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ABSTRACT 
 

The reduction of risk and uncertainty with respect to post-retrofit performance and energy 
savings is a critical component to unlocking traditional capital markets for commercial building 
retrofits. This, in turn, is a necessary step in scaling up sustainable real estate markets and retrofit 
programs. While a range of factors influence actual energy savings, there remains a gap in our 
understanding of how building characteristics affect energy performance across a broad spectrum 
of variables. Using a unique database of energy benchmarking data resulting from New York 
City’s Local Law 84, accessed and analyzed for the first time by the author, this paper examines 
energy performance across a range of building characteristics, including structural, mechanical, 
locational, and occupancy variables. The unprecedented data used in this paper allows for the 
analysis of over 10,000 large (over 50,000 square feet) commercial buildings and is the first 
significant, robust sample of non-voluntary energy performance reporting. Using robust 
regression techniques, this research then presents a predictive model of building energy 
efficiency. This work is particularly relevant to emerging policy initiatives relating to energy 
benchmarking, retrofit financing programs, and commercial lease structures designed to 
overcome split incentive barriers. 
 
Introduction 
 

Energy disclosure laws represent one of the most promising public policy tools to 
accelerate market transformation around building energy efficiency. Emerging from a rapidly 
evolving green building regulatory landscape, these laws require building owners to report 
energy consumption on an annual basis (Kontokosta 2011a). The first and most ambitious of 
these policies is New York City’s Local Law 84 (hereafter LL84), adopted as part of Mayor 
Bloomberg’s Greener, Greater Buildings Plan in 2009. Local Law 84 stipulates that all 
commercial (including multi-family) buildings of 50,000 square feet (approximately 4,645 
square meters) or more must report energy and water consumption on an annual basis. The first 
deadline for reporting occurred in August of 2011. 

The potential for energy disclosure policies to shift market awareness of building energy 
efficiency is substantial. Research has shown that similar disclosure requirements in other 
industries, such fuel efficiency in the auto sector and nutrition labels for food served by “chain” 
restaurants, has led to changes in behaviors by both producers/suppliers and consumers/end-users 
(Day 1976; Mathios 2000; Vadiveloo, Dixon, and Elbel 2011). In the building sector, greater 
information on energy performance will allow tenants to incorporate energy efficiency metrics 
into leasing decisions. This, in turn, should create demand for more efficient buildings, putting 
pressure on building owners to improve the relative energy efficiency of the building to make it 
more competitive. 

There are, however, numerous impediments to energy efficiency improvements in 
existing buildings. One well-known challenge is the “split incentive” problem, defined as the 
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mismatch between costs and benefits for owners and tenants in multi-tenant commercial 
buildings (Gillingham, Harding, and Rapson 2012; Schleich 2009). An emerging contractual tool 
known as the “energy-aligned lease” works to overcome this mismatch by clearly defining how 
costs for energy efficiency improvements are passed-through from owner to tenant. Another 
challenge is the availability and cost of capital for energy efficiency improvements (Galuppo and 
Tu 2010; Kontokosta 2011b). Currently, uncertainty and risk around the potential energy savings 
from improvements has limited the sources of funds for building owners seeking to retrofit their 
buildings.  
 This paper presents an analysis of the LL84 data and the determinants of energy 
efficiency in a diverse sample of large office and multi-family buildings in New York City. The 
next section discusses the data collection and cleaning effort, followed by descriptive statistics 
for the more 10,000 buildings included in the database. The methodology used to develop the 
predictive model is then presented and concludes with a discussion of the results and their 
implications for building energy benchmarking. 
 
Data Description 
 

This paper analyzes energy consumption and building data for commercial buildings over 
50,000 square feet in New York City and develops a predictive model of building energy 
consumption and efficiency. These data were collected as per New York City LL84, which 
requires annual energy consumption reporting for large commercial buildings. This analysis 
includes all covered buildings for which information was submitted by August 31st, 2011. The 
LL84 database was then merged with building and lot information from the Primary Land Use 
Tax Lot Output (hereafter PLUTO) data file from the New York City Department of City 
Planning. The initial merged database contained 59 variables from PLUTO and 166 variables 
from the LL84 database entered through the EPA’s Portfolio Manager tool. 

Initially, the database contained 10,201 observations. However, substantial cleaning was 
performed to remove errors and omissions in data entry by building owners and their 
representatives through the EPA Portfolio Manager interface. An observation was dropped from 
the analysis if it exhibited one of the following characteristics: 

 
 Building located outside of the political boundaries of the five boroughs of New York 

City 
 Facility Type (building use) was not indicated 
 No (or insufficient) energy consumption information was provided 
 Duplicate entries 
 

After dropping buildings with energy use intensities below the 1st percentile and above 
the 99th percentile to eliminate outliers, the resultant cleaned database contains 8,648 
observations. Additional measures were taken to ensure the accuracy and validity of the 
remaining observations, including mean testing with a quality-controlled sample of the dataset. 
The dropped observations are indicative of a range of data entry errors and uncertainty in how to 
report certain unusual circumstances relating to building and meter configuration. For instance, 
two buildings on two separate parcels, but with a shared meter, might have been entered with all 
of the energy consumption attributed to just one building (and thus resulting in zero energy 
consumption for the other) or by arbitrarily allocating energy use between the two buildings.  
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Descriptive Statistics 
 

The initial database included energy consumption information for 10,201 buildings. After 
data cleaning and validity testing, the final dataset includes 8,648 buildings. These buildings 
account for over 1.4 billion square feet of space, with multi-family buildings representing 
approximately 63 percent of the total space. For the 948 office buildings included in the sample, 
the median source EUI is 213.3 and the mean is 233.8 with a standard deviation of 111.0. The 
median EUI for office buildings is within 1.6 percent of the weather-adjusted primary energy use 
intensity for office buildings in the Northeast region, according to the 2003 Commercial Building 
Energy Consumption Survey. The median source EUI for the 6,671 multi-family buildings in the 
database is 132.2 and the mean is 136.5 with a standard deviation of 55.7. The median EUI for 
New York City multi-family properties is within 1.7 percent of the weather-adjusted primary 
energy use intensity for buildings with five or more units in the Northeast region as reported in 
the 2005 Residential Energy Consumption Survey.  

The figures below provide a descriptive analysis of the type and quantity of space 
covered by the data and patterns of energy consumption and efficiency, as measured by source 
energy use intensity unless otherwise indicated. Source energy is the energy used during 
generation and transmission in addition to energy consumed at the site.  

In total, over 1.4 billion square feet of commercial space reported energy consumption by 
August 2011. A large majority, both by square footage and number of buildings, are multi-family 
properties. Office buildings represent the second largest amount of space reported. 
 

Figure 1. Total Square Footage in LL84 Database, by Building Type 

 
Source: LL84 Database and Author’s Calculations 

 
 
 
 
 
 
 

Other 177,508,208

Office 340,688,576

Multi-Family 897,219,264
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Figure 2. Histogram of Source EUI with Kernel Density Plot, Office Buildings Only 

 
 

Figure 3.  Histogram of Source EUI with Kernel Density Plot, Multi-Family Buildings Only 
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Methodology 
 

This section presents an analysis of the determinants of building energy consumption, 
based on the LL84 and PLUTO data, and develops a predictive model to create an energy 
performance benchmark or to estimate energy consumption for buildings where no actual data 
exists (Griffith et al. 2008). The predictive model can be used for several purposes, including: 
 
1. Estimating energy consumption in noncompliant LL84 covered buildings 
2. Estimating energy consumption in buildings less than 50,000 square feet, and those 

otherwise not subject to the requirements of LL84 
3. Estimating energy consumption in buildings where actual data is not available 
4. Developing an energy benchmarking tool to identify more and less efficient buildings 
 
Determinants of Building Energy Consumption 
 

Building energy consumption is given by the following function: 
 

  iiiii ENERGYTYPEOCCBULKSPATIALy 54321  
 

Where SPATIAL consists of geographic and locational variables, BULK includes 
variables that measure building size and placement on a given lot, OCC represents variables for 
occupant density and energy-consuming amenities, TYPE includes space type variables, 
ENERGY consists of variables for energy source, and ԑ is the error term.  

Using robust multiple regression techniques, the factors that influence building energy 
efficiency are examined (Griffith et al. 2008; Tso and Yau 2007; Turiel 1987). Based on the 
model coefficients and tests of significance, the model output is used to predict building energy 
consumption for use in creating an energy efficiency benchmark for commercial buildings in 
New York City (Chung, Hui, and Lam 2006; Hernandez, Burke, and Lewis 2008). It should be 
noted that there are limitations to multiple regression modeling for predicting building energy 
efficiency (Tso and Yau 2007). For example, potential bias in the coefficient estimates may 
result from collinearity between the explanatory variables. However, this method is found to be 
appropriate given the nature and extent of the database and the purpose of this analysis. 

Due to significant differences in energy consumption across building types, and the type-
specific variables available in the LL84 database, individual models are created for each primary 
building type and presented here for office and multi-family buildings.  

For all building types, the following independent (explanatory) variables are included in 
the base model: 

 
Building Square Footage – Total building area as reported in PM 
Building Age – Age of building based on year built from PLUTO database (new 
variable) 
Number of Floors – Total number of floors in building from PLUTO database 
FAR – As-built floor area ratio from PLUTO database 
Lot Coverage – building footprint divided by lot area from PLUTO database. Building 
footprint approximated by multiplying building width by building depth (new variable) 
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Lot Location – a binary variable for whether the building is an inside lot or corner lot 
(based on variable from the PLUTO database) 
Detached Building - a binary variable for whether the building is detached or attached to 
adjacent buildings (based on variable from the PLUTO database) 
Primary Energy Source – a binary variable equal to 1 for the dominant fuel type in the 
building, and equal to 0 otherwise (new variable) 
% non-Primary Space Type – percentage of non-primary space type (e.g.  percentage of 
retail in a building with a majority office space) (new variable) 

 
For Office buildings, the following variables are added to the base model: 
Office Worker Density – Number of employees per 1,000 square feet (default value = 
2.3) 
Office Weekly Operating Hours – number of hours per week that a building is occupied 
by at least 75% of the tenant employees (default value = 65 hours per week) 
Floor Plate Size – estimate of average floor plate size (new variable) 

 
For Multi-Family buildings, the following variables are added to the base model: 
Affordable or Market Rate – a binary variable equal to 1 if all units in building are 
affordable, and equal to 0 if market-rate (new variable); note that “affordable” is used 
here according to the EPA Portfolio Manager definition, which includes subsidized 
housing intended for low-income households. 
Number of Laundry Facilities per Unit – total number of laundry facilities for each 
residential unit 
Number of Dishwashers per Unit – total number of dishwashers for each residential unit 
Percent Cooled – percent of gross floor space that is air conditioned 
Average Unit Size = estimate of the average gross floor area per unit (new variable) 

 
Individual models for office and multi-family buildings are estimated using ordinary 

least-squares (OLS) regression with robust standard errors.  Each building type model is run 
using both Weather Normalized Source EUI and its natural log as the dependent variable.  The 
results are presented below. 
 
Results and Discussion 
 

On average, the models explain approximately 20 percent of the variation in energy 
efficiency across buildings, as shown in the regression output in Figures 4 and 5. These models 
may, in fact, be more robust than those currently used in Energy Star benchmarking analysis, as 
the LL84 and PLUTO datasets contain a greater range of explanatory variables, although limited 
building-level system information impacts the explanatory power of the models. For each 
building type, two models are estimated: one using source EUI as the dependent variable and the 
other using a semi-logarithmic transformation with the natural log of source EUI as the 
dependent variable. In the latter model, the coefficients can be approximated as the percent 
change in source EUI for a one unit change in the independent variable. However, it should be 
noted that the actual interpretation of the relationship between the independent and dependent 
variables is given by exp(c)-1 where c is the coefficient value (Halvorsen and Palmquist 1980).  
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Office Buildings 
 

Examining the results of the regression analysis presented in Figure 4, several variables 
are found to be statistically significant at or above the 95 percent confidence level for office 
buildings. Building age is negatively correlated with EUI. Therefore, older buildings are found to 
be more efficient than those built more recently. Most notably, buildings over 80 years old have 
an almost 30 percent lower EUI than the average EUI for the entire sample. Buildings that are 41 
to 60 years old and that have been altered (based on data provided in the PLUTO databases) are 
also shown to be more energy efficient, controlling for the other variables included in the model.  

 
Figure 4. Regression Results, Source EUI and log Source EUI as Dependent Variables,  

Office Buildings (Excluding Lots with Multiple Buildings) 

 
***Significant at the 99% confidence level 
**Significant at the 95% confidence level 
*Significant at the 90% confidence level 

Dependent Variable Source EUI log Source EUI

N = 824 N = 824

F‐stat = 8.68 F‐stat = 9.12

R
2
= .198 R

2
= .199

Coef. Coef.

Building Renovation

Altered and Building 21 to 40 years old ‐23.667 ‐0.0955

Altered and Building 41 to 60 years old ‐54.652 *** ‐0.2090 ***

Altered and Building 61 to 80 years old 34.626 0.1521

Altered and Building 81 or more years old 9.749 0.0523

Building Age

21 to 40 years old ‐6.269 ‐0.0283

41 to 60 years old ‐14.936 ‐0.0350

61 to 80 years old ‐34.004 ‐0.1320

81 or more years old ‐61.021 *** ‐0.2542 ***

Energy Source (> 50% site energy)

Electric  18.699 * 0.1410 ***

Steam 27.554 * 0.1663 **

Bulk and Area

Lot Coverage 0.674 0.0040 *

Lot Area (000s of sq.ft.) ‐0.093 ‐0.0002

Detached Building ‐9.406 ‐0.0827

Inside Lot ‐15.288 * ‐0.0681 *

Number of Floors ‐1.077 * ‐0.0008

Floor Area (000s of sq.ft.) 0.064 *** 0.0002 **

% non‐Office Space 82.017 ** 0.3527 **

Floor Plate ‐ 10k to 20k sq.ft ‐0.216 0.0013

Floor Plate ‐ more than 20k sq.ft. ‐8.514 ‐0.0269

In Historic District? ‐22.136 ** ‐0.0949

Occupancy

Weekly Operating Hours 0.447 ** 0.0014

Worker Density (workers per 1,000 sq.ft.) 10.482 *** 0.0569 ***

Value

Assessed Value per Sq.Ft. 0.194 * 0.0005

Constant 180.592 *** 5.0284 ***
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Energy source is also a significant factor influencing source EUI, at least at the 90 
percent confidence level. Buildings that primarily use either electric or district steam are shown 
to be less efficient, on average, than those using natural gas or fuel oil.  

Looking at building size, space type, and location, several variables stand out. First, there 
is a positive correlation between EUI and building size, as measured by square footage. Larger 
office buildings, therefore, are shown to have higher EUIs, controlling for other factors (although 
it should be noted that buildings over 2,000,000 square feet are excluded from the model). 
Similarly, a larger amount of non-office space (based on a percentage of total space) is 
associated with a higher EUI. Specifically, for every additional 10 percent of non-office space in 
a building identified primarily for office use, the building EUI increased by 8.2.  Buildings on an 
inside lot (a lot with adjacent lots on either side) or in a historic district are found to have lower 
EUIs.  
 Occupancy variables are a key driver of building energy efficiency. Worker densities 
vary considerably across usage and tenant types in office buildings, from relatively low-density 
law firm use, for example, to very high-density trading floors. Understanding and controlling for 
occupant density and the operational hours of a building are critical to the reliable and effective 
identification and comparison of peer groups of buildings. The regression results show that the 
coefficients for both weekly operating hours and worker density are positive and significant. As 
expected, this finding indicates that as operating hours or occupant density increases, so does the 
EUI of the building, after controlling for the factors included the model. The results in Figure 4 
below reveal that for every additional hour the building is in operation, EUI increases by 0.45. 
Turning to the worker density variable, building EUI increases by a substantial 10.48 for every 
additional occupant added per 1,000 square feet.  Therefore, it is shown that buildings with more 
people working longer hours have higher EUIs. This reinforces previous empirical evidence on 
building energy consumption from CBECS and highlights the importance of understanding 
building usage and occupant characteristics before attempting peer-to-peer building efficiency 
comparison (Santin, Itard, and Visscher 2009). 
  
Multi-Family Buildings 
 

Many of the fundamental building characteristic variables – age, size, parcel location, 
fuel type – that are found to be significant for office buildings are also shown to be critical in 
understanding energy efficiency in multi-family buildings (as shown in Figure 5). Older 
buildings are again shown to be correlated with lower EUIs, specifically for buildings more than 
60 years old. Buildings that are more than 80 years old are more efficient, controlling for the 
other factors in the model, than buildings built within the last twenty years. This finding is 
consistent with the results for office buildings, and reinforces the link between older buildings 
and energy efficiency. Interestingly, multi-family buildings built between 1970 and 1990 are 
found to be less efficient than similar buildings built since 1990. There are a number of possible 
explanations for this outcome, including the effects of building codes, construction materials, 
building envelope, and architectural style.  

Contrary to the findings for office buildings, larger multi-family buildings are found to be 
more efficient. Looking at the variables for number of floors (equal to 1 if the building has more 
than seven stories and 0 otherwise) and total building square footage, both are negative and 
significant, suggesting that as building size increases, building EUI decreases. The results 
demonstrate that buildings on inside lots, and thus with a high probability of adjacent structures, 
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have lower EUIs. Similarly, buildings built more fully on a lot with higher lot coverage ratios are 
more efficient than buildings covering a smaller portion of the lot area. The coefficient estimates 
for both of these variables indicate the importance of adjacent buildings and the possible 
influence of shared party walls and less exposed building envelope area. Similar to office 
buildings, multi-family buildings located in historic districts have, on average, lower EUIs, after 
controlling for building age and other factors. This could reflect the development densities in 
these areas as well as the type of construction. 

 
Figure 5. Regression Results, Source EUI and log Source EUI as Dependent Variables,  

Multi-Family Buildings (Excluding Lots with Multiple Buildings) 

 
***Significant at the 99% confidence level 
**Significant at the 95% confidence level 
*Significant at the 90% confidence level 

 

Dependent Variable Source EUI log Source EUI

N = 3642 N = 3642

F‐stat = 21.04 F‐stat = 23.12

R
2
= .1546 R

2
= .1594

Coef. Coef.

Building Renovation

Altered and Building 21 to 40 years old 2.306 ‐0.002

Altered and Building 41 to 60 years old ‐2.888 ‐0.031

Altered and Building 61 to 80 years old ‐1.912 ‐0.021

Altered and Building 81 or more years old ‐0.151 0.001

Building Age

21 to 40 years old 11.530 ** 0.075 **

41 to 60 years old ‐5.127 ‐0.026

61 to 80 years old ‐22.025 *** ‐0.163 ***

81 or more years old ‐12.857 ** ‐0.105 ***

Energy Source (> 50% site energy)

Electric  ‐10.123 *** ‐0.192 ***

Steam 1.238 0.005

Natural Gas 5.987 *** 0.029 **

Bulk and Area

Lot Coverage ‐0.012 *** ‐0.0001 ***

Lot Area (000s of sq.ft.) 0.159 * 0.001 *

Detached Building ‐0.913 ‐0.001

Inside Lot ‐3.082 ** ‐0.023 **

Number of Floors (7 or more) ‐7.431 *** ‐0.046 ***

Floor Area (000s of sq.ft.) ‐0.027 ** ‐0.0002 **

% non‐Residential Space 45.343 *** 0.299 ***

Gross Sq.Ft. per Unit ‐0.004 * 0.000 *

In Historic District ‐5.019 * ‐0.029

Amenities

Dishwashers per Unit (1 or more) 1.838 0.017

Laundry Facilities per Unit (1 or more) 7.668 ** 0.053 **

% Space Cooled 8.679 * 0.061 ***

Value

Affordable Housing Only 7.819 ** 0.035

Assessed Value per Sq.Ft. 0.347 *** 0.002 ***

Constant 133.318 *** 4.874 ***
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As with office buildings, energy source is a significant factor in determining source EUI. 
Multi-family buildings where electric is the dominant energy source (accounting for more than 
50 percent of the total site energy consumption) have lower EUIs than buildings using fuel oil.  
Conversely, buildings where natural gas is the dominant energy source have slightly higher EUIs 
than comparable buildings using other energy sources. 
 For multi-family buildings with non-residential space, each additional ten percent of non-
residential space equates to a 4.5 point increase in building EUI. This suggests non-residential 
space may be occupied by higher intensity uses, such as retail and community facilities. It also 
raises issues of the availability of actual energy data for non-residential space in multi-family 
buildings, which may have been difficult for owners to acquire. The type of amenities in a multi-
family building, including number of dishwashers, laundry facilities, and the amount of cooled 
space in the building, have a positive correlation with overall building EUI. Most notably, for 
buildings with one (or more) laundry facilities per unit (on average), the building EUI is higher 
by 7.67. For the amount of cooled space, for every additional ten percent of cooled building area, 
the building EUI increases by 0.87.  

Finally, buildings defined as “affordable” through the Portfolio Manager tool have, on 
average, a 7.82 higher EUI than mixed-income or market-rate buildings. Affordable buildings 
are defined as those buildings where all of the units are subsidized for occupancy by low-income 
households. Mixed-income buildings, such as 80/20 buildings, do not have a statistically 
significant difference in building EUI, controlling for other factors, as compared to market-rate 
buildings. 
 
Predictive Model Analysis 
 

Using the coefficient estimates from the regression results, the predictive capacity of the 
models can be tested using actual data from observations in the LL84 database. The model was 
tested using the actual building characteristics for an office building in Manhattan and a multi-
family building in Brooklyn.  

In these specific cases, the accuracy of the models is quite good and within a 15-20 
percent range, although it must be noted that there is a wide variance in the predicted values. 
This reflects the explanatory power of the regression models presented above. The predictive 
models provide a solid foundation for developing a benchmark for office and multi-family 
buildings in New York City. It would be strengthened considerably by adding additional 
information on building systems and design characteristics. In the future, building energy audit 
data could be used to supplement the LL84 and PLUTO databases and create a more robust 
predictive model for building energy efficiency. 

Figures 6 and 7 show the quantile-quantile (Q-Q) plots for office and multi-family 
buildings, respectively. These Q-Q plots display the relationship of actual EUI values to those 
predicted by the models for the entire LL84 sample. To clarify the interpretation of the graphs, if 
the predictive models were perfectly accurate in predicting building EUI, then all dots would fall 
on the upward-sloping diagonal line. Currently, the models are accurate in predicting EUI for 
buildings with actual EUIs around the respective medians for each building type. The models 
tend to over-estimate EUI for more efficient (lower EUI) buildings and under-estimate EUI for 
less efficient (higher EUI) buildings. 
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Figures 6 (left) and 7 (right). Quantile-Quantile Plot, Actual v. Predicted EUI, Office 
Buildings and Multi-Family Buildings, Respectively 

 
 
Implications and Conclusions 
 

The growing availability of data on buildings and energy consumption has the 
tremendous power to transform real estate markets and investment decision-making around 
sustainability and energy efficiency. By properly collecting, analyzing, and disseminating this 
type of information, all of the key decision-makers in sustainable building markets – owners, 
tenants, lenders and investors, city agencies, utility companies – will have a robust source of data 
that will allow asset and portfolio-level decisions to include environmental impact as an 
important criterion in defining a suitable investment. By shifting market values to account for 
energy and emissions, the potential exists to catalyze a significant scaling up of energy efficiency 
initiatives in the global buildings sector. 
 The next reporting date for New York City’s LL84 is scheduled for May 2012. As 
additional data become available, a panel or cross-section time-series dataset can be created, 
allowing for future analysis of program and policy evaluation and changes in consumption and 
efficiency over time. The next steps in analysis of the data by the author will include: 
 
 The analysis of year-over-year changes in energy consumption and efficiency and 

discrepancies in data entry and reporting 
 Merging of the LL84 data with additional datasets 
 The use of the models presented here to estimate energy consumption and efficiency 

patterns in buildings under 50,000 square feet 
 The use of the models presented here to estimate energy consumption and efficiency 

patterns in other cities 
 

Local Law 84 has provided the first look at a large sample of non-voluntary (and thus 
non-self-selected) building performance data. The uses of this information are numerous, and the 
analysis of the initial data collection effort presented here offer some examples of the potential 
for building energy disclosure to catalyze shifts in market demand, tenant and building owner 
behavior, and building and infrastructure investment criteria.  
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