Tracking energy efficiency performance in the United States

October 7, 2019

National-level metrics

Source: ACEEE analysis of Monthly Energy Review data, EIA.

Energy productivity is a simple and widely measured metric. Productivity is the amount of service or useful work produced by a unit of energy. At the national level, energy productivity is gross domestic product (GDP) per unit of total primary energy consumed by the country. This broad metric may be affected by economic factors (such as the amount of manufacturing), climate, access to energy, and other conditions, as well as by efficiency. President Obama announced a goal to double energy productivity over 2010 levels by 2030. The productivity is increasing but not fast enough to reach the goal. The small peak in 2012 was caused in part, by lower energy use due to the mild winter of that year. Note that energy productivity is the inverse of energy intensity, which is the energy consumed per unit of work done. We can track energy efficiency using either of these two metrics.

ACEEE resources

Linking energy efficiency to economic productivity
35 years of energy efficiency

Source: Monthly Energy Review, EIA.


Energy use per person can vary widely with income level, geography, climate, and demographics. The graph shows energy use per capita in all the economic sectors in the United States in recent years. The decrease is mostly due to reduction in residential energy consumption in recent years.


Source: ACEEE data and ACEEE State & Local Policy Database

Energy efficiency programs require upfront costs. Among a number of financing strategies, small charges levied on customer utility bills are the single largest source of funding for US energy efficiency programs. Administered by utilities or contracted to third parties, these energy efficiency programs involve customers in projects ranging from simple lighting replacements to whole-building retrofits. The graph shows annual customer-funded expenditures on US electricity and natural gas efficiency programs, which have been rising since a low in 1998.

ACEEE resources

State ratepayer-funded programs
Utility programs
ACEEE State Scorecard


Source: ACEEE State & Local Policy Database


Source: 2015 State Energy Efficiency Scorecard

Ratepayer-funded energy efficiency programs have saved billions of kilowatt-hours (kWh) for customers over the years. This indicator looks at electricity and natural gas savings from these efficiency programs, aggregated at the national level. The graph represents first-year energy savings from efficiency programs in each year as reported in our state scorecards. The SEE Action Network led by the Environmental Protection Agency (EPA) and DOE also provides resources to measure the benefits of energy efficiency.

ACEEE resources

ACEEE State Scorecard
Multiple benefits of energy efficiency
Future EM&V



Source: ACEEE analysis of Monthly Energy Review data, EIA. Number of households from U.S. Census.

One way to measure energy efficiency in residential buildings is to evaluate the total primary energy or source energy consumed per household. Primary energy includes the energy consumed directly in the buildings along with the losses incurred in the generation, transmission, and distribution of that energy. Delivered or site energy is the energy consumed by buildings on site, as reflected by a utility bill. About 50% of the energy used in residential buildings goes toward space heating, cooling, and water heating, which are influenced by climate and the size of the house, as well as energy efficiency. The graph shows primary and delivered energy per household in residential buildings.

ACEEE resources

Buildings program
International Scorecard


Source: ACEEE analysis of data in Monthly Energy Review, EIA. Commercial sector floor area from Annual Energy Outlook, EIA, CBECS, EIA, and interpolation.

Commercial buildings include office, retail, education, storage, services, food sales, religious worship, and healthcare buildings. While these range widely in their energy consumption, heating, lighting, and cooling take close to half of the energy consumed by all commercial buildings. We express energy efficiency in these buildings as energy used per unit of floor area (called energy use intensity or EUI). We can report EUI either for primary or delivered energy as discussed above for residential buildings. 

ACEEE resources

Buildings program
International Scorecard

Source: Building Codes Assistance Project code status maps. Includes DC and territories.

Model energy codes establish the minimum energy standards for the design and construction of new buildings. Thus they facilitate and standardize building energy efficiency practices. From 1992 through 2012, these codes saved over $44 billion dollars in energy costs through the avoided use of 4 quads of energy. A quad is a quadrillion British thermal units (Btu). By way of comparison, 4 quads is more than all the energy consumed by Poland in 2015. Energy codes are set by states and sometimes local governments based on model codes from ASHRAE and the IECC, and are revised periodically. The graphs show an increasing number of US states with updated state-level building codes for residential and commercial buildings.

ACEEE resources

Building codes
Advanced building energy codes
Building codes and the Clean Power Plan


Appliances and equipment

Source: Appliance Standards Awareness Project

Efficiency performance standards for appliances, equipment, and lighting are expected to save the United States a total of 71 quads of primary energy cumulatively by 2020. In comparison, the United States consumed about 98 quads of primary energy in 2017. Performance standards ensure that all products sold in the country meet a minimum level of efficiency. The United States has set standards for more than 60 products that are expected to save consumers more than $2 trillion on their energy bills cumulatively by 2030, and save a typical household over $500 in energy bills in that year. The graph shows annual savings from appliance standards in recent years.



Source: Monthly Energy Review, EIA. Denominator is real gross output of private goods producing industries from BEA.

The US industrial sector includes manufacturing, agriculture, mining, and construction. Energy intensity is the energy consumed per each dollar of goods produced by industry. A number of factors influence industrial energy intensity, including the type of manufacturing, industry structure, and energy efficiency. As the graph shows, US industrial energy intensity has been improving steadily. A lower number indicates that less energy is needed per dollar of goods produced.

ACEEE resources

Industrial energy efficiency programs
Smart manufacturing
Summer Study on Energy Efficiency in Industry

Source: ICF

Heat is a byproduct when a power plant burns fuel to produce electricity. This heat is typically released into the environment as waste. But a CHP facility (also called a cogeneration facility), captures the waste heat and uses it to heat or cool nearby buildings and industrial processes. Industries currently represent over 80% of all installed CHP capacity in the United States. Some hospitals, universities, and large office and housing complexes also use CHP to generate part of their electricity and heat on site. 

ACEEE resources

State CHP Toolkit
State and Local Database
Deploying CHP locally



Source: ACEEE analysis of DOT/EPA rule

Roughly a third of transportation energy in the United States is used to move goods rather than people. Although the sector is complex, the largest energy use is by long-haul tractor trucks, the large freight-hauling trucks with sleeper cabs. For simplicity we look at the average fuel economy required for those trucks. The first fuel economy standards for trucks and buses, adopted in 2011, took effect in 2014, as shown in the graph. In August 2016 the U.S. Environmental Protection Agency and the Department of Transportation issued a second set of standards for trucks and buses through 2027. We estimate that under these standards long-haul tractor truck fuel economy will increase to 8.2 mpg by that year. The fuel efficiency of other freight modes (rail, air, ships) also is increasing, but more slowly.

ACEEE resources

Freight trucks
Heavy duty vehicles


Source: Fuel economy trends report

Fuel economy measures how far cars and light trucks can travel on each gallon of fuel. Small gains in average miles per gallon lead to large savings nationally. Thanks to regulation and improved technology, the fuel economy of the average vehicle has been on the upswing since the mid-2000s after decades of stagnation. The fuel economy of diesel, gasoline, electric, and hybrid vehicles differs greatly. The graph shows the average fuel economy of all new passenger cars and light trucks sold in a given year. The fuel economy numbers differ from automaker standards compliance levels; they are adjusted to reflect real-world performance. 

ACEEE resources

Car and light trucks
ICT in personal travel


Source: DOT

When we use it well, public transportation is generally more energy efficient than passenger cars. Large groups of people can ride together instead of everyone driving their own car to the same destination. After years of increases, the number of public transportation trips in the United States has been dropping in recent years, in part due to new alternatives and lower fuel costs. The graph shows the number of recorded trips taken on public transportation per capita in the United States.

ACEEE resources

2015 City Scorecard
2015 State Scorecard


Other related metrics

Source: Monthly Energy Review, EIA.​

Fuel efficiency and less driving have helped keep US oil consumption almost at the same level since 2000. At the same time, most of the oil reserves in the world exist outside the United States. Our domestic oil production has been rising, thus we currently import about 20% of the oil we consume, down from 49% in 2010. Energy efficiency can go a long way to help reduce dependence on imports by helping vehicles travel farther on each drop of oil

Source: CO2 emissions, Monthly Energy Review, EIA​; total GHG emissions, EPA GHG Inventory

We released billions of tons of greenhouse gases (GHG) into the atmosphere over the past hundred years, and we continue to release them. Over 77% of these emissions come from burning fossil fuels to produce energy for heating, cooling, lighting, transportation, industry, and other uses. Improving energy efficiency in buildings, vehicles, and industrial processes reduces emissions while saving money and providing the same or better products and services.

The EPA has a long history of working with states to address GHG emissions and air pollution. Energy efficiency policies and technologies are proven, cost-effective strategies to help states reduce their GHG emissions by reducing energy demand. 

ACEEE resources

SUPR2 calculator
Energy efficiency and the CPP



© 2022 All rights reserved.