

of the post-retrofit period.

It is clear from the above discussion that the regression
model identification phase is crucial in the entire retrofit
savings process. Currently, most regression models are
linear, and of the first-order. This was dictated by
(i) preliminary and previous experience supported by heat
transfer and thermodynamic principles that energy flows in
buildings could be well represented by linear first order

functional forms (Fels 1986; Rabl 1988; Subbarac 1988),
and (ii) a desire to keep the statistical identification simple
(proper non-linear regression requires a much higher level
of expertise). This aspect of model development is also
being currently assessed and refined.

It is well known that energy use in buildings often exhibits
change-point or segmented linear behavior with ambient
temperature (Fels 1986; Ruch and Claridge 1991; Kissock
et al. 1992). In residential buildings, where concurrent
heating and cooling is not required, the presence of a
change point is obvious (Fels 1986). In commercial
buildings, however, interior zones may require cooling
while the exterior zones may call for heating. This,
coupled with the fact that HVAC deck temperatures are
controlled non-linearly with ambient temperature, often
results in change-point behavior. Consequently, the
regression models can be sub-divided into three groups:

i) Mean or one-parameter models (for example, air
handier electricity use for constant volume dual duct
systems in buildings is reasonably independent of
weather and a mean daily value has been found to be
adequate for most commercial buildings (Kissock et
al. 1992a),

ii) Simple or multiple linear regression models

{MacDonald and Wasserman 1988), and

iii) Change-point or segmented linear regression models,
which can be further sub-divided into:

- Three-parameter or PRISM models (Fels 1986),
and

- Four-parameter or 4-P models (Ruch and Claridge
1991).

Identification of model type (i) is relatively straight-
forward and can be done in standard packages (for
example, we use SAS, 1989 and STATGRAPHICS,
1991). Though linear segmented models are special cases
of a much larger set of models, called spline functions
(Pindyck and Rubenfeld 1981), these commercial pack-
ages do not, however, allow segmented linear regression
modeling to be investigated in a framework convenient
enough for building energy analysis. This is because the
change point needs to be known and specified in order to
use classical spline regression. Because this is not known
a priori, for buildings (in fact, this is one of the
parameters being identified by regression), these commer-
cial packages are inadequate. Another deficiency in these
packages is the lack of proper error diagnostics for spline
regression models. Consequently, specially written
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computer programs, like PRISM (Fels 1986) or in-house
programs, like 4-P (Ruch and Claridge 1991), are used. In
their current development, these programs suffer from the
drawback that models with only one regressor variable can
be evaluated. This deficiency is due to a lack of properly
accepted statistical formalism and methodology of how to
deal with change point behavior when more than one
regression variable is present. However, the fact that the
ambient temperature as the sole regressor variable is very
often adequate to model energy use in many buildings has
lessened the urgency to overcome this deficiency. The
computational algorithm on which the 4-P model is based
involves a search method where the residual sums of
squares over each of the two segments are computed sepa-
rately for each incremental variation in the change point
temperature. These two values of the sum of squares are
then added together. The particular value which minimizes
this sum is said to correspond to the sought-after change-
point temperature (Ruch and Claridge 1991). Extensions
and improvements in the 4-P model are also being cur-
rently studied by the LoanSTAR analysis group.

The entire approach of model identification involves
several important issues which need to be enumerated and
discussed individually if one wishes to guard against
misuse and drawing of simplistic conclusions. Alsoc, model
identification has direct bearing on determining the
uncertainty of retrofit savings because the same issues
equally affect the nature and magnitude of errors.

2

Sources of Uncertainty in
Regression Models

The uncertainty in savings can be attributed to measure-
ment errors (both in the independent and dependent
variables) and to errors in the regression model. The
former are relatively well known to engineers and the
methodology of estimating their effect is adequately
covered in classical engineering textbooks, for example,
Schenck (1968), and Bendat and Piersol (1986). Errors in
regression modeis, on the other hand, are more complex
and arise from several sources. They can be classified into
four categories:

{a) Model prediction errors which arise due to the fact
that a model is never "perfect.” Invariably a certain
amount of the observed variance in the response
variable is unexplained by the model. This variance
introduces an uncertainty in prediction even when the
range of variation in the regressor variable is within
the range over which the model was identified. The
next section of this paper addresses this source of
uncertainty which is probably the most important.
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(b) Model mis-specification errors which are due to:

i) inclusion or non-inclusion of certain regressor
variables. Usually secondary effects such as
humidity or solar radiation are either neglected or
assumed to manifest themselves along with other
variables which appear explicitly in the model;

i) assumption of a linear model, when the physical
equations suggest non-linear interaction among the
regressor variables;

iii) incorrect order of the model, i.e., either a lower
order or a higher order than the physical equations
suggest.

Physical interactions of the system will dictate the
model structure and statistics by itself may be of
limited use. As stated earlier, the physics of energy
use in buildings is well-known, which, when coupled
with a large body of previous experience, suggest that
this source of uncertainty is probably not very
influential in statistical modeling of building energy
use.

(c) Model extrapolation errors which arise when a
model is used for prediction outside the region
covered by the original data from which the model
has been identified. An illustration of this error is
when a whole-building chilled water use model is
developed using data exclusively from the winter
months when energy use is low and when the range of
variation in ambient temperature does not adequately
cover an entire possible yearly range of variations.
Error due to model extrapolation is a serious concern
in estimating building energy retrofit savings in the
LoanSTAR program because in many buildings the
pre-retrofit period does not span an entire year. This
issue is currently under investigation.

(d) Improper residual behavior. Major assumptions
during regression are that the residuals have:

i) zero mean;

il) constant variances, i.e., heteroscedasticity is not
present;

ii1) are uncorrelated, i.e., no serial correlation or
autocorrelation is present; and,

iv) a near-normal distribution.



The method of least squares can be used to estimate the
parameters in a linear regression model regardless of the
form of the distribution of errors, and so the last assump-
tion is not relevant in our current savings calculation
methodology. Assumption (i) is also not a serious criterion
because it is satisfied in most cases. The normal manner
to deal with heteroscedasticity is to perform a weighted
regression with the observations inversely weighted with
their variance (Draper and Smith 1981). Data from the
LoanSTAR buildings do not seem to generally exhibit
heteroscedasticity, and consequently this issue will be
overlooked in our current discussion.

Autocorrelated residuals may arise due to two primary
reasons, (1) model mis-specification, and (2) auto-
correlation in the regressor variable itself. The first, which
clearly indicates an inadequate model identification process
needs to be resolved from physical considerations. The
second cause of autocorrelated residuals is because stand-
ard regression assumes the predictor variable to be a set of
random data. However, continuous or time series data
averaged over daily time scales may still retain informa-
tion from previous days (i.e., data are not entirely
random), and the serial correlation in the regressor
variables is subsequently transmitted to the residuals.

Thetre are several ways of analyzing time series data in a
pure regression framework (see Neter et al. 1989). One
way is to explicitly incorporate the effects of the auto-
correlation into the error analysis itself (see Thiel 1971,
Pindyck and Rubenfeld 1981). Another way, and this is
the one adopted later in our analysis, is to transform the
set of autocorrelated data into another set of random data
wherein autocorrelation effects have been removed. The
practical implication of neglecting serial correlations in the
data is that equations presented in elementary statistical
textbooks for model prediction uncertainty of random data
will differ from the true model uncertainty. Generally, the
issue of serial correlations seems to have been overlooked
by building energy data analysts, and it is one of the
primary objectives of this paper to explicitly point this out
and discuss means of addressing this issue.

A final point of discussion is multicollinearity, i.e., the
regressor variables are correlated to one another. The lack
of perfect independence among the regressor variables has
serious consequences (Pindyck and Rubenfeld 1981;
Manly 1986):

(i) in terms of clouding the interpretation that regression
coefficients yield on how the response variable is
affected with unit change in the particular regressor
variable, and
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(ii) rendering the estimated values of the coefficients very
sensitive to slight changes in the data, and thereby
predicting unphysically large standard errors of the
estimate.

Techniques to overcome these limitations are available and
one of these, namely the Principle Component Analysis,
has already been applied to model energy consumption in
a supermarket (Ruch et al. 1991). In the case of commer-
cial buildings in the LoanSTAR program, multicollinearity
does not seriously affect the estimates of model prediction
errors. The change-point models are currently limited to
regression models with one regressor variable and so the
question of multicollinearity does not arise. For linear
multiple regression models, electricity use due to lights
and appliances is often not a significant regressor variable,
and even when it is, it is generally poorly correlated with
ambient temperature on a daily time scale. Thus, multi-
collinearity effects among the regressor variables will
have little, if any, bearing on the estimates of retrofit
savings uncertainty in the LoanSTAR program. Neverthe-
less, the issue of multicollinearity may need to be
satisfactorily addressed in the future when model identifi-
cation reaches a higher level of sophistication.

The various sources of errors and uncertainties discussed
above lead to either random errors or systematic errors.
A systematic error results in a uniform bias in some vari-
able while random errors have no regular pattern. System-
atic errors could arise due to improper calibration and
installation of metering equipment. The former type of
systematic error can be compensated for at a later stage
while the latter cannot. In terms of the statistical esti-
mation, model-mis-specification and model extrapolation
could result in biased predictions while improper attention
to residual behavior could result in estimates of prediction
uncertainty being lower than those actually present.

Removing or minimizing systematic bias in mode! identifi-
cation cannot be done based on statistical grounds alone.
Taking care to include all the physical interactions of the
system and to verify that the chosen model structure is
physically consistent, will minimize model mis-
specification errors during the model identification
process. Allowing for a sufficiently long pre-retrofit
period on which to base the model identification process
will minimize model extrapolation errors. Treatment of
errors in statistical textbooks normally presumes no
systematic bias, both in the measurement stage and in the
model identification process. Thus, only random error
behavior can be adequately treated in a statistical
framework.

- 3.229



Model Prediction Uncertainty

In this section, we shall assume only random measurement
errors to be present in our data and present equations for
deducing the uncertainty bounds of our estimates of retro-
fit energy savings due to model prediction errors, with-
out and with autocorrelations present in the data.

With Random Data

Consider the case when observed pre-retrofit data of
energy consumption in a commercial building support a
linear regression model with no change point behavior, as
follows:

ﬁ'. =4, +al*f!’i @

z

where
T = daily average ambient dry bulb temperature,
E= daily total energy use predicted by the modei
i = subscript representing a particular day over the
pre-retrofit period, and,
a, and a; are the least-square regression coefficients.

Ounce a regression equation has been identified, it can be
used for forecasting purposes, i.e., to predict EPred,j
values under specified future conditions of T;. This pre-
diction will, however, have a prediction uncertainty
associated with it, which in statistical terms, is quantified
by a prediction variance (Draper and Smith 1981). At this
juncture, let us mention that most statistical textbooks
presume that predictor variables in a regression model
have no measurement error. Though this is seldom true, it
avoids the need for a much more complicated statistical
treatment. We shall assume this to be true in our analysis
procedure as well.

The prediction uncertainty of a simple linear model identi-
fied from random data, i.e., without autocorrelations
being present, is straightforward and is given in most
statistical textbooks (Draper and Smith 198%; Pindyck and
Rubenfeld 1981). The prediction uncertainty for an
MVIDUAL observation during the post-retrofit period,
neglecting autocorrelation effects, is:

1 + 1, _(f}_fny
n S5,

Hbpa) = SE) )

where Sz(@i) is the mean square error during the
pre-retrofit period computed as:

3.230 - Reddy et al.

n 1 i A
s*E) = {M]}: (E,-E) (4)

i=1

where
n = number of days of pre-retrofit period
_k = pumber of regressor variables in the model
T, = mean value of T, during the pre-retrofit days
881 = sum of squares of T;, computed as

88, = E (7,-T,)2 ®)

The second term within brackets in equation (3) accounis
for the variance in predicting the mean EPred . value for a
given T. value. However, because each post-retrofit day
has a different T; value, the prediction variance has to be
increased by Sz(Ei), which accounts for the unity within
the brackets. The last term in the brackets accounts for
the increased uncertainty when the prediction is made at a
point other than the centroid of the pre-retrofit data used
to develop the model. The retrofit savings methodology is
not, however, based on individual predictions of ﬁ,Pred,j'
We are more interested in the swm over m days of Epred,j
values rather than on any one individual day.

Subsequently, assuming
m m
2/ ~ N
pIL (E,Pm:,j) = “Z{:E Pred,jJ ©)

the total prediction variance can be obtained from equation
(3) as:

m A
UZ(/% Pred,j]

= GZ(EA'Pred N Tat) (7)

A look at equation (7) reveals that there are basically
three factors which contribute 1o the total prediction
uncertainty:



(a) finite number of post-retrofit days used to predict
pre-retrofit energy consumption,

(b) finite numbers of pre-retrofit days used to identify the
regression model,

(¢) uncertainty due to prediction away from the centroid
of pre-retrofit data set (i.e., away from T,).

We pote that increasing n and m results in ao effective
relative decrease in the prediction uncertainty which is
intuitively obvious.

The energy savings and associated uncertainty (¢) on any
particular day j during the post-retrofit period are:

(Bsre * €save,)

®

= (EPred,j t el’redj) ™ (Breasj * €tteas.s)

Using the standard method of combining random errors
(Schenck 1968), we have

= /2
Csave,; T [(erredJ)Z * (€steas | ©
The total energy savings over m days from equation (1)
is:

(ESm.Toi * €“:Save,tor)
(10)
= (EPred}Tot - EMea..v,Tot) * eSave,Tot
with
o | 2 ) ) 12 11
€sove, Tor [“ <£:Pred,sz) tmoRe (El’ns)] an

where GZ(EIHS) is the absolute instriumentafion error
asswoed constant and taken as independent of the relative
magnitude of actual observed data and iastrument full-
scale reading. (This approximation is valid becavse the
error in individual measurements is often quoted by the
manufacturer as a fraction of the full scale meter reading.)

We would like to point out that measurement errors
(assumed random) present in the pre-retrofit data are
implicitly contained in the variance of the pre-retrofit
energy use data and should not be included again.

Equation (11) gives an estimate of the absolute uncertainty
in estimated energy savings. It may be more meaningful to

express the savings uncertainty as a relative error (RE)
defined as:

€
RE = Save, Tot

ESave Jot

In the case of no instrument error, the following
expression is obtained from equation (7), equation (10)
and equation (11)

S(E) | e+ £ (12)

<<EPred, i Epteas, j)>

where <(EPred,j - EMeas,j)> is the average daily savings
during the post-retrofit period. Note that it suffices to use
the model once with the mean T; value in order to get the
mean daily predicted energy use.

The normal statistical practice is to specify the confidence
interval and not the uncertainty itself. Often confidence
intervals of 95% of a two-tailed distribution, are selected.
The total measured energy savings and the confidence
intervals are given by (see any appropriate statistics book,
for example, Neter et al. 1989):

(13)

[+
‘ESave,Tox ES (ESave,Tor) *1 l:n - (k+ 1)’1 - E

where

£ w(ﬁc»««f@),zw% is the r-statistic tabulated in most

statistical textbooks,

o is the significance level, and

k is the number of independent variables in the regression
model.

After four months of pre-retrofit data, ¢ asympfotes to
1.96 at a confidence level of 0.95.

With Autocorrelated Data

As stated earlier, analysis of the LoanSTAR data is done
on a daily time scale where strong serial correlations are
present in the basic data set. This results in autocorrelated
residuals in the model predictions. The remedial approach
adopted here to overcome the serial correlation effects is
to transform the original data set so that the residuals have
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no serial correlation. There are several techniques of
doing so, and we shall resort to the widely used
Cochrane-Orcutt procedure (Neter et al. 1989; Pindyck
and Rubenfeld 1981) which, in essence, is a first-order
auto-regressive (AR) scheme.

Let us first recall the definition of the autocorrelation
coefficient at lag 1 of a time series data stream, say %,

DSTIETEY

cov(Xx,,
) - D
c (xi)
n-1 1
> (e 3 oo
o =
- n-1
3 (x,% 2
i=1
where

x is the mean value of x;,
cov is the covariance operator, and
o is the variance operator.

A value of p; = 0 indicates no autocorrelation, while p,
= ] represents perfect autocorrelation. Though p can have
negative values, we find that in our case, values of p are
invariably positive and in the range 0.4 - 0.95.

Consider the regression model given by equation (2). The
Cochrane-Orcutt procedure involves transforming the basic
variables as follows:

- 2 P % W
iz/ = ?\»a p1*E, and (15)

i i+l

- py*T

Strictly speaking, the autocorrelation coefficient p; should
be that of the residuals of the regression model. Because
this is not known prior to the regression itself, the
Cochrane-Crcutt procedure proposes that the initial value
of p; be estimated by classical least-squares regression and
that iteration be done until the E! and T} data streams are
rendered random. (A Durbin-Watson test can be done to
verify randommess.) Our preliminary analysis on
LoanSTAR data has indicated that such an iteration is
usually not necessary and that a single transformation
using the autocorrelation coefficient of the least-square
regression residuals is adequate.

Next, the transformed data are regressed and the following
model identified:
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&/

E] (16)

/ I el
=a, +a * T
where a, and a; are the least-square regression

coefficients.

Finally, a model in the original variables is obtained by a
back transformation of the regression coefficients:

E = b, + b +T, (an
/
with b, = and b = g
i-p;

Let us now address the issue of estimating the uncertainty
in our retrofit savings in the presence of serially corre-
lated data. One approach is to simply use the equations
presented in the previous section along with the trans-
formed data set. A physically more appealing procedure
is to derive an expression for the uncertainty in terms of
the original data set. This would allow greater flexibility
and ephance our intitive understanding of the degree to
which autocorrelations impact model prediction uncertain-
ty. This problem does not seem to have been treated
previously, and consequently we shall derive the solution
from first principles.

The model given by equation (16) can be "centered” and
written as:

Al =t I fepd 18
B = E, + o{+(1{-T}) (18)
where B’ and T', are the mean values of E', and T’
over n observations.

From basic statistics and assuming no measurement error

in Ty, the variance of the predicted mean value of E' at a
specific value of T  is:

(E) = AE)+(Ti-TP + oa (19)

The standard expression for oz(a’l) is given in statistical
textbooks (p. 24 - 28 of Draper and Smith 1981). Setting
p1 = 0, equation (19) can be written as:



1 (T/—]—" ? (20)

For an AR1 process, from Box and Jenkins (1976), p. 58

oHE) = o¥B)*(1-p?) @y

0,

We note that, for large values of n,

Sf (r/ - T = S5z (222)

=Y " 1-p?

where S8y is given by equation (5),

and

(T«f ~Tifw(i- AT, - iz)z (22b)

Also,

i)« SHE .
14297

where Sz(ﬁi) should be evaluated from equation (4) with
éi values computed from equation (17). (The interested
reader can refer to p. 255 of Thiel 1971, for a complete
derivation.) Because the regression lines of the original
data (given by equation 2) and of the back-transformed
data (given by equation 17) are usually close (this aspect
is discussed in the case study in the next section), it is
easier to estimate Sz(ﬁi) from equation(4) with éi values
computed from equation (2).

Introducing the above equations into eguation (20):

@4

Equation (24) is valid for the mean prediction uncertainty.
For an individual observation, the prediction variance is
given by:

N SHE)
2 - i
¢ (EPredJ)— (1 _ pz)*(l +2p2) *
- 25)
T.-T)
1= +{1-p?)x(1 -p)z-(ﬁT—")—

Equation (25) is the counterpart of equation (3) when
serial correlations are present. Proceeding similarly to that
outlined in the previous section, the expression for relative
error in the retrofit savings in the absence of measurement
errors is deduced:

RE= 1 . S(Ei)

<(Emd,j - EMms,j) > {(1 - Pz) *(I +2P2)}112

W2

(26)

# s
1 1 X{\(E}_T”)z
NPT § P PY g PRSP ol E—
m mx(n-1) 1-ps0-p) m?+SS,,

Note that the main difference in the RE values from
equation (12) and equation (26) are caused by the

presence of the term {{1 - p?)*(1 +2p"}” in the denom-
inator of equation (26). This factor can be greater or less
than 1 depending on the value of p. Values of p less than
about 0.75 will result in uncertainty of the serially
correlated data to be slightly less than that (less than 5%)
of uncorrelated data. For values of p >0.75, the opposite
holds true with the difference increasing sharply for
values of p approaching unity.

Equation (26) is analogous to equation (12) when auto-
correlations are present. The above derivation is subject to

several assumptions which need explicit mention:

(a) no measurement error in T, both during the pre- and
post-retrofit periods,

(b) there is no systematic bias in the measurements,

(c) the energy data is homoscedastic, i.e., has constant
variance,
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(d) autocorrelation in the residuals is not due to model
misspecification errors,

(e) the first-order autocorrelation coefficients of energy
use and temperature data streams are close,

(f) there is no autocorrelation in the post-retrofit measure-
ments of Ej.

Of the above assumptions, (a) and (f) need to be addressed
at a later date while the other assumptions are probably
not serious ones where LoanSTAR data is concerned.
Extending the above equations to linear segmented
regression models, i.e., change-point models, is complex
and is currently being studied. However, if we assume (i)
that the change point is known without any inherent
uncertainty, and (ii) that the autocorrelation effects on
either side of the change point are similar, we can simply
take the data as falling in two separate regions and treat
the overall model as made up of two individual simple
linear models, the uncertainty of each being determined
along the lines discussed above. The individual variances
are then added in quadrature to yield the total variance
and hence the total uncertainty.

ase Study

In this section, we shall apply our equations for estimating
uncertainty in retrofit savings to data from a LoanSTAR
building. We shall overlook uncertainty in our measure-
ments of post-retrofit data and study the effects of model
prediction uncertainty in our saving estimates.

The building is a large engineering center in Central
Texas with a gross floor area of 324,000 2. It is open
24 hours per day and 365 days per year and though it
exhibits marked weekday and weekend differences, we
shall overlook this difference in this illustrative study. The
pre-retrofit monitoring period included about 400 days of
good data, a data length long enough for satisfactory
regression model identification. The scatter plots of daily
chilled water use versus ambient dry bulb temperature is
shown in Figure I(a)., We note that this plot does not
exhibit change-point behavior and a linear regression
model is adequate. ‘

Table 1 gives various statistics relevant for retrofit savings
calculations. The classical least-square regression model
(equation 2) fits the data well (R? = 0.84) as can be seen
from Figure I{a). The autocorrelations are strong (p =
$.92) for both energy use and ambient temperature. The
post-retrofit period spans 380 days. We note that mean
values of ambient temperature during pre- and post-
retrofit periods are 69.1°F and 72.7°F, respectively,
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while the corresponding chilled water energy use values
are 132.5 and 80.9 MBtw/day respectively, a distinct
difference. From Table 1 we also note that p of the
residuals using classical least squares is 0.587, with the
Durbin-Watson statistic of 0.83 indicating strong serial
correlation. The data streams were transformed using p =
0.587 and the new regression line thus obtained has an R?
of 0.63 and a Durbin-Watson statistic of 1.89 indicating
no serial correlation. The regression line (equation 17)
considering autocorrelation is also shown in Figure 1(a).

Figure 1(b) illustrates the fact that the post-retrofit daily
chilled water use data points fall well below the linear
regression line which models pre-retrofit daily use. The
vertical difference between this line and the data points
represent daily savings, as is obvious from equation (1).
The 95% uncertainty bands estimated from equation (13)
and equation (25) are also shown. These bands are about
4+ 19.6 MBtu/day, i.e., + 14.8% of the mean daily
energy use during the pre-retrofit period. These bands
turn out to be close to the corresponding bands assuming
no serial correlation effects, i.e., using equation (3) and
equation (7). This is due to the particular value of g in the
data set as discussed earlier. The scatter plot in Fig-
ure 1(c) shows how daily savings vary with ambient
temperature. As stated earlier, the building exhibits
distinct differences in weekday and weekend operation
{which we have chosen to overlook here) causing the data
points in both Figures 1(b) and 1(c) to fall along two
distinet lines.

How the measured daily savings and the associated 95%
confidence intervals vary from day-to-day can be seen in
the time series plots shown in Figure 1(d). Of more
interest is how the cumulative or total chilled water
savings and the associated confidence intervals vary with
time from the day the retrofits were completed. From
Figure 1(e), we see that the savings keep increasing
monotonically as does the absolute or total uncertainty,
testified by the slight widening of the confidence band
with time.

Finally, how the 95% relative error or relative uncertainty
given by the product of the z-statistic (equation 13) and
equation (26) varies with day number m is shown in
Figure 1(f). We note that the relative error drops sharply
and asymptotes to a value close to 3%. After about three
months into the retrofit period, the relative error seems to
have more or less stabilized. This suggests that one should
allow at least 3 months of post-retrofit data in order for
the reported retrofit savings to be sound.
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Figure 1. Series of Plots of Chilled Water Use in the Case Study Building Demonsirating:

a) pre-retrofit chilled water use data points and regression lines neglecting and considering autocorrelation effects,
B) pre-retrofit model along with the 95% confidence bands, and post-retrofit chilled water use data points.

The vertical distance between the model and a data point is the chilled water savings on that day,
¢} daily chilled water savings plotted against average daily outdoor air temperature,
d) daily chilled water savings and uncertainty bands plotted against time,
e) cumulative chilled water savings and uncertainty plotted against time, and
f)  the relative uncertainty of retrofit savings plotted against time.
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k Number of regressor variables in the model
m Number of post-retrofit days

n Number of pre-retrofit days

RE Relative Error

R? Coefficient of determination

52 Mean square error

SS Sum of squares

T Ambient dry bulb temperature

o Significance level

€ Error or uncertainty

o? Variance

p Autocorrelation coefficient

X' Transformed variable of X with autocorrelation

effects removed

:)Z Mean value of X

X Model predicted value of X
- <X> Mean value of model predicted value of X
Subscripts

Ins Instrument

i particular day during the pre-retrofit period
J particular day during the post-retrofit period

Meas Measured

Pred Predicted

Save  Savings

T Ambient dry bulb temperature
Tot Total
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