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ABSTRACT  

A Model Predictive Control (MPC) implementation was developed for a university 
campus chilled water plant. The plant includes three water-cooled chillers and a two million 
gallon chilled water storage tank. The tank is charged during the night to minimize on-peak 
electricity consumption and take advantage of the lower ambient wet bulb temperature. A 
detailed model of the chilled water plant and simplified models of the campus buildings were 
developed using the equation-based modeling language Modelica. Steady state models of the 
chillers, cooling towers and pumps were developed, based on manufacturers’ performance data, 
and calibrated using measured data collected and archived by the control system. A dynamic 
model of the chilled water storage tank was also developed and calibrated. A semi-empirical 
model was developed to predict the temperature and flow rate of the chilled water returning to 
the plant from the buildings. These models were then combined and simplified for use in a MPC 
algorithm that determines the optimal chiller start and stop times and set-points for the condenser 
water temperature and the chilled water supply temperature. The paper describes the 
development and testing of the MPC implementation and discusses lessons learned and next 
steps in further research. 

  
Introduction 

 
Technologies for energy efficiency improvement in buildings are central to the 

development of marketable design approaches for net zero energy commercial buildings by 
2025, which is a strategic goal of the Department of Energy (DOE) Buildings Technologies 
Program. Heating, ventilation, and air conditioning (HVAC) account for 27% of the energy 
consumption and 45% of peak electrical demand in commercial buildings. Approximately 5% of 
the floor area of US commercial buildings is cooled by central chillers or district chilled water 
plants (CBECS 2003). Thermal energy storage (TES) can be used to reduce eletricity costs and 
(in some cases) energy consumption for these chilled water systems by generating chilled water 
overnight when the weather and electriciy rates are advantageous. Simple scheduling control of 
TES is able to capture significant cost savings (depending on the utility rate structure) and often 
some energy savings (depending on the diurnal ambient swings and the losses in the TES tank). 
This paper presents the development and testing of a Model Predictive Control (MPC) 
implementation for a campus chilled water system with TES, in an effort to save more energy 
than possible with simple scheduling control by taking advantage of weather forecasts to 
optimize the charging window and system loop temperature set-points for each night. 
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UC Merced Chilled Water System Description 
 

The UC Merced campus is used as a case study. It has a central chilled water system with 
a two million gallon chilled stratified TES tank. The main components of the UC Merced chilled 
water system are shown in Figure 1: a condenser loop, a primary loop, a secondary (campus) 
loop, and multiple tertiary (building) loops. Water cooling is performed by the chillers and 
cooling towers in the primary and condenser loops. The chilled water is stored in a stratified TES 
tank and distributed to the buildings throughout campus via the secondary loop. The tertiary 
loops use pumps and valves within each building to distribute the chilled water for consumption 
by the fan coils and air handling units. The chilled water is warmed by the air-side cooling load 
of the buildings and returned to the secondary loop. During tank charging, cool water from the 
chillers enters the bottom of the tank and warm water from the top of the tank is returned to the 
chillers. During tank discharging, cool water from the bottom of the tank is supplied to the 
campus, and warm from the campus returns to the top of the tank. The energy management and 
control system (EMCS) provides the supervisory control that coordinates two electric chillers 
(currently only two of the three are used at any given time), cooling towers, and multiple pumps 
in the overnight charging of the tank. 
 

Figure 1: Diagram of Chilled Water Plant Using the Baseline Policy 
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Controls Challenge 
 
There are four main control decisions affecting energy use for each overnight charging 

period: the charging start time, the charging length, the condenser water supply temperature 
(CWS) set-point, and the chilled water supply temperature (CHWS) set-point. The existing 
control policy is to completely charge the tank on nights when the charge level is below 50% of 
the full capacity (and otherwise not to charge at all), to start charging at about 10pm, and to use a 
constant CHWS set-point of 39oF and a CWS set-point of 57-60oF (varying linearly with load).  

UC Merced is currently enrolled in a utility plan where the electricity price depends on 
the period of day. During the summer (May 1 – Oct 31), the prices are 13.6 c/kWh during the 
period 12:00-18:00, 9.2 c/kWh during the periods 8:30-12:00 and 18:00-21:30, and 7.4 c/kWh 
during the overnight period 21:30-8:30. As long as the charging starts after 21:30 and ends 
before 8:30, the electricity rate is always the same: this benefit of the TES system is already 
captured by the existing control policy. But energy savings compared to the existing policy may 
be possible by charging the tank to less than full capacity, charging during the lowest wet bulb 
temperature window, charging more on cooler nights and less on hotter nights, and adjusting the 
CWS and CHWS set-points to maximize the system COP at different wet bulb temperature and 
return temperature conditions.  

A new control strategy is desired that can take advantage of these potentials for energy 
savings. The current state of control technology within building systems would not use weather 
or cooling load forecasting to dynamically manage chilled water storage. Instead, static, heuristic 
policies are typically employed, defining rules for the diverse conditions and modes of operation 
encountered during hourly, daily, weekly, and seasonal operation. The performance of the 
resulting control system is highly dependent on the expertise of the control designer or operator. 
Instead of attempting to devise an expanded set of rules for this system, MPC was used. 

 
Model Predictive Control (MPC) 
 

The essential idea of MPC is to use a system model and an optimization algorithm to 
determine the control set-points. At each control time-step, starting at the current state and using 
weather predictions, an open-loop optimal control problem is solved over a finite horizon. The 
solution provides a sequence of optimal inputs over the horizon, only the first element of which 
is applied to the system during the following sampling interval. At the next time step a new 
optimal control problem based on new measurements of the system state is solved over a shifted 
horizon. For complex constrained multivariable control problems, MPC has become the accepted 
standard in the process industries (Morari & Lee 1999; Mayne et al. 2000; Borrelli 2003); its 
success is largely due to its unique ability to systematically, simply and effectively handle 
constraints on control and states. The idea of MPC for supervisory control of buildings was noted 
at least as early as 1988 (Kelly, 1988), but did not receive much research attention until the past 
decade. A modest number of case studies have been performed for various systems. Noteworthy 
precedents to this study of MPC for energy minimization through thermal energy storage include 
the work of Henze et al (2004, 2005a, 2005b), Clarke et al (2002) and Kummert et al (2005). A 
more complete history of MPC research for buildings is available in Coffey et al (2010).   

A MPC scheme was developed and tested for the UC Merced campus chilled water 
system. Detailed component models were developed in the Modelica language using elements 
from the Buildings library (Wetter 2009a; Wetter 2009b). These were used as the basis of 
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simplified Matlab models and lookup tables for use within the controller. The MPC determined 
the optimal CWS and CHWS set-points and the charging start and stop times to minimize energy 
consumption over a 3-day prediction horizon. The models, prediction and optimization 
configuration are described below, followed by a description of an experimental test and results. 
The main contributions of this work to the field of MPC research for buildings are as follows: the 
addition of another experimental implementation to the small collection experimental case 
studies in the literature; the development of new controls-appropriate models for campus chilled 
water systems; and the treatment of the terminal constraint.  
 
MPC Development 
 

The scheme of the MPC implementation is depicted in Figure 2. This section describes 
the components of this MPC scheme, with particular focus on the development of the system 
model. 

 
Figure 2 MPC Scheme 

 
 

System Model  
 

A detailed system model was developed in Modelica and used as the basis for the faster-
running models and lookup tables in the online system model. Detailed mathematical 
descriptions of the individual components are presented in Haves et al. (2010), with just some of 
the most pertinent aspects of the model noted here.  

The storage of chilled water in the TES tank can easily meet the current campus cooling 
loads for more than a day. Thus, any decision made with respect to quantity and temperature of 
the chilled water stored in the storage tank affects the performance of the entire system over a 
relatively long time horizon. In contrast, the chilled water plant components—such as the 
chillers, cooling towers, and pumps—have very short time constants. In fact, the 15 minute 
sampling interval of the energy management control system generally results in undersampling 
of the transients in these components. As a result, the model focuses on the dominant dynamics 
of the TES tank and the campus cooling load generated by the buildings, and the operation of the 
much shorter time constant system components is treated as quasi-static. As such, the only state 
variables in the system model are in the TES tank. 
 Lower-level controllers modulate the operation of the chillers and cooling towers in order 
to achieve the desired condenser water supply temperature from cooling towers, the desired mass 
flow rate of chilled water through the chillers and the desired chilled water supply temperature. 
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The system model assumes that there is no tracking error between the controlled variables and 
their set-points. In reality, there is significant tracking error in the plant, as discussed later. 
 In the detailed model, the chillers and cooling towers are modeled using standard 
methods for building energy simulations, and calibrated using manufacturer specifications and 
measured data from the campus. The temperature profile in the tank is modeled by discretizing 
the tank into a number of layers. A new model was developed to estimate the return temperature 
and flow rate from the campus, given the campus cooling load, chilled water supply temperature 
and ambient temperature. A purely empirical model was insufficient because the historical 
operation kept a constant supply temperature close to 39oF, but this was to be varied by the 
MPC. The model was based on an effectiveness-NTU model, with the effectiveness varying as a 
function of the water and air flow rates and the load. The model was calibrated using historical 
data and the data from a 3 day experiment in September 2009 when the supply temperature was 
increased by 2oF. 
 Based on this detailed model, a faster-running model was created for use in the MPC. 
Lookup tables were created using the detailed models of the chillers, towers and campus heat 
exchange. A new simplified model was created for the TES tank, with the goals of decreasing the 
computing time and the number of state variables, while still accurately capturing three essential 
aspects: (1) the total stored cooling capacity, (2) the temperature of the water supplied to the 
campus, (3) the temperature of the water returned to the chiller. The three aspects of interest are 
effectively embedded in the temperature profile of the stratified tank. In the simplified model, the 
thermocline between the warm and cool masses of water is treated as a natural moving boundary 
(the steep measured gradiant between hot and cold (Figure 3) is treated as a step change). The 
cool and warm water are treated as lumped masses, thus requiring only three dynamic states for 
the tank model, i.e. one for the position of the thermocline and two for lumped mass 
temperatures. In Haves et al. (2010), the reduced-ordered model is shown to correlate well with 
campus measurements. The calibration and validation process also revealed that the amount of 
stored cooling capacity lost due to thermal losses is minimal. 
 

Figure 3: Illustration of Finite Element Model versus Moving Boundary Model 
Tank Temperature Profile

0

10

20

30

40

50

60

70

80

90

35 45 55

temperature [F]

he
ig

ht
 [f

t]

T1

TN

T2

TN-1 TA

TB

finite-element moving-boundary

thermocline

 
 

3-44©2010 ACEEE Summer Study on Energy Efficiency in Buildings



Disturbance Predictions (Weather Forecasts and Campus Load Prediction) 
 
In order to obtain weather forecasts for use by the MPC algorithm, the National Digital 

Forecast Database (Glahn & Ruth 2003) was used. A Simple Object Access Protocol request was 
used to query the NDFD and parse and pass the weather forecast for UC Merced to the MPC 
algorithm. For the experiments described below, only the forecasted dry bulb temperature and 
relative humidity were used. In the future, additional forecasted variables, such as cloud cover, 
could also be used.   

A low-order calibrated model was developed to predict the campus cooling load given 
the predicted ambient temperatures and the time of day, day of week and day of year. (Note that 
since this model is not part of the optimization loop, it did not have to go through the same 
lookup table or simplification process.) The model is described in detail in Haves et al. (2010). 
Solar loads are calculated based on the latitude, time of day, day of year and calibrated 
parameters that relate insolation to solar loads for the campus. Internal heat loads are estimated 
based on calibrated schedule parameters. The solar and internal loads and the ambient 
temperature are then used in a single-zone lumped-parameter thermal model to calculate the 
cooling load. The resulting model has 18 parameters that are calibrated with meaured campus 
load data. In Haves et al. (2010), the model is shown to correlate well with measured data. 

 
Optimization and Constraints 
 

The MPC open-loop finite time optimization problem at each controller time step is 
shown in Equation 1 
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where u are the controlled inputs (CWS set-point, CHWS set-point and the chilled water supply 
mass flow rate set-point), x  represent the system states (height of the thermocline and 
temperatures of the cool and warm water in the tank), and d  represent the external disturbances 
(ambient temperature and campus load). )(xP  is the terminal cost (not used in this case) and 

),,,( tduxL  is the stage cost (modeled energy consumption), which captures the performance 
objective to be minimized. The function ),,,( tduxg  is a compact representation of the state 
update dynamic equation, which describes the cooling plant and buildings (i.e. the system 
model). The control inputs u  and the states x  are subject to the operational constraints (1c) and 
(1d) which avoid system malfunctioning (such as chillers surging) and ensure that the campus 
cooling demand is satisfied over the prediction horizon. All variables use the following time 
indexing: tktx |+  denotes the state vector at time k+t  predicted at time t  obtained by starting 
from the current state )(tx  and applying the input sequence tNttu |+→  and disturbance prediction 

tNttd |+→  (weather and campus load) to the system model. 
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A 72 hour prediction horizon was chosen for several reasons. First, the weather forecast 
data is available in 3 hour increments out to 72 hours and in 6 hour increments out to 168 hours 
(Glahn & Ruth 2003). Second, longer prediction horizons are met with greater challenges in the 
realization of a real-time MPC algorithm. Third, a 72 hour prediction horizon was deemed 
sufficiently long to take advantage of fluctuations in weather and occupancy (e.g. weekends) via 
thermal energy storage.  

A reasonable selection of prediction horizon itself is not enough to enable the real-time 
implementation of MPC. A move blocking strategy (Kerrigan, 2007) is further introduced to 
reduce the computational complexity of problem (1) while retaining the persistent feasibility of 
the resulting MPC. The main idea is to reduce the number of optimization variables by fixing the 
control inputs to be constant over several time steps. For technical details refer to Kerrigan 
(2007) and references therein. In this case study, in order to optimize the charging schedule, the 
block length varies according to the charging start time and end time, and during each charging 
period the control inputs remain constant.  
 The handling of the terminal constraint tNtX |+ in this case is of particular interest. Without 
either a terminal constraint or terminal cost, the control trajectory that minimizes system energy 
would usually result in a completely uncharged tank at the end of the control horizon. In order to 
ensure that the tank will always have enough charge to meet demand on the day following the 
last day in the prediction horizon, a robust invariant set (the set of all system states for which any 
expected future disturbance can be handled by the controller without a violation of state 
constraints) was calculated by using the detailed TES tank model. This was used as the terminal 
constraint. 

The optimization problem (1) is solved by using a sequential quadratic programming 
method. The commercial software NPSOL® (Gill, online) has been used for such purpose. The 
solution requires about 20 minutes of computing time on a standard laptop. Each evening, the 
computed first time-step set-points for CHWS, CWS, charging start time and charging length 
were given to the operators to use for that overnight charging period. 

MPC Testing 
 
Comparisons against baseline are made in terms of the coefficient of performance (COP), 

which is calculated as the ratio of cooling generated to electrical energy consumed. The COP 
was chosen as metric that is more or less independent of the scale of the chilled water plant, and 
provides a means of comparing performance over days or weeks that have different loads. The 
historical data for the average overnight COP shows a significant amount of fluctuation in 
response to different overnight ambient wet bulb temperatures, campus return temperatures and 
the maximum primary loop flow rate allowed through the chillers (which has a large effect on 
the COP and which changes over time as problems occur such as broken pumps and stuck 
dampers). So a regression model was developed for the COP as a function of these three 
variables, providing a more accurate and appropriate baseline than simply using an average over 
the previous weeks. The details of this regression are provided in Haves et al. (2010).  

Two MPC implementation experiments were carried out at the UC Merced campus. The 
first was a week long test of the MPC in June 2009. A miscalculation in the MPC algorithm 
implementation allowed a suboptimal charging window length to affect the overall COP. 
Subsequently, the sub-optimal operation manifested no improvements in overall performance. 
However, the development and testing process for this first experiment resulted in the 
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identification and replacement of a malfunctioning flow rate sensor in a campus building, 
resulting in pump energy savings at that building and an increase in the temperature of the 
chilled water returning from the campus, increasing the cooling system COP. Additionally, the 
plant operators learned from the MPC set-points in this first experiment that the system COP can 
increased by adjusting the standard condenser water set-point range from 57-60oF to 65-66oF. 
The performance improvement associated with this CWS set-point change is difficult to quantify 
from the measured data, since the flow rate sensor was fixed at the about same time as the CWS 
set-point change, but regression analysis suggests the improvement in COP to be approximately 
1.5%.  

With improved models and algorithms, a second MPC experiment was carried out during 
the week of Oct 5-11, 2009. This was not an ideal experimental week, as the cooling load was 
much lower than during the summer. On the first night, for example, the tank was already nearly 
fully charged since there was so little load during the preceding day, so the MPC determined that 
no charging should occur that night (which was the same decision that the existing control policy 
would have made). Various other problems were encountered during the week ranging from set-
point tracking problems to chiller malfunctions. Details of one charging period, the night of Oct 
9, are provided in Figure 4, showing how the MPC elected to start charging later in the night than 
the standard control would have, taking advantage of the lower ambient wet bulb temperature. 
Figure 5 shows the variation in condenser water temperature set-points over different charging 
periods, as well as the variation in the charging period start time and length specified by the 
MPC. Both figures also illustrate some of the set-point tracking problems that were encountered 
during the experiment. 
 

Figure 4: Details of MPC Operation, Charging Period on the Night of Oct 9, 2009 
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Figure 5: Condenser Water Supply Temperature Set-Point and Actual, Oct 6-10, 2009 

 
 

The experimental results show a small improvement in COP over the baseline policy, as 
shown in Figure 6, but it is difficult to draw any strong conclusions about the energy savings 
potential for MPC with this system since there are just four experimental data points to consider 
in the comparison. (The charging period on the night of Oct 7 was not considered because a 
chiller malfunctioned and the operators returned to standard control set-points for the rest of the 
charging period.) The comparison with the baseline regression model under the experimental 
conditions shows an improvement in COP of 3.1% +/- 2.2%. (Note that the baseline regression 
in this case was based only on the data after the first experiment and before the second, so the 
COP comparison does not include the savings from the operators’ CWS set-point change after 
that first experiment.)  
 

Figure 6: COP comparison 
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Discussion  
 

Although the energy savings through the MPC test itself were limited, the process of 
MPC development and testing brought about a number of other benefits for the system operation. 
Model development and data collection resulted in the identifying and remedying of various 
problems in the system. It was determined that the CHWS set-point and the chilled water flow 
rate can be used to limit the chiller loading to prevent chiller surging. The identification and 
analysis of inconsistencies in central and buildings-level return temperature data led to the flow 
rate sensor fix noted earlier. Although the types of problems uncovered may differ significantly 
from project to project, similar benefits of detecting and diagnosing problems are expected from 
the use of a comprehensive model-based approach including modeling, validation, and MPC. 

In addition to these commissioning benefits, the MPC development and testing process 
was also able to identify simple ways to improve the heuristic control policy currently used by 
the operators. It was found that operating the chillers near full load was a key factor in 
maximizing system efficiency. In order to maximize the chiller load, one must maximize the 
temperature difference across chillers and the chilled water flow rate through the chillers. 
However, the admissible CHWS and flow rates are bounded, so the chiller loading is constrained 
and often determined by the temperature of the primary loop chilled water return, which is 
primarily a function of the temperature near the top of the TES tank. This temperature falls 
substantially as the thermocline approaches the top of the tank, reducing the available chiller 
loading. Thus, overcharging the TES tank can be detrimental to the chilled water plant efficiency 
and should be avoided. It is also expected that additional savings are available by concentrating 
low loads on a single chiller rather than spreading it across multiple chillers. And as noted 
earlier, the plant operators learned from the MPC set-points in this first experiment that the 
system COP can be increased by increasing the standard condenser water set-point range. Further 
research is required to determine how much energy could be saved through the addition of 
simple rules like these to the existing policy, based on the lessons learned in the MPC study. 
 The above-described MPC implementation is not robust in the sense that neither input 
uncertainties nor model error are taken into account. This could be addressed by designing a 
robust MPC scheme (Borrelli 2003; Witsenhausen 1968; Bemporad, Borrelli & Morari 2003). A 
typical robust MPC scheme involves solving a min-max problem to optimize robust performance 
(the minimum over the control input of the maximum over the disturbance) while enforcing input 
and state constraints for all possible admissible bounded disturbances. Also, the MPC 
implementation does not consider system faults. Robustness to faults can be indirectly obtained 
by detuning the controller (reducing the weights) at the price of a reduced performance or can be 
systematically and easily taken into accounts by switching to a different model ),,,( dtuxg  and 
constraints X and U  when a fault is identified. Given the uncertainties and system faults 
apparent in this case study, and their prevalence in building systems in general, future research 
on robust MPC for buildings applications is recommended.  
 In order for the approach to be commercially viable, the time and expertise intensity 
required for the development and testing of the MPC implementation must be greatly reduced. 
Ultimately, a streamlined tool chain for the development and implementation of model-based 
building control and commissioning stands to address part of these challenges. As shown in this 
case study, MPC development and fault diagnostics can be two mutually reinforcing activities. In 
order to facilitate such activities, the development and dissemination of controls-oriented models 
for building system components, such as those developed during this project, is a first step. The 
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complexity of building systems calls for methods that enable detailed component models to be 
aggregated into lower-order models for coordination at higher levels. And the configuration of 
advanced control and monitoring techniques should ultimately be transparent to the installers and 
operators in order to facilitate communication and understanding and to save energy. 
 
Conclusions and Recommendations 
 

A Model Predictive Control (MPC) scheme was successfully developed and implemented 
for the UC Merced chilled water system. New component models were developed in the process, 
various problems were uncovered and fixed in the system operation, and some simple control 
policy changes were found that can improve the system COP. Experimental implementation 
showed marginal system efficiency improvements over the baseline, but there are not enough 
data points to draw very strong conclusions from the results. The process of developing and 
implementing MPC for such systems needs to be made faster and simpler in order for better tests 
to be carried out and for MPC to be commercially viable. The models developed and lessons 
learned from this implementation should help in that respect. 
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