

2007 National Symposium on Market Transformation

"Accelerating the Pace: Deepening and Broadening Efficiency Efforts"

COMMERCIAL (C3): ADVANCED ROOFTOP UNITS

Commercial RTU Diagnostics: Transforming the HVAC service market

Todd M. Rossi, Ph.D. Field Diagnostic Services, Inc.

Outline

- Objectives, approach and benefits
- Evolution of portable to embedded technology
- Potential energy savings
- Service Assistant portable technology
- Sentinel Embedded technology
- DSM programs and Title 24

Objective: Better control of valuable resources

Electric power

Air conditioning service labor

Approach: Measure and improve

- Monitor HVAC equipment performance
 - When becoming inefficient
 - When small problems are growing into big ones
- Dispatch the correct skilled service labor at the right time
- Track and feedback service effectiveness
 - When training is needed

Benefits

- More reliable HVAC equipment requiring less emergency service
- More effective/productive service with better controlled cost
- Reduced annual kwh and peak kW electricity consumption

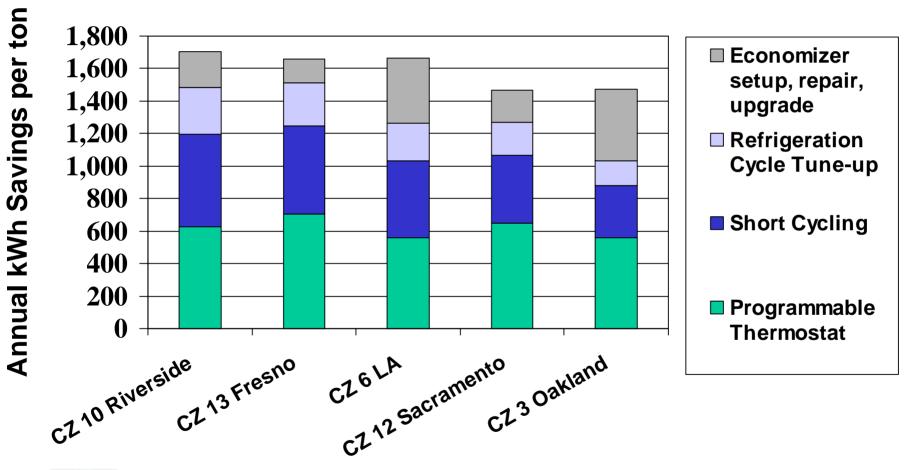
Evolutionary process of tracking and improving performance

- Portable tools and handheld computers
 - Service companies use to:
 - Find service opportunities to sell
 - Verify and communicate benefits of effective service to customers
 - Track and improve effectiveness of service work
 - Utilities use to:
 - Track effectiveness of incentive programs

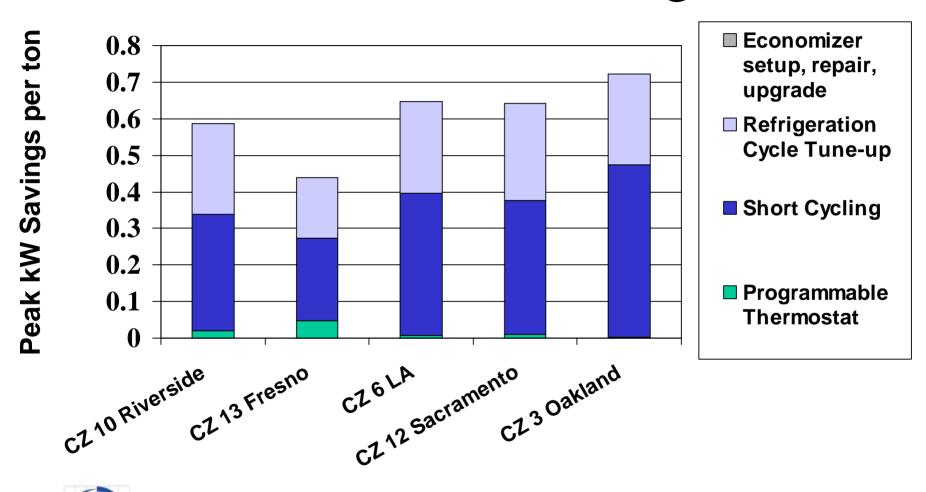
Evolutionary process of tracking and improving performance

- Embedded sensors and remote monitoring
 - Service companies use to:
 - Provide more accurate diagnostics with objective information
 - Service response when needed
 - Utilities can use to:
 - Incentivize for sustained and persistent savings

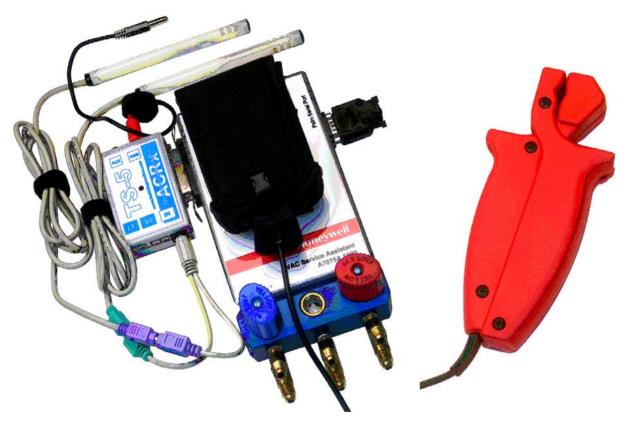
Types of savings opportunities


- Short cycling problem significant reduction in peak kW
- Refrigeration cycle issues
 - Undercharge
 - Dirty coils
- Easy programmable thermostat corrections
 - Continuous fan operations
- Economizer functioning

Savings can be significant
5,000 and 15,000 Annual kWh
Up to 1.00 kW per unit
But they are achievable over time
Not a single point of contact



Annual kWh/ton savings



Peak kW/ton savings

Portable technology

\$3,000 package of tools ...

Portable technology

... and support services.

Detailed Unit Information

Date:	3/08/07	Technician:	Junior Ibarra		
	SITE:	AIRE RITE	Mak	ke:	RHEEM
			Mod	del	rrgg-10e61ckr
			Seri	rial Number:	AYA5151 C HA A F1294
	UNIT:	5	Exp	pansion Device:	Fixed
	UNIT.	5	Refr	frigerant:	R22
			High	h Service Port:	Liquid line
	STAGE:	4	SEE	ER:	10.0
	STAGE.	'	Cap	pacity:	6 tons

PRE-TEST CAUTION/Major Repair: Non condensables or restriction because ET is low and SH and SC are high DIAGNOSTICS: and COA is greater than goal and not high.

POST-REPAIR ACCEPTABLE/No repair needed: Safe and reasonable performance because the data indicates this DIAGNOSTICS: system is performing as expected given the conditions entered. No further system diagnostics are

required.

Performance Parameter	Pre-Test Value	Post-Repair Value	Realized Savings
Efficiency Index (EI)	72%	>98%	¢200
Capacity Index (CI)	64%	>98%	\$ 399
Potential Annual Savings	\$399	\$0	

The following default values are used for Potential Annual Savings calculation if actual values are not supplied: Nominal SEER 10 BTU/hlw, Annual Runtime 1200 hrs/year, 2nd stage runtime equals 25% of 1st stage runtime, Electrical cost \$0.10

Diagnostics Parameter	Goal	Pre-Test		Post-Repair	
Diagnostics i diameter		Value	Evaluation	Value	Evaluation
Evap Temp (ET)	40 F	24 F	Lo	48 F	Hi
Superheat (SH)	18 F	34 F	Hi	15 F	Ok-
Condenser Temp (CT)	F	103 F	N/A	83 F	N/A
Subcooling (SC)	17 F	31 F	Hi	13 F	Ok-
Evaporator Delta T (EDT)	17 F	17 F	Ok	18 F	Ok
Condenser Over Ambient (COA)	26 F	34 F	Ok+	15 F	Lo

Measurement	Pre- Test	Post- Repair	
Suction Pressure (SP)	48 psig	80 psig	
Liquid Pressure (LP)	204 psig	150 psig	
Discharge Pressure (DP)	219 psig	165 psig	
Suction Temp (ST)	58 F	62 F	
Liquid Temp (LT)	71 F	70 F	

Measurement	Pre- Test	Post- Repair	
Ambient Temp (AMB)	68 F	68 F	
Return Air (RA)	71 F	70 F	
Supply Air (SA)	54 F	52 F	
Return Air Wet Bulb Temp (RWB)	61 F	60 F	
Supply Air Wet Bulb Temp (SWB)	45 F	43 F	

ACEEE / CEE 2007 National Symposium on Market Transformation

Portable technology Measurements

Measurement	Pre- Test	Post- Repair	
Suction Pressure (SP)	48 psig	80 psig	
Liquid Pressure (LP)	204 psig	150 psig	
Discharge Pressure (DP)	219 psig	165 psig	
Suction Temp (ST)	58 F	62 F	
Liquid Temp (LT)	71 F	70 F	

Measurement	Pre- Test	Post- Repair
Ambient Temp (AMB)	68 F	68 F
Return Air (RA)	71 F	70 F
Supply Air (SA)	54 F	52 F
Return Air Wet Bulb Temp (RWB)	61 F	60 F
Supply Air Wet Bulb Temp (SWB)	45 F	43 F

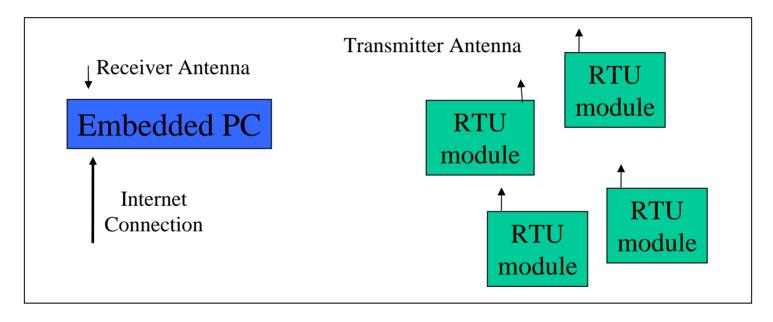
Portable technology Performance Indices

Diagnostics Parameter	Goal	Pre-Test		Post-Repair	
Diagnostics i arameter		Value	Evaluation	Value	Evaluation
Evap Temp (ET)	40 F	24 F	Lo	48 F	Hi
Superheat (SH)	18 F	34 F	Hi	15 F	Ok-
Condenser Temp (CT)	F	103 F	N/A	83 F	N/A
Subcooling (SC)	17 F	31 F	Hi	13 F	Ok-
Evaporator Delta T (EDT)	17 F	17 F	Ok	18 F	Ok
Condenser Over Ambient (COA)	26 F	34 F	Ok+	15 F	Lo

Portable technology Diagnostics and Efficiency

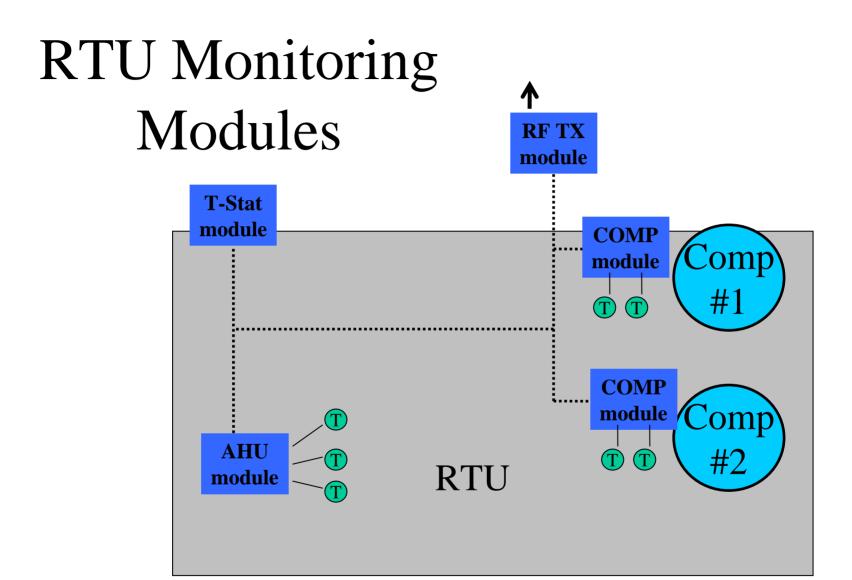
PRE-TEST DIAGNOSTICS: CAUTION/Major Repair: Non condensables or restriction because ET is low and SH and SC are high and COA is greater than goal and not high.

POST-REPAIR DIAGNOSTICS:


ACCEPTABLE/No repair needed: Safe and reasonable performance because the data indicates this system is performing as expected given the conditions entered. No further system diagnostics are required.

Performance Parameter	Pre-Test Value	Post-Repair Value	Realized Savings
Efficiency Index (EI)	72%	>98%	¢200
Capacity Index (CI)	64%	>98%	\$399
Potential Annual Savings	\$399	\$0	

The following default values are used for Potential Annual Savings calculation if actual values are not supplied: Nominal SEER 10 BTU/h/w, Annual Runtime 1200 hrs/year, 2nd stage runtime equals 25% of 1st stage runtime, Electrical cost \$0.10



ACRx SentinelTM RTU Monitoring System

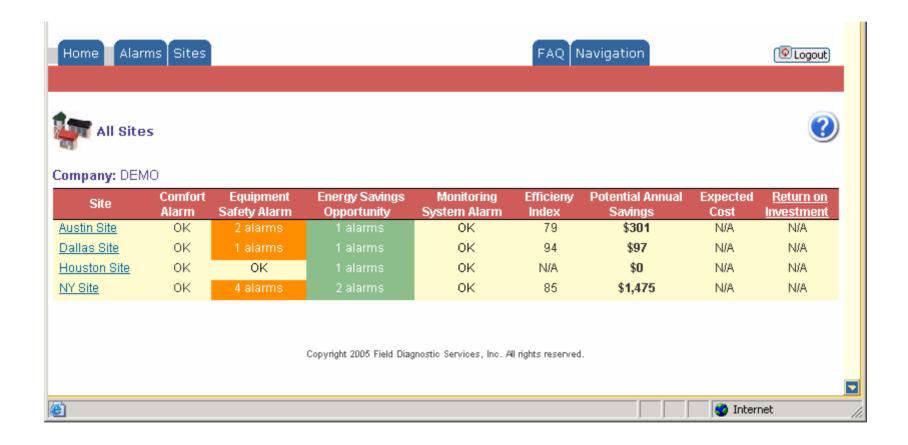
Costs: Starting at about \$1,000 - \$800 per unit and driven down with higher quantity and OEM integration

ACRx SentinelTM Installation

Installed on large Carrier commercial RTU

SentinelTM modules – Cellular site interface, Thermostat and Compressor modules

Refrigerant pipe temperature



Condensing temperature

Web-based reports

Comprehensive RTU monitoring

- Refrigeration cycles
- Economizer performance
 - Energy savings
 - IAQ
- Air handing unit
 - Delivering required airflow

- Gas furnaces
 - Combustion efficiency
 - Safety
- Building and internal operating controls

DSM and Title 24

- AirWatch program use Sentinel is deployment program providing persistent and sustainable savings
- Integrated unit curtailment for demand response programs.
- Qualified embedded monitoring and diagnostic system can qualify for Title 24 compliance credits

Conclusion

- Electric power and HVAC service resources can be better tracked and controlled with HVAC diagnostic systems
- Evolutionary technology from portable tools to embedded RTU monitoring
- Cost effective deployment in DSM programs and building codes (Title 24).

