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A crucial requirement to promote and sustain energy conservation measures in buildings is the ability to
perform careful and reliable appraisals of exactly how much energy has been saved. This paper briefly
describes the general issues involved and then focuses on commercial buildings where retrofits are made
in order to reduce energy consumption in hot water, chilled water and in electricity consumed by
air-handler and chilled water pumps. How retrofit energy savings in the framework of the Texas·
LoanSTAR project are estimated is described, and the need to assess the accuracy in these estimates
themselves is highlighted. The various sources of uncertainties in the retrofit savings estimates are
itemized and discussed. We point out the need to consider the strong serial correlations present in daily
(and other types of time series) data and how this impacts the model identification process as wen as the
determination of uncertainty. Subsequently, equations to compute the prediction uncertainty associated
with the use of a regression model involving serially correlated data streams and with error in the
measurement data are presented. Use of these equations is illustrated means of a case study involving
one large commercial LoanSTAR building. Attention has been drawn to areas in which additional work
is needed in order to improve the estimates of retrofit savings.

Introduction

Several large-scale building energy conservation programs
in the United States have been initiated by electric utilities
(Schuster and Tomich 1985), by state agencies (Claridge
et ale 1991), and by federal agencies (Norford et ale 1986)
to demonstrate that substantial reduction in energy use in
residential and commercial buildings is both technically
and feasible. These programs are generally
based on one or several of the following: (i) retrofits to
HVAC equipment, and replacement of equipment and
lights, (ii) changes in building operation and schedule (for
example, thermostat set-back or lowering lights at

modifications to the and
(iv) continuous monitoring of energy use and analysis and
control thereof and Vajda 1988). A crucial
feQlulr'ement in being able to and sustain such
energy conservation measures is the to perform
careful and reliable appraisals of exactly how much energy
has been saved. The accuracy with which the energy

can or have been estimated is obviously a closely
related and issue, and is the focus of this paper ~

.JP..J""'..:I1LJJ!.11.""" a number of major advances over the last two
decades in analysis methodology and tools development
relating to assessment of energy conservation in buildings
\.I.V..8I.uvJIJ"V.UQ,ll.U and Wasserman 1988), additional refinements
and extensions are still needed in order for these tech­
niques to reach a level of maturity satisfactory and robust
enough for use by the professional building community. In

this paper, we shall limit ourselves to the issue of energy
savings in commercial buildings, digressing to residential
buildings only when relevant. Moreover, we shall also
confine ourselves to instances when energy savings are
realized as a result of retrofits to equipment, i.e., case (i)
above. The present study has been performed. in the
framework of the Texas LoanSTAR program (Claridge et
al~ 1991)~

This paper is divided into four sections. The first section
describes the methodology for e.stimating retrofit savings
in the Texas LoanSTAR program; the second section' dis­
cusses the sources of errors generally present in the
statistical measurement of savings; the third presents and
discusses equations for determining the uncertainty of the
estimated energy savings and the fourth section illustrates
the approach with actual data from a LoanSTAR building.

Estimation of Retrofit Savings

One way of estimating retrofit savings is to directly
compare the unadjusted pre-retrofit energy use to the
post-retrofit energy use. Though this method may yield a
first-order evaluation, it has generally been found to be
too simplistic because the effects of the retrofit on energy
use may be largely or entirely masked by changes
between the pre- and the post-retrofit periods of certain



of data

Yr~~I:iInillary data The entire data set from
each is composed of hourly averaged or
summed observations of chilled water energy use, hot
water energy use, whole-building electricity, air
handler use, chiUedlhot water pump
electricity use, and climatic variables (ambient dry
bulb relative humidity, wind speed and
global horizontal solar radiation). Each of these
channels is screened and converted into
data and Haberl 1992). This is the time scale
Drt~SUme~a in all subsequent steps.

A ...""m". ... 'lI""""U"'V.llU~. model data from
nn:'~-Tf~n'T'Hn. periods are used to develop regression

models for daily chilled water, hot water, and air­
handler electricity use. The single most important
predictor variable for chilled water and hot water
energy use is the ambient bulb temperature.
Electricity consumed by lights and appliances, which
is deduced from whole-building use and from air
handler and chilled water pump use, is a secondary
influential variable because it is repre-
sentative of the internal loads 0 The
importance of other variables is and an

As of October 1991, energy savings in eight LoanSTAR
buildings are being reported (Kissock et a1. 1992a). This
number has increased to 14 buildings as of March 1992.
These buildings are an located on university campuses and
vary in size from 49,000 ft2 to 484,000 ft2 and house
classrooms, offices, laboratories, computer facilities, audi­
toriums, workshops and a major campus library. All the
buildings are provided with electricity, chilled water, and
steam (or hot water) from campus utility plants that are
separate from the .buildings. The primary retrofit in all
these buildings was the conversion of constant volume air
handling units to variable air volume air handling units.
The resulting energy savings in whole building chilled
water use, whole building hot water use and electricity use
of air handlers and chilled water pumps are individually
estimated and reported. in general, a minimum of
three regression models need to be developed for each
building.

1) Identification construction and
retrofit This is done both from

books and of the time series plots of
air handler use. Changes in COIlsUmt~tlOln

n'!::3ll'"l'"~1!"t"lC! are very distinct these stages and
consequently there is little ambiguity at this stage.

The methodology ..."lI'11""......~~I'ta'll.r used to retrofit
in LoanSTAR buildings involves the following
steps (Kissock et ale 1992a, b):

Calibrated model approach using existing hourly
building simulation codes, et a1. 1988; Bronson
et al. 1992); and

Whenever appropriate, model development using the
res~re~;SlCln approach is used because it is generally the
least demanding in effort and user-expertise, yields ade-

results and permits uncertainty associated with
to be accepted statistical

The calibrated simulation model is
more tedious and of how the mechani-
cal of the and a certain

n~1r"t1f"llll'!::3I'&" bllnl~C1m,£! energy simu-
lation to when the

or of the data is not adequate to
enable proper model identification. The
fled model until -rp.(''b,p'ntil'U e~)se]t1tuLHy

for residential energy use) falls between the two
apt)rO~lCn~es both in the level of and

important parameters influencing energy use (the most
important often being the climatic variables) (Greely et aL
1990). Consequently, in order to incorporate the effects of
such changes into the energy calculation, a theo­
retical model for building energy use needs to be devel­
oped. There are currently three types of modeling
approaches:

i) Regression model approach (Fels 1986; Claridge et
1990; Kissock et a1. 1992a, b);

Simplified model approach (Rabl 1988; Subbarao
1989; Katipamula and Claridge 1992).

A feature of the Texas LoanSTAR program, which
is a program energy conservation retrofits in state,

and and schools in
is that data to monitor
energy use be installed for a suitable

before the retrofits are carried out and remain in the
OUJ.1aln2~ 1!"'IInCICl1 h.,l.T UJlfOll2:nout the retrofit life (Claridge et

estimates of the retrofit energy
can be based on the model aplDrOlaCJtl.

There are, for due to a
of reasons, the data is either too short or even
.::&~'a"'ll."...o.ll'!{.r unreliable. in such instances are the cali-
brated and model considered for use
in the J..A)allSTAR program (Bronson et aI. 1992;
KatlP~am1ula and 1992). These have to reach a

of 1n~tn'lr'1h, in methodology where they
can be used with confidence. the
rest of the paper to the
model approach.

aL



on-going effort in the LoanSTAR analysis group is to
refine current model identification methodology so that
the influence of additional variables can be rationally
and systematically ascertained and included in the
model if deemed necessary.

functional forms (Pels 1986; Rabl 1988; Subbarao
and a desire to keep the statistical identification
(proper non-linear regression requires a much higher level
of expertise) .. This aspect of model is also
being currently assessed and refined.

Predicting energy use& The regression model (identi­
fied using daily data) is used to predict daily energy
consumption of the non-retrofitted building unde~

building operation and weather conditions correspond­
ing to each day of the post-retrofit period. Because the
building has already undergone retrofits, the use of a
model is unavoidable and leads to model prediction
uncertainties which subsequently impact retrofit
savings estimates.

ES1tmlatllon of Finally, the savings over a
certain number of post-retrofit days are estimated by

the daily measured energy consumption
from the energy consumption predicted the
nTP,'_'li"'Pl,Tnl'"1llr model and the

The entire for COInPlltlIll2 total savings of either
chilled water, hot water or can be summarized

It is well known that energy use in buildings often exhibits
change-point or segmented linear behavior with ambient
temperature (Fels 1986; Ruch and Claridge 1991; Kissack
et aL 1992)" In residential buildings, where concurrent
heating and cooling is not the presence of a
change point is obvious (Fels 1986). In commercial
buildings, however, interior zones may require. cooling
while the exterior zones may call for heating.
coupled with the fact that HVAC deck are
controlled non-linearly with ambient often
results in change-point behavior ~ Consequently, the
regression models can be sub-divided into three groups:

i) Mean or models air
handler electricity use for constant volume dual duct
systems in is reasonably of
weather and a mean value has been found to be
adequate for most commercial buildings et
aL

models
and

linear
i.l'lf,J!.U",",Ja..JV.UU.&,U and Wasserman

or
l ~n:~nS-l'e-T)nUlr or linear re.2~reSISl0In JUJIl.'OJ'I.8Io......AU ..

which can be further sub-divided into:

nre~e-t~ar~lm~~ter or PRISM models
and

where J:'4'O'lr-J)ar~unt~teror 4-P models and ............_&.20_1'.......

Identification of model
forward and can be done in
example, we use 1989 and
1991) & Though linear segmented models are special cases
of a much larger set of models, called fimctions
(l.J'lI·ll"U'h,,,",v and Rubenfeld these CO]nmler(~lal

however, allow linear regression
moaelID2 to be investigated in a framework convenient
enough for building energy analysis. is because the
change point needs to be known and in order to
use classical spline regressione Because this is not known
a priori, fOl· buildings fact, this is one of the
parameters being identified these commer-
cial packages are inadequate@ Another in these
packages is the lack of proper error diagnostics for

models~ written

over

energy

over which
the no~;;:r-r~lr~,nI

number of
are estimated

use
:::: measured energy use
== for "total n over the entire m

of the n(]~'i[-reLn)11I

j =:

m

It is clear from the above discussion that the re~~reS;Slc~n

model identification is crucial in the entire retrofit
process. most regression models are
and of the first-order.. This was dictated

pre~l1nnn;ary and experience supported heat
transfer and the~rmlodvn:amlCp:nn1clpiles that energy flows in
OUlldllruzs could be well linear first order



computer programs, like PRISM (Pels 1986) or in-house
programs, like 4-P (Ruch and Claridge 1991), are used. In
their current development, these programs suffer from the
drawback that models with only one regressor variable can
be evaluated. Thi's deficiency is due to a lack of properly
accepted statistical formalism and methodology of how to
deal with change point behavior when more than one
regression variable is present. However, the fact that the
ambient temperature as the sole regressor variable is very
often adequate to model energy use in many buildings has
lessened the urgency to overcome this deficiency. The
computational algorithm on which the 4-P model is based
involves a search method where the residual sums of
squares over each of the two segments are computed sepa­
rately for each incremental variation in the change point
temperature. These two values of the sum of squares are
then added together. The particular value which minimizes
this sum is said to correspond to the sought-after change­
point temperature and Claridge 1991). Extensions
and improvements in the 4-P model are also being cur-

studied by the LoanSTAR analysis group.

The entire approach of model identification involves
several important issues which need to be enumerated and
discussed individually if one wishes to guard against
misuse and of conclusions~ model
identification has direct on determining the

of retrofit savings because the same issues
affect the nature and of errors.

Sources of Uncertainty in
Regression Models

The can be attributed to measure-
ment errors in the and

and to errors in the modele The
former are weB known to and the

their effect is
covered in classical for ex~unJ)le,

Schenck (1968), and Rendat and Piersol (1986). Errors in
rej2:reS;Sl(Jln llLlVUlvA.::J, on the other are more COlDP,lex
and arise from several sources. can be classified into
four ~<!llf',QhNr~'i'lI IO!oC!.

Model errors which arise due to the fact
that a model is never a certain
amount of the observed variance in the response
variable is by the model. This variance
introduces an uncertainty in prediction even when the
range of variation in the regressor variable is within
the range over which the model was identified. The
next section of this paper addresses this source of
uncertainty which is probably the most important

(b) Model mis-specification errors which are due to:

i) inclusion or non-inclusion of certain regressor
variables. Usually secondary effects such as
humidity or solar radiation are either neglected or
assumed to manifest themselves along with other
variables which appear explicitly in the model;

ii) assumption of a linear model, when the physical
equations suggest non-linear interaction among the
regressor variables;

iii) incorrect order of the model, i.e., either. a lower
order or a higher order than the physical equations
suggest.

Physical interactions of the system will dictate the
model structure and statistics by itself may be of
limited use. As stated earlier, the 'physics of energy
use in buildings is well-known, which, when coupled
with a large body of previous experience, suggest that
tb;is source of uncertainty is probably not very
influential in statistical modeling of building energy
use.

(c) Model errors which arise when a
model is used for prediction outside the region
covered by the original data from which the model
has been identified. An illustration of this error is
when a chilled water use model is

using data exclusively from ~he winter
months when energy use is low and when the range of
variation in ambient temperatUre does not adequately
cover an entire possible yearly range of variationss
Error due to model extrapolation is a serious concern
in estimating building energy retrofit savings in the
LoanSTAR program because in many buildings the
pre-retrofit does not span an entire year.
issue is under mv'est12a.tlOJns

(d) residual behavior. Major assumptions
regression are that the residuals have:

i) zero mean;

constant variances, i.e., heteroscedasticity is not
present;

iii) are uncorrelated, i.e., no serial correlation or
autocorrelation is present;

a near-normal distribution~

3,,228 - et 8/..



The method of least squares can be used to estimate the
parameters in a linear regression model regardless of the
form of the distribution of errors, and so the last assump­
tion is not relevant in our current savings calculation
methodology. Assumption (i) is also not a serious criterion
because it is satisfied in most cases. The normal manner
to deal with heteroscedasticity is to perform a weighted
regression with the observations inversely weighted with
their variance (Draper and Smith 1981). Data from th,e
LoanSTAR buildings do not seem to generally exhibit
heteroscedasticity, and consequently this issue will be
overlooked in our current discussion.

Autocorrelated residuals may arise due to two primary
reasons, (1) 'model mis-specification, and (2) auto­
correlation in the regressor variable itself. The first, which
clearly indicates an inadequate model identification process
needs to be resolved from physical considerations. The
second cause of autocorrelated residuals is because stand­
ard regression assumes the predictor variable to be a set of
random data. However, continuous or time series data
averaged over daily time scales may still retain informa­
tion from previous days (Le., data are not entirely
random), and the serial correlation in the regressor
variables is subsequently transmitted to the residuals.

There are several ways of analyzing time series data in a
pure regression framework (see Neter et al. 1989). One
way is to explicitly incorporate the effects of the auto­
correlation into the error analysis itself (see Thiel 1971,
iiJ1na'iU('·1,r and Rubenfeld 1981) .. Another way, and this is
the one adopted later in our analysis, is to transform the
set of autocorrelated data into another set of random data
wherein autocorrelation effects have been removed. The
pr~lCUCal implication of neglecting serial correlations in the
data is that equations in statistical
textbooks for model prediction uncertainty of random data
will differ from the true model uncertainty. Generally, the
issue of serial correlations seems to have been overlooked

building energy data analysts, and it is one of the
nft'n"'H111'""i! objectives of this paper to explicitly this out
and discuss means of addressing this issue..

A final of discussion is Leo, the
regressor variables are correlated to one another.. The lack
of among the regressor variables has
serious consequences (Pindyck and Rubenfeld 1981;

in terms of clouding the interpretation that regression
coefficients yield on how the response variable is
affected with unit change in the particular regressor
variable, and

(ii) rendering the estimated values of the coefficients very
sensitive to slight changes in the data, and thereby
predicting unphysically large standard errors of the
estimate.

Techniques to overcome these limitations are available and
one of these, namely the Principle Component Analysis,
has already been applied to model energy consumption in
a supermarket (Ruch et aL 1991) .. In the case of commer­
cial buildings in the LoanSTAR program, multicollinearity
does not seriously affect the estimates of model prediction
errors. The change-point models are currently limited to
regression models with one regressor variable ~d so the
question of multicollinearity does not arise. For linear
multiple regression models, electricity use due to lights
and appliances is often not a significant regressor variable,
and even when it is, it is generally poorly correlated with
ambient temperature on a daily time scale. Thus, multi­
collinearity effects among the regressor variables will
have little, if any, bearing on the estimates of retrofit
savings uncertainty in the LoanSTAR program. Neverthe­
less, ,the issue of multicollinearity may need to be
satisfactorily addressed in the future when model identifi­
cation reaches a higher level of sophistication.

The various sources of errors and uncertainties discussed
above lead to either random errors or systematic errors ..
A systematic error results in a uniform bias in some vari­
able while random errors have no regular pattern. System­
atic errors could arise due to improper calibration and
installation of metering equipment.. The fo~er type of
systematic error can be compensated for at a later stage
while the latter cannot. In terms'of the statistical esti­
mation, model-mis-specification and model extrapolation
could result in biased predictions while improper attention
to residual behavior could result in estimates of prediction
uncertainty being lower than those actually present..

§,,!l' <i:'A1nnn''IITll'ln,n or systematic bias in model identifi-
cation cannot be done based on statistical grounds alone..
Taking care to include all the physical interactions of the
system and to verify that the chosen model strocture is
physically consistent, will minimize model mis­
specification errors during the model identification
process. Allowing for a sufficiently long pre-retrofit
period on which to base the model identification process
will minimize model extrapolation errors.. Treatment of
errors in statistical textbooks normally presumes no
systematic bias, both in the measurement stage and in the
model identification process" Thus, only random error
behavior can be adequately treated in a statistical
framework.



Model Prediction Uncertainty

In this section, we shall assume only random measurement
errors to be present in our data and present equations for
deducing the uncertainty bounds of our estimates of retro­
fit energy savings due to model prediction errors, with­
out and with autocorrelations present in the data.

ith Random Data

(4)

where
n = number of days of pre-retrofit period

......k = number of regressor variables in the model
Tn = mean value of Ti during the pre-retrofit days

SSr = sum of squares of Ti , computed as

n

SST := E (Ti - Tn)2
j=l

The second term within brackets in equation (3) accounts
for the variance in predicting the mean Epred,j. value for a
given T· value. However, because each post-retrofit day
has a di1ferent T· value, the prediction variance has to be
increased by S2(~i)' which accounts for the within
the brackets. The last term in the brackets accounts for
the increased when the prediction is made at a
point. other than the centroid of the pre-retrofit data used
to the model. The retrofit savings methodology is
not, however, based on individual predictions of Epred,j.
We are more interested in the sum over m days of Epre<i,j

values rather than on anyone individual

the total pre~(t1c~tlo,nvariance can be obtained from eCl1latllon
as:

A look at equation (1) reveals that there are basically
three factors which contribute to the total

the

(2)

(3)

the mean square error
computed as:

where
T = daily average ambient dry bulb temperature,
E = daily total energy use predicted by the model
i = subscript representing a particular day over the

pre-retrofit period, and,
and al are the least-square re{!~reS.Sl(Jln coefficients.

Once a has been it can be
used. for forecasting purposes, i.e. , to predict
values under future conditions of This pre-
diction however, have a prediction
associated with which in statistical terms, is quantified
by a prediction variance and Smith At this
juncture, let us that most statistical textbooks
presume that variables in a model
have no measurement error. this is seldom it
avoids the need for a much more complicated statistical
treatment. We shall assume this to be true in our '!:lIYHlllhlC!1C!

Dr()ce!dul~e as well.

Consider the case when observed pre-retrofit data of
energy consumption in a commercial building support a
linear regression model with no change point behavior, .as
follows:

The _...",~......all~~~'llrll't"ll U.lLl\,,-VA Il.UJU...U,y

fled from random
present, is

statistical textbooks
Rubenfeld The
INDIVIDUAL observation
nei:!le<~trnlg autocorrelation

3.. 230 - at al..



finite number of post-retrofit days used to predict
pre-retrofit energy consumption,

express the savings uncertainty as a relative error (RE)
defined as:

fmite numbers of nTf~-n:;~IT{')llr used to ll.rllo.·~71111h T the

ESave,Tot

In the case of no instrument error, the following
expression is obtained from (7), equation (10)
and equation (11)

(c) uncertainty due to prediction away from the centroid
of pre-retrofit data set (i.e., away from Tn).

We note that increasing n and m results in an effective
relative decrease in the prediction uncertainty which is
lIn~n'llt''11I'1T..:::lbli'T obvious. m 1/2

The energy savings and associated uncertainty (€) on any
particular day j during the post-retrofit period are:

±

RE

(12)

of combining random errors

(8)

±
where < > is the average daily savings

the Note that it suffices to use
the model once with the mean Tj value in order to get the
mean daily energy use$

The total energy
is:

+

over m from eQu.atlC)n (1)

The normal statistical practice is to specify the confidence
interval and not the itself. Often confidence
intervals of 95 % of a two-tailed are selected.
The total measured energy savings and the confidence
intervals are by (see any statistics book,
fur Nereret~.

± (13)

where
with

+ *
(11)

t is the t-statistic tabulated in most

01. is the and
k is the number of mdlep~~ndentvariables in the regression
model.

where is the absolute instrumentation error
aSSiUlIlea constant and taken as of the relative
ma,2n1lWCle of actual observed data and instrument fuU­
scale is valid because the
error in individual measurements is often the
manufacturer as a fraction of the fun scale meter AV"'Y.LlLIi.,,J:'...

After four months of pre-retrofit
1.96 at a confidence level of 0.95.

t asvmptot~~s to

ith ~uut1~(J,(~CJrreB;ate~aData

As stated analysis of the LoanSTAR data is done
time scale where serial correlations are

in the basic data set$ This results in autocorrelated
residuals in the model The remedial approach
ad.()pte~d here to overcome the serial correlation effects is
to transform the data set so that the residuals have

We out that measurement errors
in the data are

contained in the variance of the
energy use data and should not be included

hq"Uatlon (11) an estimate of the absolute l1njr"~?"t.r.l1l1nhl

in estimated energy It may be more to



no serial correlation. There are several techniques of
doing so, and we shall resort to the widely used
Cochrane-Orcutt procedure (Neter et al. 1989; Pindyck
and Rubenfeld 1981) which, in essence, is a first-order
auto-regressive (AR) scheme.

where a~ and aj are the least-square
coefficients.

(16)

regression

Let us first recall the defInition of the autocorrelation
coefficient at lag 1 of a time series data stream, say xl'

X2' ···Xu:

Finally, a model in the original variables is obtained by a
back transformation of the regression coefficients:

COV(Xi,xi+1)
a2(x;)

n-l

(X;-X)(Xi +1-i)
(14)

(17)

Iaowith bo =-- and b i :::::: aj
1- PI

n-l

E (Xi -"£)2
i=1

where
x is the mean value of ~,
COy is the covariance .operator, and

is the variance operator.

A value of PI =: 0 indicates no autocorrelation, while PI
= 1 perfect autocorrelation. Though p can have

. we fmd that our case, values of P are
and in the range 0.4 - 0.95.

Consider the regression model given (2). The
Cochrane-Orcutt procedure involves transforming the basic
variables as fonows:

Let us now address the issue of estimating the uncertainty
in our retrofit savings in the presence of serially corre­
lated data. One approach is to simply use the equations
presented in the previous section along with the trans..,
fonned data set. A physically more appealing procedure
is to derive an expression for the uncertainty in terms of
the original data set. This would allow greater flexibility
and enhance our intuitive understanding of the degree to
which autocorrelations impact model prediction uncertain-

This problem does not seem to have been treated
previously, and consequently we shaH derive the solution
from first principles.

The model given by equation (16) can be "centered" and
written as:

(18)

* and where n and n are the mean values of
over n observations.

and

lo;)liJ",/~".JI.lU.~;;", the autocorrelation coefficient PI should
be that of the residuals of the regression modeL Because
this is not known to the regression itself, the
Cochrane~Orcutt procedure proposes that the initial value
of PI be estimated classical least-squares regression and
that iteration be done until the and Ti data streams are
rendered random. Durbin-Watson test can be done to

Our preliminary analysis on
LoanSrrAR data has indicated that such an iteration is

not necessary and that a single transformation
the autocorrelation coefficient of the least-square

re2:reSlSlOln residuals is adequate.

the transformed data are regressed and the following
model identified:

st al"

From basic statistics and assuming no measurement error
in the variance of the predicted mean value of E' at a
specific value of T'0 is:

(19)

The standard expression for c?(a'l) is given in statistical
textbooks (p. 24 - 28 of Draper and Smith 1981). Setting
PI :::::: p, equation (19) can be written as:



1
n-I

+ ----:.--~-I

(20)

Equation (24) is valid for the mean prediction uncertainty.
For an observation, the prediction variance is
given by:

For an ARl process, from Box and Jenkins (1976), p. 5~

(21)

(25)

We note that, for large values of n,

(22a)

Equation (25) is the of equation (3) when
serial correlations are present. Proceeding similarly to that
outlined in the previous section, the expression for relative
error in the retrofit savings in the absence of measurement
errors is deduced:

where

and

is eauBLtlon (5),

(22b) (26)

where should be evaluated from V"l~..a..u."'JI.'lIJJ..Ji.

values from eCHlatJlOn
reader can refer to p. 255 of Thiel

data
data
is discussed in the case
easier to estimate
COr110ultea from £»"",,lI1ln1i"fro.¥Ii

mtro(!ucmg the above into V'-II1.lI.U,&-Ji'llJJ..I

Note that the main difference in the RE values from
(12) and (26) are caused by the

presence of the term {(l- p2) *(1 +2 p2)}1f2 in the denom­
inator of (26). This factor can be greater or less
than 1 depending on the value of p. Values of p less than
about 0.75 will result in uncertainty of the serially
con·elated data to be less than that (less than 5 %)
of uncorrelated data. For values of p the opposite
holds true with the difference for
values of p aO!)fo:achm2

Equation (26) is analogous to equation (12) when auto­
correlations are present. The above derivation is subject to
several assumptions which need explicit mention:

(a) no measurement error in
no~;;:r-r~rn'ln[periods,

both the pre- and

1
n-l

(24) (b) there is no systematic bias in the measurements,

(c) the energy data is homoscedastic, Le., has constant
variance,



illustrates the fact that the nn~u-rl~rn:"ln[

chilled water use data fall wen below the linear
regression line which models use. The
vertical difference between this line and the data
represent savings, as is obvious from equation (1).
The 95 % bands estimated. from (13)
and equation (25) are also shown0 These bands are about

19.6 Le., 1408% of the mean
energy use the These bands
tum out to be close to the bands aSS"Umm2

no serial correlation Leo, (3) and
This is due to the value of p in the

data set as discussed earlier. The scatter in
ute shows how vary with ambient

As stated the exhibits
distinct differences in and weekend op~~ratlon

we have chosen to overlook
in both and

distinct lines.

while the corresponding chilled water energy use values
are 132.5 and 80.9 MBtu/day respectively, a distinct
difference. From Table 1 we also note that fJ of the
residuals using classical least squares is 00587, with the
Durbin-Watson statistic of 0.83 indicating strong serial
correlation. The data streams were transfo~edusing p =
0.587 and the new regression line thus obtained has an R2

of 0.63 and a Durbin-Watson statistic of 1.. 89 indicating
no serial correlation. The regression line 17)
considering autocorrelation is also shown in Figure l(a)~

How the measured and the associated 95 %
confidence intervals vary from can be seen in
the time series shown in Of more
interest is how the cumulative or total chilled water

and the associated. confidence intervals vary with
time from the the retrofits were From

we see that the
does the absolute or total un4~erta1Jrltv

WU:1en"lng of the confidence band

how the 95 % relative error or relative ll1nj""'a>-goh:Jl"ll1nn,
the product of the t-statistic and
(26) varies with number m is shown in

We note that the relative error
and asymptotes to a value close to 3 %. After about three
months into the retrofit period, the relative error seems to
have more or less stabilized. This suggests that one should
allow at least 3 months of data in order for
the retrofit to be sound8 .

our for est:lm~ltml~

to data from a ltoanSTAR
1II11nl("(.:Ik"f",t'!ll11nfu in our measure-

the effects of model
estimates.

sse tudy

autocorrelation in the residuals is not due to model
misspecification errors,

the first-order autocorrelation coefficients of energy
use and data streams are close,

(f) there is no autocorrelation in the nn~"l-rle[n:ln[measure­
ments of

Of the above assumptions, (a) and (f) need to be addressed
at a later date while the other are n1"r\h'!llihhT

not serious ones where data is concerned.
the above equations to linear

re11~reS;Slc~n models, Le., change-point models, is complex
studied. if we assume (i)

point is known without any inherent
and (ii) that" the autocorrelation effects on

either side of the change point are similar, we can
take the data as in two regions and treat
the overaH model as made up of two individual
linear the of each determined

the lines discussed aboveo The individual variances
are then added in to the total variance
and hence t.he totalll1n!""'~1"t'!l11I"l1hl

The is a center in Central
Texas with a gross area of . It is open
24 hours per "and 365 per year and it
exhibits marked and weekend
shaH overlook this difference in this illustrative

included about 400
a data for

rej1:reSISHJln model identification. The scatter
chilled water use versus ambient bulb tenlPeratll.lre
shown in We note that this
exhibit behavior and a linear
model is aC1e~au;ate.

Table 1 various statistics relevant for retrofit
calculations. The classical model

fits the data well as can be seen
from The autocorrelations are (p =

for both energy use and ambient The
spans 380 We note that mean

values of ambient pre- and
retrofit are 69.1°F and

et 8/,.
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a) pre-retrofit chilled water use data points and regression lines neglecting and considering autocorrelation effects,
b) pre-retrofit model along with the 95 % confidence bands, and post-retrofit chilled water use data points.

The vertical distance between the model and a data point is the chilled water savings on that day,
c) daily chilled water savings plotted against average daily outdoor air temperature,
d) daily chilled water savings and uncertainty bands plotted against time,
e) cumulative chilled water savings and uncertainty plotted against time, and
t) the relative uncertainty of retrofit savings plotted against time.
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ummary

The main nh~I(.)lI"'~h·u~:t.C! of this paper were two-fold:

i) to discuss the sources of errors in the
re{!~reSlSlo'n approach of modeling OUl.lQlrlg

in gen~ral, and in the LoanSTAR in particular;
and highlight the fact that serial correlation effects in
the time series data need to be explicitly considered

the model identification and;

the statistical equations for predicting
1l'aln,f'.:ilO1I"'t'<:lI11nt''q\1 or confidence intervals of estimated retro-
fit energy due to model prediction uncertainty
in the presence of serial correlations, and to illustrate
the use of these equations with a case study using data
from a LoanSTAR building.
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Nomenclature

ao,al Least squares regression coefficients of the
original data

a~,a; Least squares regression coefficients of the
transformed data

bo,b1 Model coefficients of the data obtained by
back transformation

CV Coefficient of variation
E Energy use



k

a.
€

02
p

x'

Number of regressor variables in the model
Number of post-retrofit days
Number of pre-retrofit days
Relative Error
Coefficient of determination
Mean square error
Sum of squares
Ambient dry bulb temperature
Significance level
Error or uncertainty
Variance
Autocorrelation coefficient
Transformed variable of X with autocorrelation
effects removed
Mean value of X
Model predicted value of X
Mean value of model predicted value of X

Claridge, D., Haberl, J., Turner, W., O'Neal, D.,
Heffmgton, W., Tombari, C., and Jaeger, S., 1991.
"Improving Energy Conservation Retrofits with Measured
Savings, n ASHRAE Journal, October.

Draper, N., and Smith, H., 1981. App'ied Regression
Analysis, 2nd Edition, John Wiley & Sons, New York.

Pels, M. (Edo), 1986. "Special Issue Devoted to
Measuring Energy Savings, The Princeton Scorekeeping
Method (PRISM)", Energy and Buildings, Vol. 9, Nos. 1
and 20

Greely, K. Mo, Harris, J. P., and Hatcher, A. M., 1990.
"Measured Savings and Cost-Effectiveness of Conserva­
tion Retrofits in Commercial Buildings", Lawrence
Berkeley Laboratory Report-27568.

Subscripts

Eo 1988. "Calibrated Computer Models of
Communication Buildings and Their Role in

and OperationU , Center for
Environmental Studies, No.
University, Princeton, August

J. 19880 "Use of Metered Data
lmnrc)ve J:SunO:lD2 Operation and Maintenance:

Results From Two Federal Complexes, "
Proceedings of the ACEEE 1988 Summer Study, VoL 3.

bulb temlPer'aru:re

Instrument
particular day during the pre-retrofit period
n(1~'1t1f'\lH(11" day during the post-retrofit
Measured
Predicted
Savings

Total

Ins

j
Meas
Pred
Save
T
Tot

eferences

A~ Go, 1986. Random
New York.

Katipamula, S., and Claridge, D., 1992. "Use of
Simplified Systems Model to Measure Retrofit Energy
Savings, If Proceedings of the ASME/JSES/KSES
International Solar Conference, Maui, Hawaii,
March.

A~t>::''''V'...J,.''.,o J. Ko, D. E., Haberl, J. So, Reddy,
T~ A., 1992(a)0 "Measuring Retrofit Savings for the
Texas LoanSTAR Methodology and

the ASME/JSES/KSES
co:ntereDlce, Hawaii, March.

1,

s., .(4 ~

Procedure for
to Non-Weather ue10elJlC1ellt

tlr()nSOll, D., HIJnCfleV

D.,
DOE-2 Simulation
Measured n ASflRAE
AN-92-1-5.

Kissock,. J. Ko, Reddy To A., and Claridge, D. E.
1992(b). "A Methodology for Identifying Retrofit Energy
Savings in Commercial Buildings", Proceedings of the
Symposium on Improving Building in Hot and
Humid Climates, Dallas, May 13 & 14.

Lopez, R. E. and J. S., 1992. "Data Processing
Routines for Monitored Building Energy Data, "
Proceedings of the ASME/JSES/KSES International Solar

Conference, March.

G. M., 1976. Time Series
and Revised

"""4:aJl"-!(;t.!UU" CA.

D., S., D.,
D., T., S.,

K., 1990. of Texas
wanSl"AR Data 11 , Proceedings of the Seventh Annual

on Improving Building Systems in Hot and
"""""g"rl~I"'~"'. Texas A&M University, College ..... ~IlIo-A_Jiu..'1

pp.53-60.



MacDonald, M., and Wasserman, D., 1988.
"Investigation of Metered Data Analysis Methods for
Commercial and Related Buildings, If ORNL/CON-279,
Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Manly, B. F. J., 1986. Multivariate Statistical Methods,," A
Primer, Chapman Hall, London"

Ruch, D., Chen, Haberl, J~, and Claridge, D. 1991.
nA Change-Point Principal Component Analysis
(CP/PCA) Method for Predicting Energy Usage in
Commercial Buildings: The PCA Model n , Solar
Engineering 1991: Proceedings of the ASME-JSES-JSME
International Solar Energy Conference, .Reno, Nevada,

17-22, pp. 441-448.

Neter, Je, Wasserman, W., and Kutner, M. H., 1989,
Applied Linear Regression Models, 2nd Ed",
Homewood.

SAS 1989, SAS Language and Procedures.e Usage,
Version 1st Ed., North Carolina, SAS Institute,
Inc.

Theories of Engineering
New York.

Schenck, H., 1968,
Experimentation, M(~ur'aW-.tl]lH

Schuster, G. J. and D., 1985. "ELCAP:
Description of Field Data ACQUllsltllon System for HUHd:msz

MC)mt:orlng,ff Bonneville

Norford, L. K., Rabl, A. Ryan, L., Spadero, G. V. and
Socolow, R. M., 1986. "Energy Use in the Enerplex
Office Buildings: A Progress Report", Proceedings of the
1986 ACEEE Summer Study on Energy Efficiency in
Buildings~

John

Power AdlllllllistratlOltl, t"~DrtjlanEC1~

H., 1971 ~ rrlJ'1CllUeS

New York.

K., 1988. and
Terms AnaIV'SIS and Renormalization: A Unified AP1Pfo:ach

to Simulations and Short-term
Solar Research

1991. Statistical
User's Guide, version 5. Statistical lir~:J:Dnl1CS ........VJl ~_"Il"~!l.V.u'l.'l

STSC Inc.,

1981 ~ Economic
2nd

R. S., and Ku1ben.telc1 ..
Models and Economic

New York.

T. A., AP1:>llCatlC)n of IJvnarnlC lSUIIOUlg

Inverse Models to Three UC(~UPled Residences Monitored
the ASHRAEIDOEI

BTECC/(''1BSE on "Thermal of
the Exterior Envelopes ofBuildings Florida~

A., 1988. "Parameter Estimation in
Methods for "Dynamic Analysis of Measured
ASME Journal of Solar Energy Engineering, Vol. 110, p.
52.

De 1991. "A Four Parameter


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30



