ECONOMIC ANALYSIS OF A CENTRAL ICE PLANT EXPORTING LOW TEMPERATURE WATER TO A COMPLEX OF BUILDINGS FOR A FINANCIAL INSTITUTION

Frank Regi and Peter Pobjoy Facilities Systems Engineering Corporation

This paper assesses the economic aspects of an ice-based hybrid thermal energy storage system as a prime source of refrigeration and energy conservation for a cluster of structures representative of a campus or a small metropolitan business complex.

Comparisons of individual structure and overall site energy consumption are evaluated after a full year of operation. Plant operational strategies, load deferrals, low temperature distribution, capital cost avoidance for individual building chilling plants, expected reduction of energy costs per square foot of usable space and capital investment payback derived from the Central Thermal Energy Storage System are included in this paper.

PURPOSE

The Thermal Energy Storage System in this paper is located in Irwindale, California and it was implemented as a major source of energy conservation for two existing buildings and future buildings located on the campus site of a financial institution. Phase I of the Thermal Storage Facility was designed to furnish off-peak cooling to Building IR-2 (existing) and Building IR-3 (recently completed) with Phase II being designed at a later date to accommodate Building IR-1 (existing), the Annex Building (existing) and Building IR-4 (future). Figure 1 is a sketch of the Irwindale Campus Site.

Thermal energy storage feasibility studies were made for both Buildings IR-2 (existing) and Building IR-3 (future at the time) to determine the possibility of integrating an off-peak cooling system into the existing campus to service both existing and new buildings. The Phase I portion of the Thermal Storage Facility was calculated to have a maximum simple pay-back of 1-1/2 years with energy savings approaching \$200,000 per year. Construction drawings were prepared for a central plant located in the service area of the newly designed Building IR-3 which was shortly to commence construction. The Machinery Room, which was originally sized for a Chiller Plant in Building IR-3 only ($300,000 \text{ ft}^2$ of office space), was dedicated for all the refrigeration equipment required to provide cooling for all campus buildings (1,200,000 sq. ft. of office space). An area approximately 160 ft. long by 40 ft. wide was used to contain the ice storage equipment plus all the condenser and high pressure receiver.

OPERATING FEATURES

The Thermal Storage Plant provides total chilled water capability for Building IR-3 (peak load = 650 tons) and on-peak chilled water capacity for Building IR-2 (peak load = 600 tons). The refrigeration equipment is powered through a separate Southern California Edison (SCE) meter on a TOU-8-SOP schedule whereas the chilled water pumping equipment is powered through a SCE

Figure 1. Irwindale Campus Distribution Plan

meter on a TOU-8 schedule. The refrigeration plant operates during off-peak and super-off-peak periods to manufacture all the ice required for the daily demand. This ice is melted off during on-peak and partial mid-peak periods by pumping water across the ice tubes and over to the air handling units through distribution piping in each building. When all the ice is melted off, or no more ice is required, this equipment will shut down and repeat the cycle the following day. If all the ice is melted and building IR-3 demands chilled water during midpeak or off-peak hours, one of the ice bank evaporators is used at a higher saturated suction temperature to operate as a chiller barrel, thus furnishing chilled water directly to the air handling units during mid-peak demand periods.

Phase I of the Thermal Storage Plant was completed within budget and now operates successfully with capacities and energy savings far above those predicted during the feasibility analyses. Some of the more significant features of this plant are as follows:

- Central Cooling plant for 600,000 ft² of office building with future capacity for an additional 600,000 ft².
- Total on-peak deferral (1,200 tons/hour) through use of ice storage during the summer months.
- Total full day deferral through use of ice storage during Spring, Fall, and Winter months.
- Operating cost savings of over \$200,000 per year compared to a conventional chiller plant.
- Steady production of 38°F water to all air handling units regardless of outside weather conditions.
- Availability of 900 Hp of compressor capacity as back-up in the event of loss of ice storage or should additional cooling be required beyond the stored ice capacity.
- Compressor operation is restricted to night time during ice building ensuring quiet operation of only chilled water pumps during the day. This

also allows time for routine maintenance of the plant equipment during the day.

- Constant availability of 38°F water allows for better dehumidification over and above that normally achieved with conventional chilled water equipment. This becomes an added advantage in laboratory areas or production areas where humidity control is often times the prevailing force.
- The refrigerant charge is an environmentally accepted R-22.

PLANT DESCRIPTION

The Thermal Energy Storage Plant (Phase I) was designed to furnish cold water at 34°F from a central location to Building IR-2 and Building IR-3 through a primary pumping loop. Chilled water at 38°F is distributed throughout each building on a secondary pumping loop via heat exchangers located in each building.

Ice is built daily by a refrigeration plant located in Building IR-3. The plant comprises three open drive horizontal screw compressors, two evaporative condensers, one high pressure surge receiver, one vertical refrigerant recirculating unit with two 10 Hp recirculating pumps and five top feed horizontal galvanized steel tube evaporators. The ice bank evaporators are each located in separate 1 ft. thick wall concrete tanks each measuring 28 ft. long x 10 ft. wide x 19 ft. high. Each tank is full of water and enclosed with insulated removable steel covers. Three primary chilled water pumps, two operating and one standby, horizontal end suction centrifugal type are also located in the refrigeration plant Machinery Room.

On a daily cycle, the compressors operate at full capacity to generate low temperature refrigerant liquid which is used in the recirculating unit. The low temperature refrigerant liquid is pumped to the ice bank evaporators submerged in water in the concrete tanks. Each coil is designed to build 1.4" thick ice on the outer tube of each bundle until 100,000 lbs of ice is made. 120,000 lbs/tank can be made at 1.8" ice thickness. The refrigerant vapor/ liquid is returned to the refrigerant recirculating unit and the cycle is repeated until all tanks have a full ice build.

During the ice melting cycle, the primary chilled water pumps circulate water from the ice storage tanks to each heat exchanger and back as long as chilled water is required. The air agitator pump constantly distributes air bubbles amongst the evaporator tubes to ensure an even ice build and ice melt.

Each concrete storage tank contains one ice bank evaporator which is directly piped to the refrigeration system. A series of refrigerant control valves operate the flow of refrigerant to the evaporator based upon a timing schedule and the amount of ice programmed to be built. The concrete tanks are also full of water which is piped directly to the primary chilled water circulating system. The flow of water is regulated through automatic control valves based upon a timing schedule and the demand for chilled water.

The entire plant and energy exports are monitored and controlled 24 hours per day by a central microprocessor-based control system. Figure 2 shows a simplified block diagram for the system. Table 1 summarizes operating parameters and performance data.

Sequence of Plant Operation

The Thermal Energy Storage Plant is designed to build ice at night during cheaper energy periods and utilize this stored energy during the daytime when energy is more costly by using pumping horsepower only to meet the cooling demand normally achieved through the use of packaged chillers. The peak load of 1,260 tons for the two Buildings combined can be supplied through the use of two 50 Hp pumps with an actual energy efficiency of 0.05 KW/ton. This compares with 1.0 KW/ton for a conventional chiller plant which would operate on the same rate schedule during the on-peak period.

The refrigeration equipment located in Building IR-3 is metered independently from the remainder of the building on a TOU-8-SOP schedule. During the Summer months (July, August and September), the refrigeration equipment operates during the

off-peak and super-off-peak periods to build ice on the evaporator tubes located in the ice storage tanks. These periods extend from 6:00 a.m. to 10:00a.m. and 9:00 p.m. to midnight for the off-peak and from midnight to 6:00 a.m. for the super-off-peak. Depending upon the outdoor wet bulb temperature, the time required to build a full charge of ice is between 7 to 9 hours.

The primary chilled water pumps located in Building IR-3 operate on the building's TOU-8 meter. During the Summer months, pump P-1 pumps chilled water (34°F) to building IR-2 throughout the on-peak period from noon to 6:00 p.m. During this time, the chillers in Building IR-2 are shut down. For milder times of the year, chilled water (34°F) is pumped from the Thermal Energy Storage Plant continuously allowing the Chiller Plant to remain idle all day or as long as ice is available. When ice is no longer available, the chiller plant in IR-3 is started up to provide cooling to the building during mid-peak periods only. (This occurred only two days in 1989, during a Santa Ana wind condition).

Primary chilled water pump P-3 pumps chilled water $(34^{\circ}F)$ from the ice storage tanks to Building IR-3 during on-peak periods in the Summer months. As in the case with Building IR-2, ice is used to provide cooling for as much of the day as possible until all the ice is melted. When no more ice is available, the Refrigeration Plant, with one dedicated ice bank evaporator, will operate in a "chiller mode" to provide chilled water (40°F) to Building IR-3 as required.

When all the ice is melted off the evaporator tubes, the refrigeration cycle is repeated at the commencement of the off-peak period.

Figure 2. T.E.S. System Schematic Diagram

Table 1. Plant Statistical Performance Data

- Compressors: (3) screw open-drive 300 Hp. Ea.
- Evaporative condensers: (2) Axial fans 80 Hp. Total
- Liquid (R-22) Recirculating unit: 580 gpm (2) 10 Hp. Pumps
- High Pressure Receiver: Surge-type 9000 lbs cap.
- Hybrid Evaporator-Coils: (5) Sectionalized Top-Feed Type
- Oil Cooling pumps: (One stand-by) 3 Hp. Ea. Water System
- Chilled Water Pumps: (3) 50 Hp. Ea. 950 gpm flow to 1920 gpm flow
- Heat Exchangers: (2) Low Approach Plate type 39°F Water Outlet.
- Microprocessor Based Control System: Plant Control Feeding Distribution
- Total Plant Capacity at 20°F SST: = 846 Ton/Hr Ice Maker
- Total Plant Capacity @ 30°F SST: = 1050 Ton/Hr Chiller Mode
- Total Ice Storage Capacity @ 1.4" Ice = 500,000 lbs.
- Total Ice Storage Capacity @ 1.8" Ice = 600,000 lbs.
- Energy Stored, Latent and Sensible = 6,500 Ton-Hr. (Min.)
- Energy Stored, Latent and Sensible = 7,700 Ton-Hr. (Max.)
- Net Density of Stored Energy, $Ton-Hr/Ft^3$: = 0.314
- Net Area Density, $Ton-Hr/Ft^2 = 5.50$
- Exporting Water Temperatures: = 34°F 42°F

Connected Air Conditioning Loads

(Bldg IR-2 & IR-3, 10 Hrs per day, 20 days/mo. in ton-hr.)

Jan		150,400	July	tananan gananan	220,400
Feb		176,400	Aug.		219,600
March		192,400	Sept.		210,200
April	Calor Color	201,400	Oct.	=	197,400
May		206,400	Nov.	=	174,800
June	-	220,400	Dec.	=	163,000
Total Ye	arlv	Ton-Hr = 2.332.800)		

ECONOMIC ANALYSIS

- A. Conventional Chiller System as originally designed for building IR-3 without chilled water piping interconnecting building IR-2 (lowest bid) - \$879.732.00
- B. The Thermal Energy Storage System ice plant for Buildings IR-2 & IR-3 with interconnecting piping (installed cost). - \$1,469,764.00

Power Consumption

Conventional Chiller System	=	0.98 kw/ton
Ice System Operating in a Chiller Mode		
(32°F SST)	=	0.87 kw/ton
Chilled Water (From Ice-Pump Only)	=	0.06 kw/ton
Ice Building (At Full Capacity-Night Time)	=	0.87 kw/ton

Current Southern California Edison Rate Structure

TOU-8 Schedule up to 2KV:

<u>Summer</u>	Energy \$/kwh	Demand \$/kw
On-peak	0.11000	14.45
Mid-peak	0.08902	2.25
Off-peak	0.05012	
<u>Winter</u>		
Mid-peak	0.10001	an 60 kit
Off-peak	0.05012	an 64 66

TOU-8-SOP Schedule up to 2KV:

Energy \$/kwh	Demand \$/kw
0.10164	36.00
0.10164	0.95
0.06692	dge lint for
0.03512	dia na
0.07691	0.50
	(Spring-Fall Also)
0.07141	
0.03512	
	Energy \$/kwh 0.10164 0.06692 0.03512 0.07691 0.07141 0.03512

Operating Cost Based on Actual 1987 Rates (slightly lower than current rates):

Annual operating cost for a conventional chiller system (IR-2 & IR-3)

Energy charges for on-peak		
chiller load (Table 2) =		\$ 67,158
Energy charges for mid-peak		
chiller load (Table 3) = $($		137,689
Energy charges for off-peak		
chiller load (Table 4) = $($		10,994
Demand charges for on-peak		
chiller load (Table 5) $=$		64,197
Demand charges for mid-peak		
chiller load (Table 6)	=	4,801
Demand charges (non-time related)	for	
chiller load (Table 7)	-	<u>33,832</u>
Subtotal for Demand		\$102,830
Chiller Annual TOTAL	\$318	,671/Year

Annual operating cost for the ice storage system

Energy charges for chilled water from ice,

on/mid-peak (Table 8)	=.	\$ 9,875
Energy charges for ice building,		
off-peak (Table 9)		16,649
Energy charges for ice building,		
super-off-peak (Table 10)	=	44,248
Energy charges for ice system in		
chiller mode, off-peak (Table 11)	tours tours	18,812
Energy charges for ice system in		
chiller mode, mid-peak (Table 12)		27,842
Demand charges for ice system in		
chiller mode, mid-peak (Table 13)	=	3,333
Demand charges for ice system in ice	e	
depleting mode, on-peak (Table 14) =	7,326
Demand charges (non-time related)		
for ice storage system (Table 15)		23,820
Subtotal for Demand	=	\$34,479
T.E.S. Annual TOTAL	\$151	,905/Year

The operating cost savings for each of the VAV air handling unit systems as extracted from the feasibility studies are: (35% of total fans energy cost)

Building IR-2		\$15,822
Building IR-3		\$15,147
VAV Annual Total		\$30,969
	(Equivalent of 344,2	100 Kwh)

 Table 2.
 Energy Charges for Conventional Chiller

 System (Building IR-2 and Building IR-3)

 TOU-8 On-Peak only

		the second se				
Month	KW/Ton	Avg. Tons	Avg. Кы	Hours	\$/кын	Energy Charges §
January	. 98	-	-	-	•	-
February	. 98	-	-	-	-	-
March	. 98	-	·	-	-	-
April	. 98	•	•	•	•	-
May	. 98	-	•	-	-	-
June	. 98	632 592	19 580	132	. 102	16,966
July	. 98	636 596	623 584	132	. 102	17,080
August	. 98	630 590	617 578	132	. 102	16,910
September	. 98	604 564	592 553	132	. 102	16,202
October	. 98				-	-
November	. 98				-	-
Vecember		-	•		-	-

Table 3. Energy Charges for Conventional ChillerSystem (Building IR-3 and Partial BuildingIR-2) TOU-8 Mid-Peak

[[[Energy
Month	K₩/Ton	tons	Avg. K₩	Hours	\$/KWH	Ubarges \$
January	0.09	389	381	230	0932	12 006
January	0.70	462	151	200	.00.52	13,390
February	0.98	518*	508	140	.0832	13,445
Manch	0.98	511	501	230	0922	15 092
marci	0.90	500-	510	220	.0032	13,902
April	0.98	588*	576	138	.0832	16,113
		545	534	230		
May	0.98	603*	591	138	.0832	17,004
June	0.98	512	502	88	.0773	3,415
July	0.98	516	50 6	92	.0773	3,598
August	0.98	513	503	92	.0773	3,577
September	0.98	489	479	88	.0773	3,258
	1	540	529	230		
October	0.98	557*	546	161	.0832	17,437
November	0.98	453 519*	444 509	220	0832	14 649
	1.10	125	417	230		
December	0.98	482*	472	184	.0832	15,205
*IR-2 Suilding				TOTAL	:	137,679

Table 4.Energy Charges for Conventional Chiller
System (Building IR-3 Only) TOU-8 Off-
Peak

Neath		Avg.	Avg.	Hausa	47 LB4	Energy Charges
Honen	Ka/ ION	Ions	1 12	nours	3A MI	,
January	. 98	278	272	46	.0501	627
February	.98	382	374	40	.0501	749
March	. 98	427	418	46	.0501	963
April	. 98	442	433	a	.0501	955
May	. 98	456	447	46	.0501	1,030
June	. 98	471	462	44	.0501	1,018
July	.98	478	466	45	. 0501	1,074
August	.90	472	463	46	.0501	1,057
September	.98	450	441	44	.0501	972
October	. 98	415	407	46	.0501	938
November	.98	376	368	44	.0501	811
<u>Uecember</u>	.90	350	343	46	.0501	790
	Ł			TOTA	L: \$	10,994

 Table 5.
 Time Related Demand Charges for Conventional Chiller System TOU-8 Schedule

 On-Peak
 On-Peak

	1r			Y	Theread
Month	K⊯/Ton	Max. Tons	Mar. KW	\$/KW	Charges \$
Januar y	. 98	*	- 1	-	•
February	. 98	-	-	-	· ·
March	. 98	-	-	-	-
April	. 98	•		•	
Мау	. 98	-	- 1	-	
June	. 98	1240	1215	13.25	16,099
July	. 98	1257	1232	13.25	15,324
August	. 98	1231	1206	13.25	15,980
September	. 98	1215	1192	13.25	15,794
October	. 98	-	-	-	<u> </u>
November	. 98	-	-	-	- 1
December	.98	+	-	-	-
	L		ror		\$64,197

 Table 6.
 Time Related Demand Charges for Conventional Chiller System (Building IR-3)
 Only) TOU-8 Schedule Mid-Peak

	T		T		llonga
Month	K₩/Ton	Max. Tons	Max. KW	\$/X¥	Charges
January	. 98	-	-	•	
February	. 98	•	-		•
March	. 98	•	-	-	•
April	. 98	-	-	-	-
May	. 98	-	-	-	-
June	. 98	605	593	2.05	1,216
July	.98	609	597	2.05	1,223
August	.98	602	590	2.05	1,209
September	.98	574	583	2.05	1,153
October	.90	-	•	-	•
November	. 98	-	-	-	
December	.90	-	-	•	•
··	·····	·	TOTAL :	·	\$4,801

Table 7.	Non-Time	Related	Demand	Charges j	for
	Convention	al Chi	iller Syst	em TOL	J-8
	Schedule		-		

		·····	
Month	Max. Kw	S/KW	Uemand Charges (\$)
January	850	2.7	853
February	989	2.7	2.670
March	1013	2.7	2,735
April	1112	2.7	3,002
May	1310	2.7	3,527
June	1215	2.7	3,281
July	1232	2.7	3,327
August	1208	2.7	3,256
September	1192	2.7	3,218
October	1038	2.7	2,803
November	991	2.7	2,676
December	918	2.7	2,474
	то	ITAL :	\$33.832

Table 8. Energy Charges for Ice Depletion TOU-8 on Peak/Mid-Peak

Month	K⊌/Ton	Avg. Tons	Avg. ≾⊌	Hours	\$/K kih	Energy Charges
Januar y	.06	447 389	27 23	184 161	.0832	721
February	.06	518 462	31 28	140 120	.0832	641
March	.06	568 511	34 31	138 138	.0832	746
April	.06	588 530	35 32	132 132	.0832	736
May		603	36	138		
June	.06	632 592	38 36	132	.1072	1,047
July	.06	636 596	38 36	138	. 1072	1,047
August	.06	630 590	38 35	138	. 1072	1,033
September	.06	604 564	36 34	132	.1072	991
October	.05	557 540	33 32	161 115	.0832	748
November	.06	519 453	31 27	154	.0832	694
December	.06	482 425	29 26	184 138	.0832	742
				TOTA	L:	\$9,875

 Table 9.
 Energy Charges for Ice Building IOU-8 SOP
 Off-Peak

		Ava.	Ava.]	Energy
Nonth	KW/Tor	Tons	KW	Hours	\$/KWH	\$
Januar y	-87	846	737	35	. 0503	1,297
February	.87	846	737	32	.0503	1,186
March	.87	845	737	39	.0503	1,446
April	.87	848	737	42	. 0503	1,557
May	.87	845	737	35	.0503	1,297
June	.87	846	737	40	.0503	1,483
July	.87	846	737	- 46	.0456	1,546
August	.87	846	737	45	.0456	1,546
September	.87	848	737	35	. 0455	1,176
October	.87	846	737	-11	.0503	1,520
November	. 87	846	737	- 33	. 0503	1,223
December	.87	848	737	37	.0503	1,372

K₩/Tor	Avg. Tons	Avg. XW	Hours	\$/KWH	Energy Charges §
.87	845	737	138	.0372	3,783
.87	845	737	120	.0372	3,290
.87	846	737	138	.0372	3,783
.87	846	737	132	.0372	3,620
.87	846	737	138	.0372	3,783
.87	846	737	132	.0372	3,819
.87	846	737	138	.0372	3,783
.87	845	737	138	.0372	3,783
.87	848	737	132	.0372	3,619
.87	846	737	138	.0372	3,783
. 87	845	737	132	.0372	3, 519
.87	848	737	138	.0372	3,783
	KW/Tor .87 .87 .87 .87 .87 .87 .87 .87 .87 .87	Avg. .87 846	Avg. Avg. Avg. .87 845 737 .87 845 737 .87 846 737	Avg. Avg. Avg. Hours .87 846 737 138 .87 846 737 120 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138 .87 846 737 138	Avg. KW/Tor Avg. Tons Avg. KM Hours S/KMH .87 848 737 138 .0372 .87 848 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372 .87 846 737 138 .0372

Table 10. Energy Charges for Ice Building TOU-8 SOP Super-Off-Peak

 Table 11. Energy Charges for Ice System in Chiller

 Mode TOU-8-SOP Off-Peak

Month	K₩/Ton	Avg. Tons	Avg. K⊯	Hours	\$/KWH	Energy Charges
Januar y	.87	278	242	46	. 0503	560
February	.87	382	332	60	.0503	1,002
March	.87	427	371	69	.0503	1,288
April	.87	442	385	110	.0503	2,130
May	.87	458	397	115	.0503	2,296
ปนกล	.87	471	410	110	. 0503	2,269
July	.87	478	414	92	. 0456	1,737
August	.87	\$72	411	92	.0456	1,720
September	.87	450	392	88	.0458	1,573
October	.87	415	381	115	. 0503	2,088
November	.87	378	327	- 65	.0503	1,088
December	.87	350	305	69	.0503	1,059
	l.			ro	TAL :	\$18.812

\$18,812

 Table 12. Energy Charges for Ice System in Chiller

 Mode TOU-8-SOP Mid-Peak

Month	KW/Ton	Avg. Tons	Avg. KW	Hours	\$/KWH	Energy Charges S
January	.87	389	338	69	.0728	1.698
February	.87	462	402	60	.0728	1,758
March	.87	511	446	59	.0728	2,240
April	.87	530	461	22	.0655	684
Hay	.87	544	473	48	.0855	1,425
June	.87	592	515	#	.0655	1,484
July	.87	596	519	89	.1294	4,634
August	.87	590	513	<u>89</u>	.1294	4,580
September	.87	584	491	88	.1294	4,193
October	.87	540	470	46	.0855	1,418
November	.87	453	394	66	.0728	1,893
December	.87	\$25	370	89	.0728	1,859
	·ł				TAL :	\$27,842

Table 13. Time Related Demand Charges for Ice Storage System (Chilled Water Mode) TOU-8-SOP Mid-Peak

		Max.	Max.	Γ	Demand Charge
Nonth	K⊯/Tan	Tons	KW	\$/KW	\$
January	0.87	451	392	0.45	177
February	0.87	530	461	0.45	207
March	0.87	571	497	0.45	224
April	0.87	589	512	0.45	231
May	0.87	603	524	0.45	236
June	0.87	605	526	0.45	237
July	0.87	609	530	0.9	477
August	0.87	602	524	0.9	471
September	0.87	574	499	0.9	449
October	0.87	581	488	0.45	220
November	0.87	542	472	0.45	212
December	0.87	490	426	0.45	192
	<u>L</u>	L	TOTAL ·	L	\$3.333

Demand Charges § Max. Tons Max. XW/Ion \$/K¥ Month January • _ February March . April -May June July 0.06 1257 2,475 75 33.0 August 0.06 1231 74 33.0 2.442 Sectember 0.06 1216 73 33.0 2,409 October November • --December

Table 14. Time Related Demand Charges for Ice Stor-
age System (Ice Depletion Mode)
TOU-8-SOP On-Peak

TOTAL: \$7,326

 Table 15. Non-Time Related Demand Charges for Ice

 Storage System TOU-8-SOP Schedule

			·····
Month	Max. Kw	\$/KW	Demand Charges (\$)
January	735	2.7	1985
February	735	2.7	1985
Narch	735	2.7	1985
April	735	2.7	1985
Мау	735	2.7	1985
ງິດນຣ	735	2.7	1985
July	735	2.7	1985
August	735	2.7	1985
September	735	2.7	1985
Öctober	735	2.7	1985
November	735	2.7	1985
Oecember	735	2.7	19#5
		TOTAL	\$23.820

The combined operating cost savings for the entire system are:

Conventional Chiller		
Operating Costs		\$318,671
Less: Ice Storage		
Operating Costs	9943 6113	<u>-151,905</u>
Refrigeration Side Savings	=	\$166,766
Air Side Savings		\$ <u>30,969</u>
Total Savings		\$197,735
		Year

ECONOMIC SUMMARY

Conventional Chiller on-peak		
kw consumption	=	1,232
Ice Storage Plant on-peak		
kw consumption	=	75
Net Deferred Load kw	deserte textes	1,157
Power Company (S.C.E.) Rebate @		
\$200 per kw deferred	Constan Constan	\$231,400
Simple Payback		
Ice Storage System		
Construction Cost	= \$	51,469,764
Conventional Chiller		
System Cost	==	879,732
Additional Cost for		
Ice Storage	==	\$590,032
Less S.C.E. Rebate	=	- <u>231,400</u>
Net cost add for		
ice storage	filmete desense	\$358,632
Annual Operating		
Cost Savings		<u>\$197,735</u>
Simple Payback	1	.81 Years

CONCLUSION

Ice Storage and its concepts have re-emerged as an exciting new technology to cope with today's high cost of energy and as a cost-effective vehicle for space cooling in the commercial sector as well.

Driven by utility companies incentive programs, large difference in utilities cost between "on-peak" and "off-peak" periods and a constant energy demand growth, thermal energy storage systems are becoming a viable alternative to conventional chilling plants.

The T.E.S. case studied in this paper revealed benefits reaching far beyond the economics and thermodynamics expectations as originally intended by the Designers. Findings retrieved after a full year of operation (1989) are revealing greater energy savings than expected. The owner calculated actual cost savings for the site is ranging in the order of \$250,000. The main contributing factors enhancing the plant operation can be summarized by the following:

- Lower "off-peak" energy costs when operating the plant on a separate TOU-8-SOP meter for the refrigeration equipment (Night Operation Exclusively).
- Reduced pumping horsepower used to export lower temperature water.
- Reduced fan horsepower with lower air temperatures in the V.A.V. systems (35% cost reduction).
- Superior dehumidification capabilities during high-peak demands in humidity controlled areas.
- Full day operation on ice mode without chiller use for the entire year.
- On board computer program capable to produce only the required volume of ice for total campus demands (During mild seasons).

Although every care was taken not to oversize the refrigeration machinery and, erect a plant that was

equal in all respects to the conventional chilling apparatus capabilities, the added evaporators surface with longer super-off-peak schedules of operation made this plant a "win-win" situation with *an actual payback of 1.43 years* for the additional capital investment.

Also, one of the principal advantages of the ice storage system described in this paper is the inherent ruggedness and reliability of its components. All materials and equipment employ conventional technology other than the designer imagination.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of Home Savings of America and, in particular for Mr. Allan O'Connor, Vice President of Special Assets, Mr. Steve Able, Head of Engineering and Brad Minot, the Energy Conservation Analyst.