The Empire State Building

Repositioning an Icon as a Model of Energy Efficient Investment

Paul Rode, P.E. Johnson Controls Inc.

ACEEE National Symposium on Market Transformation April 12th, 2011

Real value in a changing world

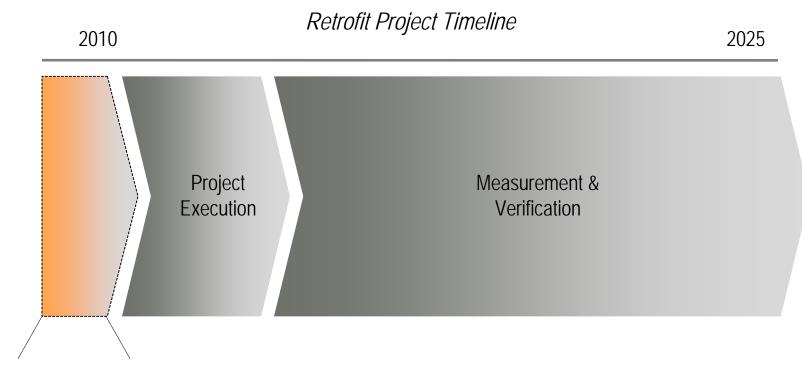
The Empire State Building

Demonstrate the business case for cost effective energy efficient retrofits through verifiable operating costs reductions and payback analysis

102 stories and 2.8 million square feet`

3.8 million visitors per year

\$11 million in annual energy costs


Peak electric demand of 9.5 MW down from 11.6 (3.8 W/sqft, inc HVAC)

88 kBtu per sq ft per yr for the office building

CO₂ emissions of **25,000 tons** per yr (22 lbs/sqft)

1) Five key groups and contributors used a collaborative and iterative approach.

The project development process, which the team focused on, is the first step towards executing and verifying the success of a retrofit.

Project development

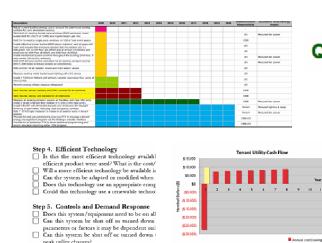
2) A 4-phase project development process helped guide progress.

Project activities (audits, workshops, presentations, analyses, reports, etc.) were divided into 4 phases.

Phase I: Inventory & Programming		Phase II: Design Development	Phase III: Design Documentation	Phase IV: Final Documentation
Activities	 April 14th kick-off meeting May 7th/May 14th team workshops June 2nd Presentation to Ownership 	 June 18th Theoretical Minimum workshop July 2nd workshop July 15th Presentation to ownership 	 July 30th Tenant Focus workshop August 13th eQUEST workshop August 27th Presentation to Ownership 	 Sept. 10th workshop Sept 29th Presentation to Ownership October 6-8th Finance workshop (Boulder) Nov 10th Presentation to Ownership
Outputs	• Baseline Capital Projects Report	• Baseline Energy Benchmark Report	 Tenant Initiatives (prebuilts, design guidelines, energy management) Report Tuned eQUEST model 	 Model (eQUEST, financial, GHG) outputs Integrated Sustainability Master Plan Report (inc. Energy Master Plan)

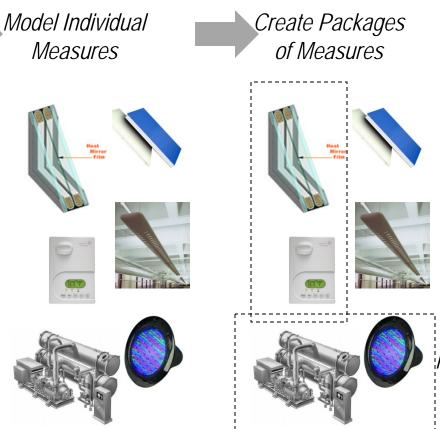
3) A variety of tools were used and developed to triangulate to the best answer.

Industry standard and newly developed design tools, decision-making tools, and rating tools helped to evaluate and benchmark existing and future performance.


Design Tools

Decision-Making Tools

Rating Tools

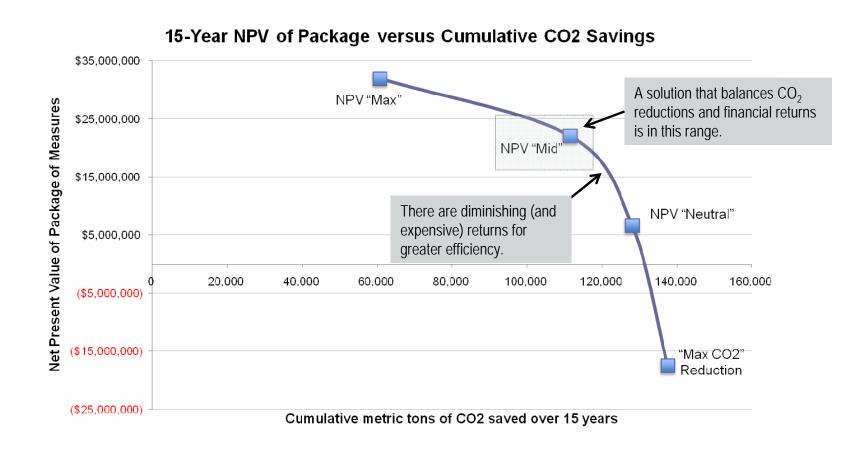


A 4-phase project development process helped guide progress.

Determining the optimal package of retrofit projects involved identifying opportunities, modeling individual measures, and modeling packages of measures.

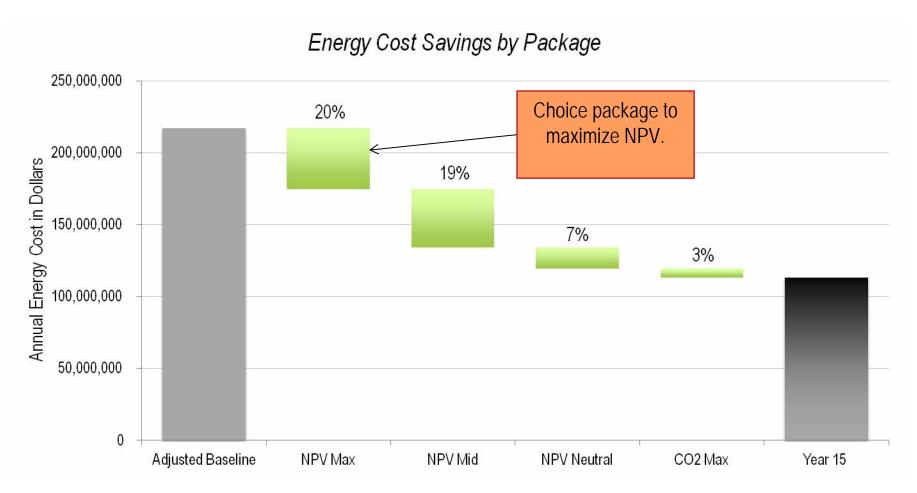
Identify Opportunities

Chiller-4	CW Waterside economizer for year round coeling for all zones
	Multiple Tonnage Chiller Sizing
Chiller-6	Best Practice Cooling Tower Sizing and Efficiency Pumping
Chiller-7	Chiled water temperature reset
CHW Pumping -1	Variable Flow CHW Pumping
	VFD on CW Pumps, Flow Control
CW Pumping-2	Best Possible Pumping Design - Reduced Pressure Drop and Max Pump Et
	Heat Recovery from Broadcast Floors
	Run Around Glycol loop to preheat OA to observatory
Heating-3	Basecase w/ electric reheat (space heaters)
AHU-1	Instal new VFD AHUs
AHU-2	Best Practice AHU (Low dP, Higher Fan Eff)
	Underfloor/Displacement Air Distribution
AHU-4	Instal Low dP VED AHUS
AHU-5	Move to Central OA Supply
AHLI-6	Core Space Conditioning - Dedicated Unit
	Core Space Conditioning - Shared Unit (Cascace)
AHU-8	Nichtime Purge to Precharge Thermal Mass
	Natural Ventilation.
	Eliminate local AHU and use philled beams and radiant.
Controls-1	Chiller Flant
Controls-2	Controls - Chiller sequencing
Controls-3	Controls - Optimized Start/Stop
	Controls - Variable Primary/Secondary control
	Radiator Contro
	Radiator Contro/Window Opening
Controls-7	ESB Local HVAC Equip. (Air cooled chiller, CHW AHUs fied to ACC, DX AF
	Old AHUs Control (SIS, OA Damper, CHW Valve, Zone Temp
	New AHUs Control (S/S, OA Damper, CHW Valve, Zone Temp)
	New VFD AHUs Control (S/S. CA Damper, CHW Valve, Zone Temp, VFD)
	New VFD AHUs with OA Domand Control
	Thermal Comfort Space Temperature Control (ASHRAE 55)
	Electric Instantaneous DHW 19-/LL-18 Heat Recovery
	Instal Window Film
	Instal New Window Glazing Option A
Envelope-3	Instal New Window - Glazing Option B
	Instal Thermally Broken Frames
	Provide and install insulated sheet metal barriers behind each radiator.
Envelope-6	Provide furring strip insulation on Perimeter Walls
	Instal Green Roof
	Instal White Roof
	Steam driven back-pressure turbine/Absorption Chiller/DH///Electric Chiller
Cogen-2	Instal Fuel Cell/DHW Heat Recovery/Abscrption Chiller
Lighting-1	Lighting -Restroams Occ Sensor Commission
Lighting-2	Lighting - Restrooms Lighting Retrofit
	Lighting - ES8 Common Hallways Retrofit
Linhting	Linhtian - Tanant Shana Prahuilt
	Chiller4 Chiller4 Chiller4 Chiller4 Chiller4 Chiller4 Chiller4 Heatnp2 Heatnp3 Heatnp3 AHU4 AHU4 AHU4 AHU4 AHU4 AHU4 AHU4 AHU4


Outcome: Package of measures with best economic & environmental benefits

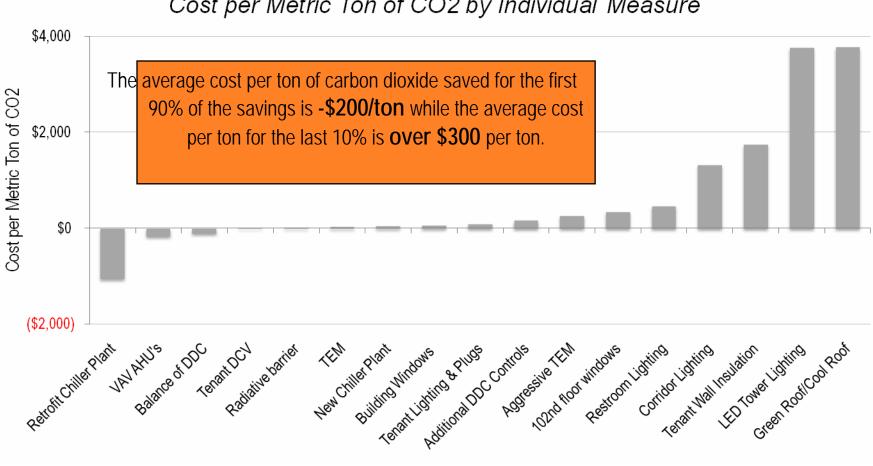
Model

Iteratively


Balance financial return & carbon reduction

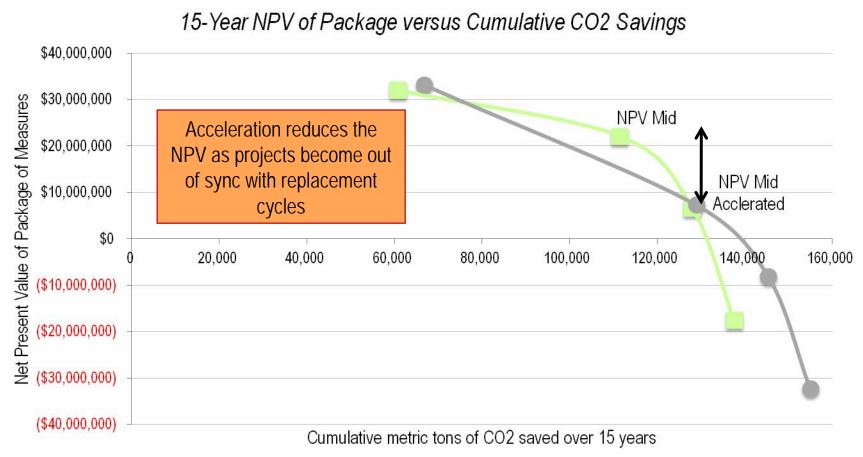
ESB can achieve a high level of CO₂ and energy reduction cost-effectively

2) At a certain point, there is tension between CO2 savings and business value.


Maximizing business value leaves considerable CO2 on the table.

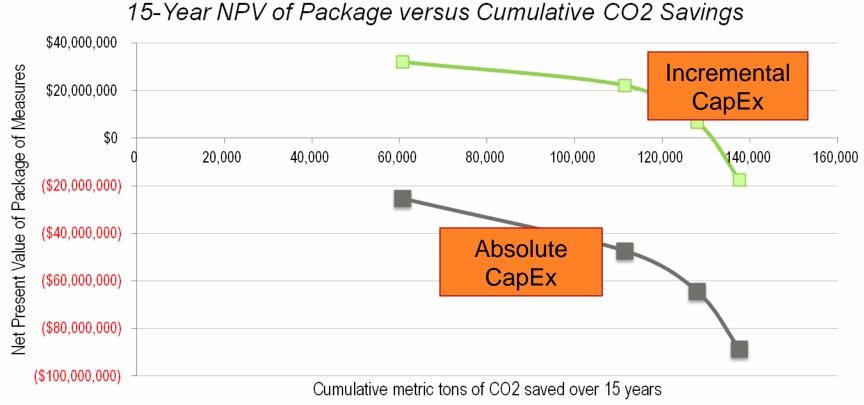
KEY FINDINGS

1) Eight interactive levers ranging from base building measures to tenant engagement deliver these results.

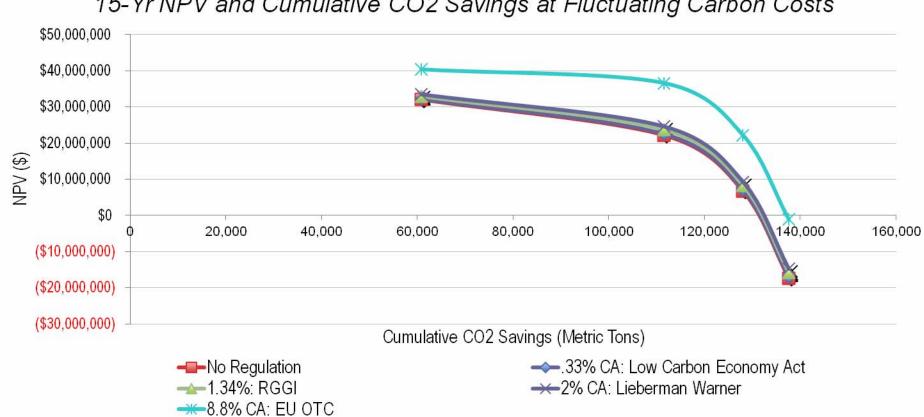

Achieving an energy reduction greater than 38% appears to be cost-prohibitive.

Cost per Metric Ton of CO2 by Individual Measure

At a certain point, CO2 savings and business value become polarities.

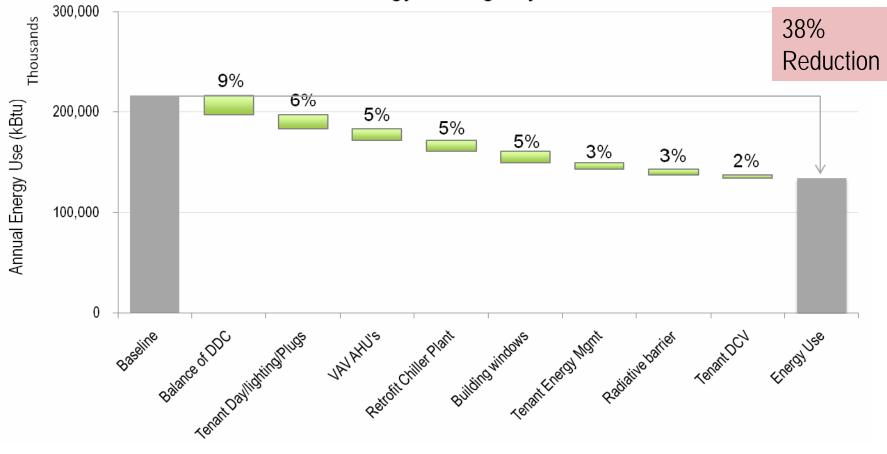

Attempting to save CO2 faster may be cost prohibitive.

10


Several approaches help maximize cost-effective savings.

Projects are most cost-effective when coordinated with equipment replacement cycles.

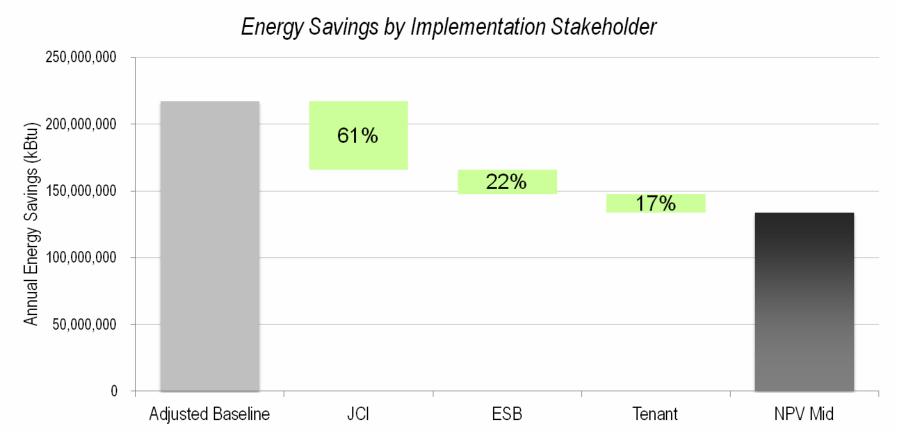
At a certain point, CO2 savings and business value become polarities.


Anticipated CO2 regulation in the U.S. doesn't change the solution set ... though European levels of regulation would.

15-Yr NPV and Cumulative CO2 Savings at Fluctuating Carbon Costs

Implementing recommended measures

Eight interactive levers ranging from base building measures to tenant engagement deliver these results



Annual Energy Savings by Measure

IV. IMPLEMENTATION

1) Three stakeholders, with different implementation mechanisms, will deliver the savings.

Johnson Controls, the Empire State Building, and Tenants are each responsible for delivering some of the total savings.

Business case through verifiable operating costs reductions and payback analysis

With a \$550 million capital improvement program underway, ownership decided to re-evaluate certain projects with cost-effective energy efficiency and sustainability opportunities in mind.

Capital Budget Adjustments for Energy Efficiency Projects

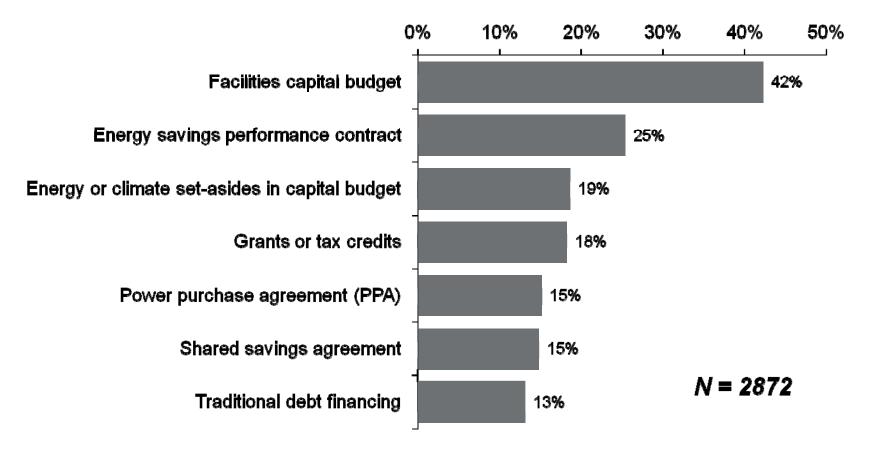
III. KEY FINDINGS

1) Eight interactive levers ranging from base building measures to tenant engagement deliver these results.

Though it is more informative to look at financials for the package of measures, capital costs and energy savings were determined for each individual measure.

Project Description	Projected Capital Cost	2008 Capital Budget	Incremental Cost	EstimatedAnnual Energy Savings*
Windows	\$4.5m	\$455k	\$4m	\$410k
Radiative Barrier	\$2.7m	\$0	\$2.7m	\$190k
DDC Controls	\$7.6m	\$2m	\$5.6m	\$741k
Demand Control Vent	Inc. above	\$0	Inc. above	\$117k
Chiller Plant Retrofit	\$5.1m	\$22.4m	-\$17.3m	\$675k
VAV AHUs	\$47.2m	\$44.8m	\$2.4m	\$702k
Tenant Day/Lighting/Plugs	\$24.5m	\$16.1m	\$8.4m	\$941k
Tenant Energy Mgmt.	\$365k	\$0	\$365k	\$396k
Power Generation (optional)	\$15m	\$7.8m	\$7m	\$320k
TOTAL (ex. Power Gen)	\$106.9m	\$93.7m	\$13.2m	\$4.4m

*Note that energy savings are also incremental to the original capital budget.


Limited internal capital is greatest barrier

Lack of capital budget 29% 18% Insufficient payback/ROI Uncertainty of savings/ROI 18% **Technical expertise** 12% Average maximum 6% Landlord/tenant split incentives payback period for energy 6% Buy-in from senior leaders efficiency Dedicated attention, ownership 4% 48% require a 3 year Inability to finance (credit rating, 4% payback or less collateral, balance sheet) Other (specify) 3% 0% 5% 10% 15% 20% 25% 30% 35%

What is the top barrier to capturing potential energy savings for your organization?

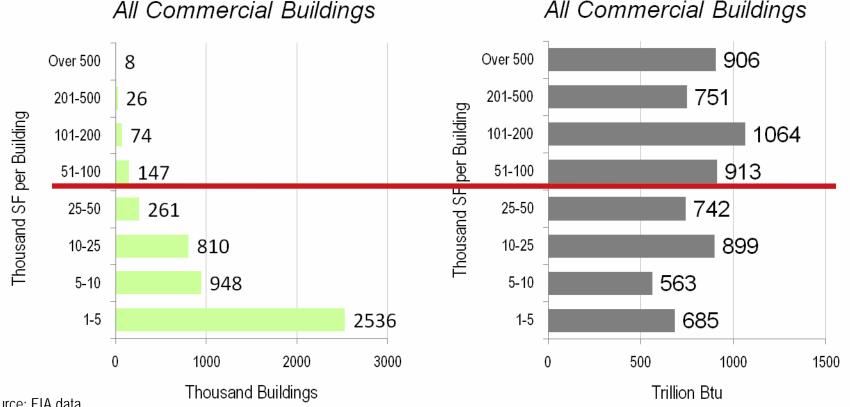
Energy Efficiency Indicator – Global 2010 Findings Copyright 2010 Johnson Controls, Inc. Internal capital budgets is primary funding source

Which options will your organization consider to pay for energy efficiency and renewable energy projects over the next 12 months? (Select all that apply)?

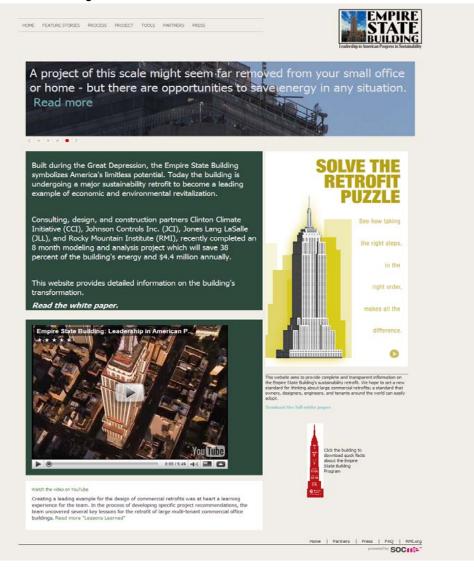
Energy Efficiency Indicator – Global 2010 Findings Copyright 2010 Johnson Controls, Inc.

VI. INDUSTRY NEEDS

a) Select the right buildings for whole-systems retrofits


Retrofitting the right buildings in the right order can reduce the societal cost (\$/metric ton) for carbon abatement.

VI. INDUSTRY NEEDS


b) Develop solutions for small to mid-range commercial buildings.

Most retrofit or energy service companies only address large commercial buildings or residential buildings. Yet 95% of the U.S. building stock is small to mid-sized buildings that consume 44% of total energy use.

Source: EIA data

www.esbsustainability.com

